1
|
Dotinga BM, Bao M, Solberg R, Saugstad OD, Hulscher JBF, Bos AF, Plösch T, Kooi EMW. Gene expression in the intestine of newborn piglets after hypoxia-reoxygenation. Pediatr Res 2023; 94:1365-1372. [PMID: 37208432 DOI: 10.1038/s41390-023-02657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND In preterm infants, intestinal hypoxia may partly contribute to the pathophysiology of necrotizing enterocolitis through changes in gene expression. Splanchnic hypoxia can be detected with monitoring of regional splanchnic oxygen saturation (rsSO2). Using a piglet model of asphyxia, we aimed to correlate changes in rsSO2 to gene expression. METHODS Forty-two newborn piglets were randomized to control or intervention groups. Intervention groups were subjected to hypoxia until they were acidotic and hypotensive. Next, they were reoxygenated for 30 min according to randomization, i.e., 21% O2, 100% O2, or 100% O2 for 3 min followed by 21% O2, and observed for 9 h. We continuously measured rsSO2 and calculated mean rsSO2 and variability of rsSO2 (rsCoVar = SD/mean). Samples of terminal ileum were analyzed for mRNA expression of selected genes related to inflammation, erythropoiesis, fatty acid metabolism, and apoptosis. RESULTS The expression of selected genes was not significantly different between control and intervention groups. No associations between mean rsSO2 and gene expression were observed. However, lower rsCoVar was associated with the upregulation of apoptotic genes and the downregulation of inflammatory genes (P < 0.05). CONCLUSION Our study suggests that hypoxia and reoxygenation cause reduced vascular adaptability, which seems to be associated with the upregulation of apoptosis and downregulation of inflammation. IMPACT Our results provide important insight into the (patho)physiological significance of changes in the variability of rsSO2. Our findings may advance future research and clinical practice regarding resuscitation strategies of preterm infants.
Collapse
Affiliation(s)
- Baukje M Dotinga
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mian Bao
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Rønnaug Solberg
- Division of Pediatric and Adolescent Medicine, Department of Pediatric Research, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Ola D Saugstad
- Division of Pediatric and Adolescent Medicine, Department of Pediatric Research, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Jan B F Hulscher
- Division of Pediatric Surgery, Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Arend F Bos
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Elisabeth M W Kooi
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Oxygen therapy of the newborn from molecular understanding to clinical practice. Pediatr Res 2019; 85:20-29. [PMID: 30297877 DOI: 10.1038/s41390-018-0176-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/30/2023]
Abstract
Oxygen is one of the most critical components of life. Nature has taken billions of years to develop optimal atmospheric oxygen concentrations for human life, evolving from very low, peaking at 30% before reaching 20.95%. There is now increased understanding of the potential toxicity of both too much and too little oxygen, especially for preterm and asphyxiated infants and of the potential and lifelong impact of oxygen exposure, even for a few minutes after birth. In this review, we discuss the contribution of knowledge gleaned from basic science studies and their implication in the care and outcomes of the human infant within the first few minutes of life and afterwards. We emphasize current knowledge gaps and research that is needed to answer a problem that has taken Nature a considerably longer time to resolve.
Collapse
|
3
|
Hooper SB, Te Pas AB, Polglase GR, Wyckoff M. Animal models in neonatal resuscitation research: What can they teach us? Semin Fetal Neonatal Med 2018; 23:300-305. [PMID: 30001819 DOI: 10.1016/j.siny.2018.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Animal models have made and continue to make important contributions to neonatal medicine. For example, studies in fetal sheep have taught us much about the physiology of the fetal-to-neonatal transition. However, whereas animal models allow multiple factors to be investigated in a logical and systematic manner, no animal model is perfect for humans and so we need to understand the fundamental differences in physiology between the species in question and humans. Although most physiological systems are well conserved between species, some small differences exist and so wherever possible the knowledge generated from preclinical studies in animals should be tested in clinical trials. However, with the rise of evidence-based medicine the distinction between scientific knowledge generation and evidence gathering has been confused and the two have been lumped together. This misunderstands the contribution that scientific knowledge can provide. Science should be used to guide the gathering of evidence by informing the design of clinical trials, thereby increasing their likelihood of success. While scientific knowledge is not evidence, in the absence of evidence it is likely to be the best option for guiding clinical practice.
