1
|
Taliyan R, Kakoty V, Sarathlal KC, Kharavtekar SS, Karennanavar CR, Choudhary YK, Singhvi G, Riadi Y, Dubey SK, Kesharwani P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer's disease. J Control Release 2022; 343:528-550. [PMID: 35114208 DOI: 10.1016/j.jconrel.2022.01.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
For the past several years, dementia, is one of the predominantly observed groups of symptoms in a geriatric population. Alzheimer's disease (AD) is a progressive memory related neurodegenerative disease, for which the current Food and drug administration approved therapeutics are only meant for a symptomatic management rather than targeting the root cause of AD. These therapeutics belong to two classes, Acetylcholine Esterase inhibitors and N-methyl D-aspartate antagonist. Furthermore, to facilitate neuroprotective action in AD, the drugs are majorly expected to reach the specific target area in the brain for the desired efficacy. Thus, there is a huge requirement for drug discovery and development for facilitating the entry of drugs more in brain to exert a specific action. The very first line of defense and the major limitation for the entry of drugs into the brain is the Blood Brain Barrier, followed by Blood-Cerebrospinal Fluid Barrier. More than a barrier, these mainly act as selectively permeable membranes, which allows entry of specific molecules into the brain. Furthermore, specific enzymes result in the degradation of xenobiotics. All these mechanisms pose as hurdles in the way of effective drug delivery in the brain. Thus, novel techniques need to be harbored for the facilitation of the delivery of such drugs into the brain. Nanocarriers are advantageous for facilitating the specific targeted drug treatment in AD. As nanomedicines are one of the novels and most useful approaches for AD, thus the present review mainly focuses on understanding the advanced use of nanocarriers for targeted drug delivery in the management of AD.
Collapse
Affiliation(s)
- Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India.
| | - Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - K C Sarathlal
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Sanskruti Santosh Kharavtekar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Chandrashekar R Karennanavar
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | | | - Gautam Singhvi
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, 333031, Rajasthan, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
|
3
|
Scrivano L, Iacopetta D, Sinicropi MS, Saturnino C, Longo P, Parisi OI, Puoci F. Synthesis of sericin-based conjugates by click chemistry: enhancement of sunitinib bioavailability and cell membrane permeation. Drug Deliv 2017; 24:482-490. [PMID: 28181828 PMCID: PMC8240991 DOI: 10.1080/10717544.2016.1267822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 01/19/2023] Open
Abstract
Sericin is a natural protein that has been used in biomedical and pharmaceutical fields as raw material for polypeptide-based drug delivery systems (DDSs). In this paper, it has been employed as pharmaceutical biopolymer for the production of sunitinib-polypeptide conjugate. The synthesis has been carried out by simple click reaction in water, using the redox couple l-ascorbic acid/hydrogen peroxide as a free radical grafting initiator. The bioconjugate molecular weight (50 kDa < Mw < 75 kDa) was obtained by SDS-PAGE, while the spectroscopic characteristics have been studied in order to reveal the presence of grafted sunitinib. In both FT-IR and UV/Vis spectra, signals corresponding to sunitinib functional groups have been identified. Since sunitinib is an anticancer drug characterized by low bioavailability and low permeability, the bioconjugation aimed at their enhancement. In vitro studies demonstrated that bioavailability has been increased to almost 74%, compared with commercial formulation. Also cell membrane permeability has been augmented in in vitro tests, in which membrane models have been used to determine the lipid membrane/physiological fluid partition coefficient (Kp). The log(Kp) value of the bioconjugate was increased to over 4. This effect resulted in a three-fold decrease of IC50 value against MCF-7 cells.
