1
|
Coloma I, Parrón-Ballesteros J, Cortijo M, Cuerva C, Turnay J, Herrero S. Overcoming Resistance of Caco-2 Cells to 5-Fluorouracil through Diruthenium Complex Encapsulation in PMMA Nanoparticles. Inorg Chem 2024; 63:12870-12879. [PMID: 38833385 PMCID: PMC11256753 DOI: 10.1021/acs.inorgchem.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Drug resistance, one of the main drawbacks in cancer chemotherapy, can be tackled by employing a combination of drugs that target different biological processes in the cell, enhancing the therapeutic efficacy. Herein, we report the synthesis and characterization of a new paddlewheel diruthenium complex that includes 5-fluorouracil (5-FU), a commonly used anticancer drug. This drug was functionalized with a carboxylate group to take advantage of the previously demonstrated release capacity of carboxylate ligands from the diruthenium core. The resulting hydrophobic complex, [Ru2Cl(DPhF)3(5-FUA)] (Ru-5-FUA) (DPhF = N,N'-diphenylformamidinate; 5-FUA = 5-fluorouracil-1-acetate) was subsequently entrapped in poly(methyl methacrylate) (PMMA) nanoparticles (PMMA@Ru-5-FUA) via a reprecipitation method to be transported in biological media. The optimized encapsulation procedure yielded particles with an average size of 81.2 nm, a PDI of 0.11, and a zeta potential of 29.2 mV. The cytotoxicity of the particles was tested in vitro using the human colon carcinoma cell line Caco-2. The IC50 (half maximal inhibitory concentration) of PMMA@Ru-5-FUA (6.08 μM) was just slightly lower than that found for the drug 5-FU (7.64 μM). Most importantly, while cells seemed to have developed drug resistance against 5-FU, PMMA@Ru-5-FUA showed an almost complete lethality at ∼30 μM. Conversely, an analogous diruthenium complex devoid of the 5-FU moiety, [Ru2Cl(DPhF)3(O2CCH3)] (PMMA@RuA), displayed a reduced cytotoxicity at equivalent concentrations. These findings highlight the effect of combining the anticancer properties of 5-FU with those of diruthenium species. This suggests that the distinct modes of action of the two chemical species are crucial for overcoming drug resistance.
Collapse
Affiliation(s)
- Isabel Coloma
- MatMoPol
Research Group, Inorganic Chemistry Department, Faculty of Chemical
Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Jorge Parrón-Ballesteros
- Department
of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Miguel Cortijo
- MatMoPol
Research Group, Inorganic Chemistry Department, Faculty of Chemical
Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Cristián Cuerva
- MatMoPol
Research Group, Inorganic Chemistry Department, Faculty of Chemical
Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Javier Turnay
- Department
of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Santiago Herrero
- MatMoPol
Research Group, Inorganic Chemistry Department, Faculty of Chemical
Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| |
Collapse
|
2
|
Lirong W, Mingliang Z, Mengci L, Qihao G, Zhenxing R, Xiaojiao Z, Tianlu C. The clinical and mechanistic roles of bile acids in depression, Alzheimer's disease, and stroke. Proteomics 2022; 22:e2100324. [PMID: 35731901 DOI: 10.1002/pmic.202100324] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
The burden of neurological and neuropsychiatric disorders continues to grow with significant impacts on human health and social economy worldwide. Increasing clinical and preclinical evidences have implicated that bile acids (BAs) are involved in the onset and progression of neurological and neuropsychiatric diseases. Here, we summarized recent studies of BAs in three types of highly prevalent brain disorders, depression, Alzheimer's disease, and stroke. The shared and specific BA profiles were explored and potential markers associated with disease development and progression were summarized. The mechanistic roles of BAs were reviewed with focuses on inflammation, gut-brain-microbiota axis, cellular apoptosis. We also discussed future perspectives for the prevention and treatment of neurological and neuropsychiatric disorders by targeting BAs and related molecules and gut microbiota. Our understanding of BAs and their roles in brain disorders is still evolving. A large number of questions still need to be addressed on the emerging crosstalk among central, peripheral, intestine and their contribution to brain and mental health. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wu Lirong
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhao Mingliang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Li Mengci
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guo Qihao
- Department of gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ren Zhenxing
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zheng Xiaojiao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chen Tianlu
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
3
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
4
|
Mai CW, Yaeghoobi M, Abd-Rahman N, Kang YB, Pichika MR. Chalcones with electron-withdrawing and electron-donating substituents: anticancer activity against TRAIL resistant cancer cells, structure-activity relationship analysis and regulation of apoptotic proteins. Eur J Med Chem 2014; 77:378-87. [PMID: 24675137 DOI: 10.1016/j.ejmech.2014.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 02/05/2023]
Abstract
In the present study, a series of 46 chalcones were synthesised and evaluated for antiproliferative activities against the human TRAIL-resistant breast (MCF-7, MDA-MB-231), cervical (HeLa), ovarian (Caov-3), lung (A549), liver (HepG2), colorectal (HT-29), nasopharyngeal (CNE-1), erythromyeloblastoid (K-562) and T-lymphoblastoid (CEM-SS) cancer cells. The chalcone 38 containing an amino (-NH2) group on ring A was the most potent and selective against cancer cells. The effects of the chalcone 38 on regulation of 43 apoptosis-related markers in HT-29 cells were determined. The results showed that 20 apoptotic markers (Bad, Bax, Bcl-2, Bcl-w, Bid, Bim, CD40, Fas, HSP27, IGF-1, IGFBP-4, IGFBP-5, Livin, p21, Survivin, sTNF-R2, TRAIL-R2, XIAP, caspase-3 and caspase-8) were either up regulated or down regulated.