Collapse
Affiliation(s)
- Stuart B Hooper
- The Ritchie Centre, Hudson Institute for Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.
| | - Arjan B Te Pas
- Division of Neonatology, Department of Paediatrics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute for Medical Research, Melbourne, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Myra Wyckoff
- Department of Pediatrics, Neonatal and Perinatal Medicine, University of Texas, South Western Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Cerebellum Susceptibility to Neonatal Asphyxia: Possible Protective Effects of N-Acetylcysteine Amide. DISEASE MARKERS 2018; 2018:5046372. [PMID: 29651324 PMCID: PMC5831588 DOI: 10.1155/2018/5046372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022]
Abstract
Background After perinatal asphyxia, the cerebellum presents more damage than previously suggested. Objectives To explore if the antioxidant N-acetylcysteine amide (NACA) could reduce cerebellar injury after hypoxia-reoxygenation in a neonatal pig model. Methods Twenty-four newborn pigs in two intervention groups were exposed to 8% oxygen and hypercapnia, until base excess fell to -20 mmol/l or the mean arterial blood pressure declined to <20 mmHg. After hypoxia, they received either NACA (NACA group, n = 12) or saline (vehicle-treated group, n = 12). One sham-operated group (n = 5) served as a control and was not subjected to hypoxia. Observation time after the end of hypoxia was 9.5 hours. Results The intranuclear proteolytic activity in Purkinje cells of asphyxiated vehicle-treated pigs was significantly higher than that in sham controls (p = 0.03). Treatment with NACA was associated with a trend to decreased intranuclear proteolytic activity (p = 0.08), There were significantly less mutations in the mtDNA of the NACA group compared with the vehicle-treated group, 2.0 × 10-4 (±2.0 × 10-4) versus 4.8 × 10-5(±3.6 × 10-4, p < 0.05). Conclusion We found a trend to lower proteolytic activity in the core of Purkinje cells and significantly reduced mutation rate of mtDNA in the NACA group, which may indicate a positive effect of NACA after neonatal hypoxia. Measuring the proteolytic activity in the nucleus of Purkinje cells could be used to assess the effect of different neuroprotective substances after perinatal asphyxia.
Collapse
|
5
|
Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, Cernada M, Escobar J, Vento M. Oxygen and oxidative stress in the perinatal period. Redox Biol 2017; 12:674-681. [PMID: 28395175 PMCID: PMC5388914 DOI: 10.1016/j.redox.2017.03.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/12/2017] [Accepted: 03/09/2017] [Indexed: 02/08/2023] Open
Abstract
Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a challenge for the immediate future since accurate evaluation of oxidative stress would contribute to improve the quality of care of our neonatal patients.
Collapse
Affiliation(s)
- Isabel Torres-Cuevas
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Anna Parra-Llorca
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Angel Sánchez-Illana
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Nuñez-Ramiro
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Julia Kuligowski
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Cernada
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Justo Escobar
- Scientific Department, Sabartech SL, Biopolo Instituto Investigación Sanitaria La Fe, Valencia, Spain
| | - Máximo Vento
- Grupo de Investigación en Perinatología, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Servicio de Neonatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| |
Collapse
|
6
|
Rognlien AGW, Wollen EJ, Atneosen-Åsegg M, Saugstad OD. Temporal Patterns of Gene Expression Profiles in the Neonatal Mouse Lung after Hypoxia-Reoxygenation. Neonatology 2017; 111:45-54. [PMID: 27529351 DOI: 10.1159/000447322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/01/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND One out of four children with neonatal asphyxia has lung involvement. Still, there has been little research on injury mechanisms of hypoxia-reoxygenation in the neonatal lung. OBJECTIVES To make a temporal profile of the gene expression changes of 44 a priori selected genes after hypoxia-reoxygenation in the newborn mouse lung, and to compare the changes after hyperoxic and normoxic reoxygenation. METHODS Postnatal day 7 mice were randomized to 2-hour hypoxia (8% O2) and 30-min reoxygenation in either 60% O2 or air. After 0-72 h of observation, gene expression changes and protein concentrations in whole lung homogenates were examined. RESULTS Immediately after completed reoxygenation, 7 genes of mediators of inflammation were downregulated, and there was an antiapoptotic gene expression pattern. Three DNA glycosylases were downregulated, while genes involved in cell cycle renewal indicated both increased and decreased cell cycle arrest. Sod1 (T2.5h median H60: 1.01, H21: 0.88, p = 0.005; T5h median H60: 1.04, H21: 0.85, p = 0.038) and Il1b (T0h median H60: 0.86, H21: 1.08, p = 0.021) were significantly differentially expressed when comparing hyperoxic and normoxic reoxygenation. CONCLUSION In this newborn mouse lung hypoxia-reoxygenation model, we found downregulation of genes of mediators of inflammation, an antiapoptotic gene expression pattern, and downregulation of DNA glycosylases. Sod1 and Il1b were significantly differentially expressed when comparing reoxygenation using 60% O2 with air.