Collapse
Affiliation(s)
- Luca Scrivano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Carmela Saturnino
- Department of Sciences, University of Basilicata, Potenza, Italy, and
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Fisciano, SA, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| |
Collapse
|
4
|
Banerjee S, Hwang DJ, Li W, Miller DD. Current Advances of Tubulin Inhibitors in Nanoparticle Drug Delivery and Vascular Disruption/Angiogenesis. Molecules 2016; 21:molecules21111468. [PMID: 27827858 PMCID: PMC6272853 DOI: 10.3390/molecules21111468] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 01/05/2023] Open
Abstract
Extensive research over the last decade has resulted in a number of highly potent tubulin polymerization inhibitors acting either as microtubule stabilizing agents (MSAs) or microtubule destabilizing agents (MDAs). These inhibitors have potent cytotoxicity against a broad spectrum of human tumor cell lines. In addition to cytotoxicity, a number of these tubulin inhibitors have exhibited abilities to inhibit formation of new blood vessels as well as disrupt existing blood vessels. Tubulin inhibitors as a vascular disrupting agents (VDAs), mainly from the MDA family, induce rapid tumor vessel occlusion and massive tumor necrosis. Thus, tubulin inhibitors have become increasingly popular in the field of tumor vasculature. However, their pharmaceutical application is halted by a number of limitations including poor solubility and toxicity. Thus, recently, there has been considerable interests in the nanoparticle drug delivery of tubulin inhibitors to circumvent those limitations. This article reviews recent advances in nanoparticle based drug delivery for tubulin inhibitors as well as their tumor vasculature disruption properties.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| |
Collapse
|
5
|
Zagorodko O, Arroyo-Crespo JJ, Nebot VJ, Vicent MJ. Polypeptide-Based Conjugates as Therapeutics: Opportunities and Challenges. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600316] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/02/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Oleksandr Zagorodko
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Juan José Arroyo-Crespo
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Vicent J. Nebot
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
- Polypeptide Therapeutic Solutions SL; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| |
Collapse
|
6
|
Luong D, Kesharwani P, Killinger BA, Moszczynska A, Sarkar FH, Padhye S, Rishi AK, Iyer AK. Solubility enhancement and targeted delivery of a potent anticancer flavonoid analogue to cancer cells using ligand decorated dendrimer nano-architectures. J Colloid Interface Sci 2016; 484:33-43. [PMID: 27585998 DOI: 10.1016/j.jcis.2016.08.061] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Conventional chemotherapy using small molecule drugs is marred by several challenges such as short half-life, low therapeutic index and adverse systemic side effects. In this regard, targeted therapies using ligand directed polyamidoamine (PAMAM) dendrimers could be a promising strategy to specifically deliver anticancer drugs to cancer cells overexpressing complementary receptor binding domains. The aim of this study was to utilize folate decorated PAMAM to enhance the aqueous solubility of a highly hydrophobic but very potent anticancer flavonoid analogue, 3,4-difluorobenzylidene diferuloylmethane (CDF) and to deliver it specifically to folate receptor overexpressing cervical cancer cells (HeLa) and ovarian cancer cells (SKOV3). As compared to the non-targeted formulation, the targeted formulation exhibited significant anticancer activity with higher accumulation in folate receptor overexpressing cells, larger population of apoptotic cancer cells, elevated expression of tumor suppressor phosphatase and tensin homolog (PTEN), and inhibition of nuclear factor kappa B (NFκB) which further confirmed the targeting ability and the promising anticancer activity of the folate based nanoformulation.
Collapse
Affiliation(s)
- Duy Luong
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Prashant Kesharwani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Bryan A Killinger
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Subhash Padhye
- Interdisciplinary Science & Technology Research Academy, Department of Chemistry, Abeda Inamdar College, Azam Campus, University of Pune, Pune 411001, India
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
7
|
Luo T, Magnusson J, Préat V, Frédérick R, Alexander C, Bosquillon C, Vanbever R. Synthesis and In Vitro Evaluation of Polyethylene Glycol-Paclitaxel Conjugates for Lung Cancer Therapy. Pharm Res 2016; 33:1671-81. [DOI: 10.1007/s11095-016-1908-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
|
8
|
Wen Y, Oh JK. Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf B Biointerfaces 2015; 133:246-53. [PMID: 26119370 DOI: 10.1016/j.colsurfb.2015.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 01/05/2023]
Abstract
Polysaccharide-based crosslinked nanogles (bionanogels) exhibiting multiple stimuli-responsive release of encapsulated therapeutics hold a great potential as tumor-targeting intracelluar durg delivery nanocarriers. Herein, we report the synthesis of monodisperse dual temperature/acidic pH-responsive bionanogels (DuR-BNGs) by aqueous crosslinking polymerization through temperature-induced self-association method. The DuR-BNGs have prolonged colloidal stability and negligible non-specific interactions with proteins. In response to acidic pH at higher temperature (above lower critical solution temperature), they exhibit synergistic release of anticancer drugs as a consequence of both acidic pH-sensitivity of carboxymethyl cellulose and temperature-induced volume change of grafted thermoresponsive copolymers. In vitro cell culture results suggest that new colloidally-stable DuR-BNG is a promising candidate promoting dual stimuli-responsive drug release for cancer therapy.