Collapse
Affiliation(s)
- Chun Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Marzieh Yaeghoobi
- Drug Design and Development Research Group, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd-Rahman
- Drug Design and Development Research Group, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Yew Beng Kang
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Barrasa JI, Olmo N, Lizarbe MA, Turnay J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol In Vitro 2012; 27:964-77. [PMID: 23274766 DOI: 10.1016/j.tiv.2012.12.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 02/07/2023]
Abstract
Bile acids are natural detergents mainly involved in facilitating the absorption of dietary fat in the intestine. In addition to this absorptive function, bile acids are also essential in the maintenance of the intestinal epithelium homeostasis. To accomplish this regulatory function, bile acids may induce programmed cell death fostering the renewal of the epithelium. Here we first discuss on the different molecular pathways of cell death focusing on apoptosis in colon epithelial cells. Bile acids may induce apoptosis in colonocytes through different mechanisms. In contrast to hepatocytes, the extrinsic apoptotic pathway seems to have a low relevance regarding bile acid cytotoxicity in the colon. On the contrary, these molecules mainly trigger apoptosis through direct or indirect mitochondrial perturbations, where oxidative stress plays a key role. In addition, bile acids may also act as regulatory molecules involved in different cell signaling pathways in colon cells. On the other hand, there is increasing evidence that the continuous exposure to certain hydrophobic bile acids, due to a fat-rich diet or pathological conditions, may induce oxidative DNA damage that, in turn, may lead to colorectal carcinogenesis as a consequence of the appearance of cell populations resistant to bile acid-induced apoptosis. Finally, some bile acids, such as UDCA, or low concentrations of hydrophobic bile acids, can protect colon cells against apoptosis induced by high concentrations of cytotoxic bile acids, suggesting a dual behavior of these agents as pro-death or pro-survival molecules.
Collapse
Affiliation(s)
- Juan I Barrasa
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
6
|
Barrasa JI, Santiago-Gómez A, Olmo N, Lizarbe MA, Turnay J. Resistance to butyrate impairs bile acid-induced apoptosis in human colon adenocarcinoma cells via up-regulation of Bcl-2 and inactivation of Bax. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2201-9. [PMID: 22917577 DOI: 10.1016/j.bbamcr.2012.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/26/2012] [Accepted: 08/09/2012] [Indexed: 12/22/2022]
Abstract
A critical risk factor in colorectal carcinogenesis and tumor therapy is the resistance to the apoptotic effects of different compounds from the intestinal lumen, among them butyrate (main regulator of colonic epithelium homeostasis). Insensitivity to butyrate-induced apoptosis yields resistance to other agents, as bile acids or chemotherapy drugs, allowing the selective growth of malignant cell subpopulations. Here we analyze bile acid-induced apoptosis in a butyrate-resistant human colon adenocarcinoma cell line (BCS-TC2.BR2) to determine the mechanisms that underlay the resistance to these agents in comparison with their parental butyrate-sensitive BCS-TC2 cells. This study demonstrates that DCA and CDCA still induce apoptosis in butyrate-resistant cells through increased ROS production by activation of membrane-associated enzymes and subsequent triggering of the intrinsic mitochondrial apoptotic pathway. Although this mechanism is similar to that described in butyrate-sensitive cells, cell viability is significantly higher in resistant cells. Moreover, butyrate-resistant cells show higher Bcl-2 levels that confer resistance to bile acid-induced apoptosis sequestering Bax and avoiding Bax-dependent pore formation in the mitochondria. We have confirmed that this resistance is reverted using the Bcl-2 inhibitor ABT-263, thus demonstrating that the lower sensitivity of butyrate-resistant cells to the apoptotic effects of bile acids is mainly due to increased Bcl-2 levels.