Collapse
Affiliation(s)
- Anne Gro W Rognlien
- Division of Paediatric and Adolescent Medicine, Department of Pediatric Research, University of Oslo, Oslo University Hospital HF, Oslo, Norway
| | | | | | | |
Collapse
|
7
|
Dannevig I, Solevåg AL, Saugstad OD, Nakstad B. Lung Injury in Asphyxiated Newborn Pigs Resuscitated from Cardiac Arrest - The Impact of Supplementary Oxygen, Longer Ventilation Intervals and Chest Compressions at Different Compression-to-Ventilation Ratios. Open Respir Med J 2012; 6:89-96. [PMID: 23115599 PMCID: PMC3480705 DOI: 10.2174/1874306401206010089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/03/2012] [Accepted: 08/13/2012] [Indexed: 11/22/2022] Open
Abstract
Introduction: Non-specific lung inflammatory events caused by severe asphyxia may be intensified by the way we resuscitate the newly born. Assessing lung injury is potentially important because if alternative resuscitation approaches induces similar inflammatory responses or less lung injury. then we may choose the resuscitation approach that is most gentle, and easiest to perform and learn. We investigated the levels of lung inflammatory markers by comparing different ventilation, chest compression and inhaled oxygen fraction strategies in resuscitation of newly born pigs at cardiac arrest. Materials and Methodology: Progressive asphyxia in newborn pigs was induced until asystole occurred. With current resuscitation guidelines as a reference group, pigs were randomized to receive initial ventilation before chest compressions for 30s, 60s or 90s, or to compression-to-ventilation ratios 3:1or 9:3, or to resuscitation using pure oxygen or air. We analysed inflammatory markers in bronchoalveolar lavage fluid (BAL), IL8 and TNFα, and lung tissue qPCR for genes matrix metalloproteinases (MMP)2, MMP9, TNFα and ICAM-1. Results: BAL-levels of TNFα and IL8 tended to be higher in the 30s group compared to 60s group (p = 0.028 and p = 0.023, respectively) as was gene expression in lung tissue of ICAM-1 and MMP2 (p=0.012 and p=0.043, respectively). MMP2 expression was slightly higher in the 30s group compared to 90s group (p = 0.020). No differences were found between pigs resuscitated with C:V ratio 9:3 and 3:1 or pure oxygen versus air. Conclusion: Compared to current guidelines, with respect to lung injury, resuscitation with longer initial ventilation should be considered. Longer series of chest compressions did not change the lung inflammatory response, neither did the use of air instead of pure oxygen in severely asphyxiated pigs resuscitated from asystole.