Collapse
Affiliation(s)
- Yifen Wen
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
9
|
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93:52-79. [PMID: 25813885 DOI: 10.1016/j.ejpb.2015.03.018] [Citation(s) in RCA: 1081] [Impact Index Per Article: 108.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023]
Abstract
Cancer is the second worldwide cause of death, exceeded only by cardiovascular diseases. It is characterized by uncontrolled cell proliferation and an absence of cell death that, except for hematological cancers, generates an abnormal cell mass or tumor. This primary tumor grows thanks to new vascularization and, in time, acquires metastatic potential and spreads to other body sites, which causes metastasis and finally death. Cancer is caused by damage or mutations in the genetic material of the cells due to environmental or inherited factors. While surgery and radiotherapy are the primary treatment used for local and non-metastatic cancers, anti-cancer drugs (chemotherapy, hormone and biological therapies) are the choice currently used in metastatic cancers. Chemotherapy is based on the inhibition of the division of rapidly growing cells, which is a characteristic of the cancerous cells, but unfortunately, it also affects normal cells with fast proliferation rates, such as the hair follicles, bone marrow and gastrointestinal tract cells, generating the characteristic side effects of chemotherapy. The indiscriminate destruction of normal cells, the toxicity of conventional chemotherapeutic drugs, as well as the development of multidrug resistance, support the need to find new effective targeted treatments based on the changes in the molecular biology of the tumor cells. These novel targeted therapies, of increasing interest as evidenced by FDA-approved targeted cancer drugs in recent years, block biologic transduction pathways and/or specific cancer proteins to induce the death of cancer cells by means of apoptosis and stimulation of the immune system, or specifically deliver chemotherapeutic agents to cancer cells, minimizing the undesirable side effects. Although targeted therapies can be achieved directly by altering specific cell signaling by means of monoclonal antibodies or small molecules inhibitors, this review focuses on indirect targeted approaches that mainly deliver chemotherapeutic agents to molecular targets overexpressed on the surface of tumor cells. In particular, we offer a detailed description of different cytotoxic drug carriers, such as liposomes, carbon nanotubes, dendrimers, polymeric micelles, polymeric conjugates and polymeric nanoparticles, in passive and active targeted cancer therapy, by enhancing the permeability and retention or by the functionalization of the surface of the carriers, respectively, emphasizing those that have received FDA approval or are part of the most important clinical studies up to date. These drug carriers not only transport the chemotherapeutic agents to tumors, avoiding normal tissues and reducing toxicity in the rest of the body, but also protect cytotoxic drugs from degradation, increase the half-life, payload and solubility of cytotoxic agents and reduce renal clearance. Despite the many advantages of all the anticancer drug carriers analyzed, only a few of them have reached the FDA approval, in particular, two polymer-protein conjugates, five liposomal formulations and one polymeric nanoparticle are available in the market, in contrast to the sixteen FDA approval of monoclonal antibodies. However, there are numerous clinical trials in progress of polymer-protein and polymer-drug conjugates, liposomal formulations, including immunoliposomes, polymeric micelles and polymeric nanoparticles. Regarding carbon nanotubes or dendrimers, there are no FDA approvals or clinical trials in process up to date due to their unresolved toxicity. Moreover, we analyze in detail the more promising and advanced preclinical studies of the particular case of polymeric nanoparticles as carriers of different cytotoxic agents to active and passive tumor targeting published in the last 5 years, since they have a huge potential in cancer therapy, being one of the most widely studied nano-platforms in this field in the last years. The interest that these formulations have recently achieved is stressed by the fact that 90% of the papers based on cancer therapeutics with polymeric nanoparticles have been published in the last 6 years (PubMed search).