Collapse
Affiliation(s)
- Juan I Barrasa
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Ignacio Barrasa J, Olmo N, Pérez-Ramos P, Santiago-Gómez A, Lecona E, Turnay J, Antonia Lizarbe M. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells. Apoptosis 2012; 16:1054-67. [PMID: 21789651 DOI: 10.1007/s10495-011-0633-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The continuous exposure of the colonic epithelium to high concentrations of bile acids may exert cytotoxic effects and has been related to pathogenesis of colon cancer. A better knowledge of the mechanisms by which bile acids induce toxicity is still required and may be useful for the development of new therapeutic strategies. We have studied the effect of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) treatments in BCS-TC2 human colon adenocarcinoma cells. Both bile acids promote cell death, being this effect higher for CDCA. Apoptosis is detected after 30 min-2 h of treatment, as observed by cell detachment, loss of membrane asymmetry, internucleosomal DNA degradation, appearance of mitochondrial transition permeability (MPT), and caspase and Bax activation. At longer treatment times, apoptosis is followed in vitro by secondary necrosis due to impaired mitochondrial activity and ATP depletion. Bile acid-induced apoptosis is a result of oxidative stress with increased ROS generation mainly by activation of plasma membrane enzymes, such as NAD(P)H oxidases and, to a lower extent, PLA2. These effects lead to a loss of mitochondrial potential and release of pro-apoptotic factors to the cytosol, which is confirmed by activation of caspase-9 and -3, but not caspase-8. This initial apoptotic steps promote cleavage of Bcl-2, allowing Bax activation and formation of additional pores in the mitochondrial membrane that amplify the apoptotic signal.
Collapse
Affiliation(s)
- Juan Ignacio Barrasa
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Ovalle S, Gutiérrez-López MD, Olmo N, Turnay J, Lizarbe MA, Majano P, Molina-Jiménez F, López-Cabrera M, Yáñez-Mó M, Sánchez-Madrid F, Cabañas C. The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int J Cancer 2007; 121:2140-52. [PMID: 17582603 DOI: 10.1002/ijc.22902] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The implication of the tetraspanin CD9 in cancer has received much recent attention and an inverse correlation between CD9 expression and the metastatic potential and cancer survival rate has been established for different tumor types. In contrast to the well-established role of CD9 in metastasis, very little is known about the involvement of this tetraspanin in the process of development of primary tumors. In the present study, we present evidence on the implication of CD9 in colon carcinoma tumorigenesis. We report here that ectopic expression of CD9 in colon carcinoma cells results in enhanced integrin-dependent adhesion and inhibition of cell growth. Consistently with these effects, treatment of these cells with anti-CD9-specific antibodies resulted in (i) increased beta1 integrin-mediated cell adhesion through a mechanism involving clustering of integrin molecules rather than altered affinity; (ii) induction of morphological changes characterized by the acquisition of an elongated cell phenotype; (iii) inhibition of cell proliferation with no significant effect on cell survival; (iv) increased expression of membrane TNF-alpha, and finally (v) inhibition of the in vivo tumorigenic capacity in nude mice. In addition, through the use of selective blockers of TNF-alpha, we have demonstrated that this cytokine partly mediates the antiproliferative effects of CD9. These results clearly establish for the first time a role for CD9 in the tumorigenic process.