Collapse
Affiliation(s)
- Ingrid Dannevig
- Dept. of Paediatrics, Akershus University Hospital, N-1478 Lørenskog, Norway ; Institute of Clinical Medicine, University of Oslo, N-1478 Lørenskog, Norway ; Dept. of Paediatric Research, Oslo University Hospital, Rikshospitalet, P.O Box 4950 Nydalen, N-0424 Oslo, Norway ; Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, P.O Box 4950 Nydalen, 0424 Oslo, Norway
| | | | | | | |
Collapse
|
8
|
Østerholt HCD, Dannevig I, Wyckoff MH, Liao J, Akgul Y, Ramgopal M, Mija DS, Cheong N, Longoria C, Mahendroo M, Nakstad B, Saugstad OD, Savani RC. Antioxidant protects against increases in low molecular weight hyaluronan and inflammation in asphyxiated newborn pigs resuscitated with 100% oxygen. PLoS One 2012; 7:e38839. [PMID: 22701723 PMCID: PMC3372475 DOI: 10.1371/journal.pone.0038839] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/11/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Newborn resuscitation with 100% oxygen is associated with oxidative-nitrative stresses and inflammation. The mechanisms are unclear. Hyaluronan (HA) is fragmented to low molecular weight (LMW) by oxidative-nitrative stresses and can promote inflammation. We examined the effects of 100% oxygen resuscitation and treatment with the antioxidant, N-acetylcysteine (NAC), on lung 3-nitrotyrosine (3-NT), LMW HA, inflammation, TNFα and IL1ß in a newborn pig model of resuscitation. METHODS & PRINCIPAL FINDINGS Newborn pigs (n = 40) were subjected to severe asphyxia, followed by 30 min ventilation with either 21% or 100% oxygen, and were observed for the subsequent 150 minutes in 21% oxygen. One 100% oxygen group was treated with NAC. Serum, bronchoalveolar lavage (BAL), lung sections, and lung tissue were obtained. Asphyxia resulted in profound hypoxia, hypercarbia and metabolic acidosis. In controls, HA staining was in airway subepithelial matrix and no 3-NT staining was seen. At the end of asphyxia, lavage HA decreased, whereas serum HA increased. At 150 minutes after resuscitation, exposure to 100% oxygen was associated with significantly higher BAL HA, increased 3NT staining, and increased fragmentation of lung HA. Lung neutrophil and macrophage contents, and serum TNFα and IL1ß were higher in animals with LMW than those with HMW HA in the lung. Treatment of 100% oxygen animals with NAC blocked nitrative stress, preserved HMW HA, and decreased inflammation. In vitro, peroxynitrite was able to fragment HA, and macrophages stimulated with LMW HA increased TNFα and IL1ß expression. CONCLUSIONS & SIGNIFICANCE Compared to 21%, resuscitation with 100% oxygen resulted in increased peroxynitrite, fragmentation of HA, inflammation, as well as TNFα and IL1ß expression. Antioxidant treatment prevented the expression of peroxynitrite, the degradation of HA, and also blocked increases in inflammation and inflammatory cytokines. These findings provide insight into potential mechanisms by which exposure to hyperoxia results in systemic inflammation.
Collapse
Affiliation(s)
- Helene C. D. Østerholt
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Ingrid Dannevig
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Myra H. Wyckoff
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jie Liao
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yucel Akgul
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mrithyunjay Ramgopal
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dan S. Mija
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Naeun Cheong
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Christopher Longoria
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Britt Nakstad
- Department of Pediatrics, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ola D. Saugstad
- Department of Pediatric Research, Oslo University Hospital – Rikshospitalet, Oslo, Norway
| | - Rashmin C. Savani
- Divisions of Pulmonary and Vascular Biology and Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Solberg R, Perrone S, Saugstad OD, Buonocore G. Risks and benefits of oxygen in the delivery room. J Matern Fetal Neonatal Med 2012; 25 Suppl 1:41-4. [PMID: 22356586 DOI: 10.3109/14767058.2012.665236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxygen is an essential element of aerobic life, and oxidative metabolism represents a principal source of energy. Nevertheless, oxygen may also be toxic and mutagenic with the potential to cause damage through the production of reactive oxygen species (ROS). ROS generation can be considered a double-edged sword. Beneficial effects of ROS occur at moderate concentrations and involve physiological roles in cellular responses to noxia, as in defense against infectious agents, in the function of a number of cellular signaling pathways and the induction of a mitogenic response. The overproduction of ROS and the insufficiency of an antioxidant mechanism results in oxidative stress (OS), a deleterious process and important mediator of damage to cell structures and tissues. Newborns, especially if preterm, are particularly susceptible to OS and damage due to increased generation of ROS, the lack of adequate antioxidant protection, and the inability to induce antioxidant defenses during the hyperoxic challenge at birth. Hence the "Oxygen Paradox": higher eukaryotic aerobic organisms cannot exist without oxygen and without OS, yet oxygen and ROS are dangerous to their existence. Originally, the oxygen paradox described that the injury was aggravated by giving oxygen after hypoxia. Today, we know this is caused by production of oxygen radicals. Therefore, it is mandatory in the handling of newborns to use oxygen as a medication when clinical surveillance indicates a need.