Collapse
|
10
|
|
11
|
Krasnov VP, Korolyova MA, Vodovozova EL. Nano-sized melphalan and sarcolysine drug delivery systems: synthesis and prospects of application. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n08abeh004358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Polymer coatings for delivery of nucleic acid therapeutics. J Control Release 2012; 161:537-53. [PMID: 22366547 DOI: 10.1016/j.jconrel.2012.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 12/15/2022]
Abstract
Gene delivery remains the greatest challenge in applying nucleic acid therapeutic for a broad range of diseases. Combining stability during the delivery phase with activation and transgene expression following arrival at the target site requires sophisticated vectors that can discriminate between cell types and respond to target-associated conditions to trigger expression. Efficient intravenous delivery is the greatest single hurdle, with synthetic vectors frequently found to be unstable in the harsh conditions of the bloodstream, and viral vectors often recognized avidly by both the innate and the adaptive immune system. Both types of vectors benefit from coating with hydrophilic polymers. Self-assembling polyelectrolyte non-viral vectors can achieve both steric and lateral stabilization following surface coating, endowing them with much improved systemic circulation properties and better access to disseminated targets; similarly viral vectors can be 'stealthed' and their physical properties modulated by surface coating. Both types of vectors may also have their tropism changed following chemical linkage of novel ligands to the polymer coating. These families of vectors go some way towards realizing the goal of efficient systemic delivery of genes and should find a range of important uses in bringing this still-emerging field to fruition.
Collapse
|
13
|
Canal F, Sanchis J, Vicent MJ. Polymer–drug conjugates as nano-sized medicines. Curr Opin Biotechnol 2011; 22:894-900. [DOI: 10.1016/j.copbio.2011.06.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/04/2011] [Accepted: 06/01/2011] [Indexed: 11/28/2022]
|
14
|
Polypeptide conjugates of D-penicillamine and idarubicin for anticancer therapy. J Control Release 2011; 158:215-23. [PMID: 22063001 DOI: 10.1016/j.jconrel.2011.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/20/2011] [Accepted: 10/24/2011] [Indexed: 11/22/2022]
Abstract
We investigated anticancer therapy with a novel combination of D-penicillamine (D-pen) and Idarubicin (Ida) in a synthetic dual drug conjugate (DDC). D-pen and Ida were covalently linked to poly(α)-L-glutamic acid (PGA) via reducible disulfide and acid-sensitive hydrazone bonds, respectively. The DDCs showed cell uptake and sustained release of the bound drugs in conditions mimicking the intracellular release media (10mM glutathione and pH 5.2). The in-vitro cytotoxicity of DDCs was comparable to unconjugated Ida in several sensitive and resistant cancer cell lines and correlated with the rate of cell uptake. In a single equivalent-dose pharmacokinetic study, DDCs enhanced the drug exposure by 7-fold and prolonged the plasma circulation half-life (t(1/2)) by 5-fold over unconjugated Ida. The therapeutic index of DDCs was 2-3-fold higher than unconjugated drugs. DDCs caused 89% tumor growth inhibition compared to 60% by unconjugated Ida alone and led to significant enhancement in the median survival (17%) of athymic nu/nu mice bearing NCI-H460 tumor xenografts.