Collapse
Affiliation(s)
- Susana Ovalle
- Instituto de Farmacología y Toxicología (CSIC-UCM), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kang DJ, Ridlon JM, Moore DR, Barnes S, Hylemon PB. Clostridium scindens baiCD and baiH genes encode stereo-specific 7alpha/7beta-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductases. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1781:16-25. [PMID: 18047844 DOI: 10.1016/j.bbalip.2007.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 10/16/2007] [Accepted: 10/22/2007] [Indexed: 01/28/2023]
Abstract
Secondary bile acids, formed by intestinal bacteria, are suggested to play a significant role in cancers of the gastrointestinal tract in humans. Bile acid 7alpha/beta-dehydroxylation is carried out by a few species of intestinal clostridia which harbor a multi-gene bile acid inducible (bai) operon. Several genes encoding enzymes in this pathway have been cloned and characterized. However, no gene product(s) has yet been assigned to the production of 3-oxo-Delta4-cholenoic acid intermediates of cholic acid (CA), chenodeoxycholic acid (CDCA) or ursodeoxycholic acid (UDCA). We previously reported that the baiH gene encodes an NADH:flavin oxidoreductase (NADH:FOR); however, the role of this protein in bile acid 7-dehydroxylation is unclear. Homology searches and secondary structural alignments suggest this protein to be similar to flavoproteins which reduce alpha/beta-unsaturated carbonyl compounds. The baiH gene product was expressed in Escherichia coli, purified and discovered to be a stereo-specific NAD(H)-dependent 7beta-hydroxy-3-oxo-Delta4-cholenoic acid oxidoreductase. Additionally, high sequence similarity between the baiH and baiCD gene products suggests the baiCD gene may encode a 3-oxo-Delta4-cholenoic acid oxidoreductase specific for CDCA and CA. We tested this hypothesis using cell extracts prepared from E. coli overexpressing the baiCD gene and discovered that it encodes a stereo-specific NAD(H)-dependent 7alpha-hydroxy-3-oxo-Delta4-cholenoic acid oxidoreductase.
Collapse
Affiliation(s)
- Dae-Joong Kang
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
10
|
Olmo N, Turnay J, Lecona E, García-Díez M, Llorente B, Santiago-Gómez A, Lizarbe MA. Acquisition of resistance to butyrate induces resistance to luminal components and other types of stress in human colon adenocarcinoma cells. Toxicol In Vitro 2007; 21:254-61. [PMID: 17084587 DOI: 10.1016/j.tiv.2006.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 09/11/2006] [Accepted: 09/14/2006] [Indexed: 10/24/2022]
Abstract
Butyrate, naturally produced by anaerobic fermentation of diet-fiber, is the major nutrient of colonocytes and also an important regulator of colonic epithelium renewal and physiology. Other luminal components, such as bile acids or bacterial products, influence these processes. The model system we used to analyze the influence of several luminal stressors is composed of a previously established cell line resistant to the apoptotic effects of butyrate and their parental butyrate-sensitive cells. Viability of butyrate-resistant cells is unaffected by mild heat-shock (2h, 42 degrees C) and only slightly reduced by severe heat-shock (2h, 45 degrees C) in contrast to their butyrate-sensitive counterparts. The higher constitutive expression of HSP70 and HSP60 could contribute to this resistance. In addition, expression of HSP70 follows a different pattern after heat-shock in both cell lines. Butyrate-resistant cells are quite unaffected by treatment with deoxycholic acid but apoptosis is induced by chenodeoxycholic acid although to a lower extent than in butyrate-sensitive cells. These resistant cells are also less sensitive to lipopolysaccharide and show differences regarding the activation of ERK following osmotic stress. Thus, the cell model herein reported is a useful tool for investigating the molecular mechanisms of resistance to apoptosis, as well as to analyze specific targets for butyrate-resistant tumors.
Collapse
Affiliation(s)
- N Olmo
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Olmo N, Turnay J, Pérez-Ramos P, Lecona E, Barrasa JI, López de Silanes I, Lizarbe MA. In vitro models for the study of the effect of butyrate on human colon adenocarcinoma cells. Toxicol In Vitro 2006; 21:262-70. [PMID: 17084582 DOI: 10.1016/j.tiv.2006.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 09/11/2006] [Accepted: 09/14/2006] [Indexed: 11/22/2022]
Abstract
The effect of butyrate has been analyzed on human colon adenocarcinoma cell lines with different properties regarding tumorigenicity, differentiation and resistance to apoptosis induced by this agent. Butyrate reduces cell proliferation, induces differentiation (according to alkaline phosphatase activity) and apoptosis, being these effects time- and concentration-dependent. The susceptibility to the cytotoxic effects of butyrate depends on the cell line considered and it is not directly related to tumorigenicity or differentiation. We show that 2mM butyrate treatment of non-tumorigenic BCS-TC2 cells for four days strongly influences the transcriptional activity, causing extensive modification in gene expression patterns (69 up-regulated and 109 down-regulated genes). Some of these genes are involved in the modulation of cell cycle progression, apoptosis and differentiation. We have analyzed the effect of butyrate in spontaneous or induced multicellular spheroids. The more stable spheroids (spontaneous or induced from butyrate-resistant cells) increase the resistance of cells to the effects of butyrate probably due to an impaired accessibility. This in vitro model could be useful to study the resistance of tumors to the effect of natural regulators (i.e. butyrate) as well as to develop and test new therapeutic approaches.
Collapse
Affiliation(s)
- N Olmo
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|