Collapse
Affiliation(s)
- Rønnaug Solberg
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy
| | | | | | | |
Collapse
|
10
|
Solberg R, Løberg EM, Andresen JH, Wright MS, Charrat E, Khrestchatisky M, Rivera S, Saugstad OD. Resuscitation of newborn piglets. short-term influence of FiO2 on matrix metalloproteinases, caspase-3 and BDNF. PLoS One 2010; 5:e14261. [PMID: 21151608 PMCID: PMC3000320 DOI: 10.1371/journal.pone.0014261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/10/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Perinatal hypoxia-ischemia is a major cause of mortality and cerebral morbidity, and using oxygen during newborn resuscitation may further harm the brain. The aim was to examine how supplementary oxygen used for newborn resuscitation would influence early brain tissue injury, cell death and repair processes and the regulation of genes related to apoptosis, neurodegeneration and neuroprotection. METHODS AND FINDINGS Anesthetized newborn piglets were subjected to global hypoxia and then randomly assigned to resuscitation with 21%, 40% or 100% O(2) for 30 min and followed for 9 h. An additional group received 100% O(2) for 30 min without preceding hypoxia. The left hemisphere was used for histopathology and immunohistochemistry and the right hemisphere was used for in situ zymography in the corpus striatum; gene expression and the activity of various relevant biofactors were measured in the frontal cortex. There was an increase in the net matrix metalloproteinase gelatinolytic activity in the corpus striatum from piglets resuscitated with 100% oxygen vs. 21%. Hematoxylin-eosin (HE) staining revealed no significant changes. Nine hours after oxygen-assisted resuscitation, caspase-3 expression and activity was increased by 30-40% in the 100% O(2) group (n = 9/10) vs. the 21% O(2) group (n = 10; p<0.04), whereas brain-derived neurotrophic factor (BDNF) activity was decreased by 65% p<0.03. CONCLUSIONS The use of 100% oxygen for resuscitation resulted in increased potentially harmful proteolytic activities and attenuated BDNF activity when compared with 21%. Although there were no significant changes in short term cell loss, hyperoxia seems to cause an early imbalance between neuroprotective and neurotoxic mechanisms that might compromise the final pathological outcome.
Collapse
Affiliation(s)
- Rønnaug Solberg
- Department of Paediatric Research, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
This article summarizes the historical background for the use of oxygen during newborn resuscitation and describes some of the research and the process of changing the previous practice from a high- to a low-oxygen approach. Findings of a recent Cochrane review suggest that more than 100,000 newborn lives might be saved globally each year by changing from 100 to 21% oxygen for newborn resuscitation. This estimate represents one of the largest yields for a simple therapeutic approach to decrease neonatal mortality in the history of pediatric research. Available data also suggest that, for the very low birth weight infant, use of the low-oxygen approach should be considered with the understanding that some of the smallest and sickest preterm neonates will need some level of oxygen supplementation during the first minutes of postnatal life. As more data are needed for the very preterm population, creation of strict guidelines for these infants would be premature at present. However, it can be stated that term and late preterm infants in need of resuscitation should, in general, be started on 21% oxygen, and if resuscitation is not started with 21% oxygen, a blender should be available, enabling the administration of the lowest FiO(2) possible to keep heart rate and SaO(2) within the target range. For extremely low birth weight infants, initial FiO(2) could be between 0.21 and 0.30 and adjusted according to the response in SaO(2) and heart rate.
Collapse
|