Collapse
|
15
|
Lu X, Wang QQ, Xu FJ, Tang GP, Yang WT. A cationic prodrug/therapeutic gene nanocomplex for the synergistic treatment of tumors. Biomaterials 2011; 32:4849-56. [DOI: 10.1016/j.biomaterials.2011.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/09/2011] [Indexed: 12/24/2022]
|
16
|
Letfullin RR, Iversen CB, George TF. Modeling nanophotothermal therapy: kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:137-45. [DOI: 10.1016/j.nano.2010.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
|
17
|
Synthesis, NMR characterization and in vitro cytotoxicity evaluation of new poly(oxyethylene aminophosphonate)s. Eur J Med Chem 2010; 45:6039-44. [DOI: 10.1016/j.ejmech.2010.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 11/23/2022]
|
18
|
Sanchis J, Canal F, Lucas R, Vicent MJ. Polymer–drug conjugates for novel molecular targets. Nanomedicine (Lond) 2010; 5:915-35. [DOI: 10.2217/nnm.10.71] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polymer therapeutics can be already considered as a promising field in the human healthcare context. The discovery of the enhanced permeability and retention effect by Maeda, together with the modular model for the polymer–drug conjugate proposed by Ringsdorf, directed the early steps of polymer therapeutics towards cancer therapy. Orthodox anticancer drugs were preferentially chosen in the development of the first conjugates. The fast evolution of polymer chemistry and bioconjugation techniques, and a deeper understanding of cell biology has opened up exciting new challenges and opportunities. Four main directions have to be considered to develop this ‘platform technology’ further: the control of the synthetic process, the exhaustive characterization of the conjugate architectures, the conquest of combination therapy and the disclosure of new therapeutic targets. We illustrate in this article the exciting approaches offered by polymer–drug conjugates beyond classical cancer therapy, focusing on new, more effective and selective targets in cancer and in their use as treatments for other major human diseases.
Collapse
Affiliation(s)
| | | | - Rut Lucas
- Polymer Therapeutics Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe. Av. Autopista del Saler, 16. E-46012 Valencia, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe. Av. Autopista del Saler, 16. E-46012 Valencia, Spain
| |
Collapse
|
19
|
Shi Y, Porter W, Merdan T, Li LC. Recent advances in intravenous delivery of poorly water-soluble compounds. Expert Opin Drug Deliv 2009; 6:1261-82. [DOI: 10.1517/17425240903307423] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yi Shi
- Department R43D, Abbott Laboratories, 100 Abbott Park Rd, Abbott Park, IL 60064-6196, USA
| | - William Porter
- Department R4P3, Abbott Laboratories, 100 Abbott Park Rd, Abbott Park, IL 60064-6120, USA;
| | - Thomas Merdan
- Scientific Project Management, Abbott GmbH & Co. KG, Global Pharmaceutical, Research & Development, SOLIQS, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Luk Chiu Li
- Abbott Animal Health, Department AH71, Abbott Laboratories, 200 Abbott Park Rd, Abbott Park, IL 60064-6375, USA
| |
Collapse
|
20
|
Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev 2009; 61:1203-13. [PMID: 19699247 DOI: 10.1016/j.addr.2009.05.006] [Citation(s) in RCA: 495] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/14/2009] [Indexed: 11/23/2022]
Abstract
The discovery of new molecular targets and the subsequent development of novel anticancer agents are opening new possibilities for drug combination therapy as anticancer treatment. Polymer-drug conjugates are well established for the delivery of a single therapeutic agent, but only in very recent years their use has been extended to the delivery of multi-agent therapy. These early studies revealed the therapeutic potential of this application but raised new challenges (namely, drug loading and drugs ratio, characterisation, and development of suitable carriers) that need to be addressed for a successful optimisation of the system towards clinical applications.
