1
|
Zafar S, Sayed E, Rana SJ, Rasekh M, Onaiwu E, Nazari K, Kucuk I, Fatouros DG, Arshad MS, Ahmad Z. Particulate atomisation design methods for the development and engineering of advanced drug delivery systems: A review. Int J Pharm 2024; 666:124771. [PMID: 39341385 DOI: 10.1016/j.ijpharm.2024.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The role and opportunities presented by particulate technologies (due to novel processing methods and advanced materials) have multiplied over the last few decades, leading to promising and ideal properties for drug delivery. For example, the dissolution and bioavailability of poorly soluble drug substances and achieving site- specific drug delivery with a desired release profile are crucial aspects of forming (to some extent) state-of-the-art platforms. Atomisation techniques are intended to achieve efficient control over particle size, improved processing time, improved drug loading efficiency, and the opportunity to encapsulate a broad range of viable yet sensitive therapeutic moieties. Particulate engineering through atomization is accomplished by employing various mechanisms such as air, no air, centrifugal, electrohydrodynamic, acoustic, and supercritical fluid driven processes. These driving forces overcome capillary stresses (e.g., liquid viscosity, surface tension) and transform formulation media (liquid) into fine droplets. More frequently, solvent removal, multiple methods are included to reduce the final size distribution. Nevertheless, a thorough understanding of fluid mechanics, thermodynamics, heat, and mass transfer is imperative to appreciate and predict outputs in real time. More so, in recent years, several advancements have been introduced to improve such processes through complex particle design coupled with quality by-design (QbD) yielding optimal particulate geometry in a predictable manner. Despite these valuable and numerous advancements, atomisation techniques face difficulty scaling up from laboratory scales to manufacturing industry scales. This review details the various atomisation techniques (from design to mechanism) along with examples of drug delivery systems developed. In addition, future perspectives and bottlenecks are provided while highlighting current and selected seminal developments in the field.
Collapse
Affiliation(s)
- Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Elshaimaa Sayed
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, United Kingdom
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze, Turkiye
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.
| |
Collapse
|
2
|
Chavda VP, Jogi G, Shah N, Athalye MN, Bamaniya N, K Vora L, Cláudia Paiva-Santos A. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
3
|
Gaete-Garretón L, Briceño-Gutiérrez D, Vargas-Hernández Y, Zanelli CI. Ultrasonic atomization of distilled water. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:222. [PMID: 30075687 DOI: 10.1121/1.5045558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Experimental data on ultrasonic atomization of distilled water in a frequency range from 5 to 50 kHz are presented. A good agreement was found with the predictions of Rajan and Pandit [Ultrasonics 39, 235-255 (2001)] for the atomized primary drop size as a function of frequency. The correlation of atomization drop size for different frequencies is useful when producing nanoparticles, spray drying of suspensions, and covering of surfaces using different liquid products. Determining the displacement amplitude threshold for atomization at different frequencies is valuable in designing ultrasonic atomization systems. It is essential to measure the displacement amplitude of the atomizing surface rather that power applied to the transducer because the former is absolute while the latter depends on the efficiency of the transducer and other design parameters. As previous predictions for atomization threshold proved inaccurate, an empirical expression is proposed (based on the authors' measurements) to predict the amplitude atomization threshold for the studied frequency range.
Collapse
Affiliation(s)
- L Gaete-Garretón
- Laboratorio de Ultrasonidos, Departamento de Física, Universidad de Santiago de Chile, Avenue Ecuador 3493, Santiago, Chile
| | - D Briceño-Gutiérrez
- Laboratorio de Ultrasonidos, Departamento de Física, Universidad de Santiago de Chile, Avenue Ecuador 3493, Santiago, Chile
| | - Y Vargas-Hernández
- Laboratorio de Ultrasonidos, Departamento de Física, Universidad de Santiago de Chile, Avenue Ecuador 3493, Santiago, Chile
| | - C I Zanelli
- Onda Corporation, 1290 Hammerwood Avenue, Sunnyvale, California 94089, USA
| |
Collapse
|
5
|
Dalmoro A, Barba AA, Lamberti G, d’Amore M. Intensifying the microencapsulation process: Ultrasonic atomization as an innovative approach. Eur J Pharm Biopharm 2012; 80:471-7. [DOI: 10.1016/j.ejpb.2012.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 12/15/2011] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
|
6
|
Li Y, Zhang S, Li J. Experimental and theoretical approaches on uniform droplets formation from a rationed rotating membrane system. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2010.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Alvarez M, Yeo LY, Friend JR, Jamriska M. Rapid production of protein-loaded biodegradable microparticles using surface acoustic waves. BIOMICROFLUIDICS 2009; 3:14102. [PMID: 19693395 PMCID: PMC2717602 DOI: 10.1063/1.3055282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 11/24/2008] [Indexed: 05/02/2023]
Abstract
We present a straightforward and rapid surface acoustic wave (SAW) atomization-based technique for encapsulating proteins into 10 mum order particles composed of a biodegradable polymeric excipient, using bovine serum albumin (BSA) as an exemplar. Scans obtained from confocal microscopy provide qualitative proof of encapsulation and show the fluorescent conjugated protein to be distributed in a relatively uniform manner within the polymer shell. An ELISA assay of the collected particles demonstrates that the BSA survives the atomization, particle formation, and collection process with a yield of approximately 55%. The SAW atomization universally gave particles with a textured morphology, and increasing the frequency and polymer concentration generally gave smaller particles (to 3 mum average) with reduced porosity.
Collapse
|
8
|
Ho J, Wang H, Forde GM. Process considerations related to the microencapsulation of plasmid DNA via ultrasonic atomization. Biotechnol Bioeng 2008; 101:172-81. [PMID: 18646229 DOI: 10.1002/bit.21876] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An effective means of facilitating DNA vaccine delivery to antigen presenting cells is through biodegradable microspheres. Microspheres offer distinct advantages over other delivery technologies by providing release of DNA vaccine in its bioactive form in a controlled fashion. In this study, biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing polyethylenimine (PEI) condensed plasmid DNA (pDNA) were prepared using a 40 kHz ultrasonic atomization system. Process synthesis parameters, which are important to the scale-up of microspheres that are suitable for nasal delivery (i.e., less than 20 microm), were studied. These parameters include polymer concentration; feed flowrate; volumetric ratio of polymer and pDNA-PEI (plasmid DNA-polyethylenimine) complexes; and nitrogen to phosphorous (N/P) ratio. PDNA encapsulation efficiencies were predominantly in the range 82-96%, and the mean sizes of the particle were between 6 and 15 microm. The ultrasonic synthesis method was shown to have excellent reproducibility. PEI affected morphology of the microspheres, as it induced the formation of porous particles that accelerate the release rate of pDNA. The PLGA microspheres displayed an in vitro release of pDNA of 95-99% within 30 days and demonstrated zero order release kinetics without an initial spike of pDNA. Agarose electrophoresis confirmed conservation of the supercoiled form of pDNA throughout the synthesis and in vitro release stages. It was concluded that ultrasonic atomization is an efficient technique to overcome the key obstacles in scaling-up the manufacture of encapsulated vaccine for clinical trials and ultimately, commercial applications.
Collapse
Affiliation(s)
- Jenny Ho
- Department of Chemical Engineering, Monash University, Clayton, 3800 VIC, Australia.
| | | | | |
Collapse
|