Collapse
|
21
|
Can HK, Gürpinar ÖA, Onur MA, Rzaev ZM, Güner A. Investigation of cytotoxic effects of new maleic anhydride binary and ternary copolymers on L929 mouse fibroblasts. J Appl Polym Sci 2009. [DOI: 10.1002/app.31291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Doxorubicin–polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Biomaterials 2009; 30:4752-62. [DOI: 10.1016/j.biomaterials.2009.05.031] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 05/15/2009] [Indexed: 11/20/2022]
|
23
|
Schluep T, Gunawan P, Ma L, Jensen GS, Duringer J, Hinton S, Richter W, Hwang J. Polymeric tubulysin-peptide nanoparticles with potent antitumor activity. Clin Cancer Res 2009; 15:181-9. [PMID: 19118045 DOI: 10.1158/1078-0432.ccr-08-1848] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tubulysins are naturally occurring tetrapeptides with potent antiproliferative activity against multiple cancer cell lines. However, they are also highly toxic in animal models. In order to improve the therapeutic index of this class of compounds, a nanoparticle prodrug of tubulysin A (TubA) was synthesized and evaluated in vitro and in vivo. EXPERIMENTAL DESIGN A thiol derivative of TubA was covalently attached to a linear, beta-cyclodextrin based polymer through a disulfide linker (CDP-TubA). The polymer conjugate assembled into stable nanoparticles. Inhibition of tubulin polymerization and antiproliferative activity of the polymer conjugate were evaluated in vitro. The preclinical efficacy of CDP-TubA administered i.v. was evaluated in nude mice bearing s.c. implanted human HT29 colorectal and H460 non-small cell lung carcinoma tumors. RESULTS The IC(50) of CDP-TubA (in Tub A equivalents) was 24, 5, and 10 nmol/L versus 3, 1, and 2 nmol/L for Tub A in NCI-H1299 (lung), HT-29 (colon), and A2780 (ovarian) cell lines, respectively. Tub A and the active thiol derivative were potent inhibitors of tubulin polymerization, whereas CDP-TubA showed minimal inhibition, indicating that target inhibition requires release of the peptide drug from the nanoparticles. The maximum tolerated dose of CDP-TubA was 6 mg/kg (in TubA equivalents) versus 0.05 mg/kg for TubA in nude mice. In vivo, a single treatment cycle of three weekly doses of CDP-TubA showed a potent antitumor effect and significantly prolonged survival compared with TubA alone. CONCLUSIONS Cyclodextrin polymerized nanoparticles are an enabling technology for the safe and effective delivery of tubulysins for the treatment of cancer.
Collapse
|
24
|
Riehemann K, Schneider S, Luger T, Godin B, Ferrari M, Fuchs H. Nanomedizin - Herausforderung und Perspektiven. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802585] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine--challenge and perspectives. Angew Chem Int Ed Engl 2009; 48:872-97. [PMID: 19142939 PMCID: PMC4175737 DOI: 10.1002/anie.200802585] [Citation(s) in RCA: 836] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of nanotechnology concepts to medicine joins two large cross-disciplinary fields with an unprecedented societal and economical potential arising from the natural combination of specific achievements in the respective fields. The common basis evolves from the molecular-scale properties relevant to the two fields. Local probes and molecular imaging techniques allow surface and interface properties to be characterized on a nanometer scale at predefined locations, while chemical approaches offer the opportunity to elaborate and address surfaces, for example, for targeted drug delivery, enhanced biocompatibility, and neuroprosthetic purposes. However, concerns arise in this cross-disciplinary area about toxicological aspects and ethical implications. This Review gives an overview of selected recent developments and applications of nanomedicine.
Collapse
Affiliation(s)
- Kristina Riehemann
- Dr. K. Riehemann, Prof. Dr. H. Fuchs, Center for Nanotechnology (CeNTech) and Physical Institute; WWU Münster, Wilhelm Klemm-Str. 10, 48149 Münster, Germany, Fax:+49 (251) 83 33602, , Homepage: http://www.uni-muenster.de/Physik.PI/Fuchs/
| | | | | | | | | | - Harald Fuchs
- Dr. K. Riehemann, Prof. Dr. H. Fuchs, Center for Nanotechnology (CeNTech) and Physical Institute; WWU Münster, Wilhelm Klemm-Str. 10, 48149 Münster, Germany, Fax:+49 (251) 83 33602, , Homepage: http://www.uni-muenster.de/Physik.PI/Fuchs/
| |
Collapse
|
26
|
Hwang J, Rodgers K, Oliver JC, Schluep T. Alpha-methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy. Int J Nanomedicine 2008; 3:359-71. [PMID: 18990945 PMCID: PMC2626937 DOI: 10.2147/ijn.s3217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A glycinate derivative of α-methylprednisolone (MP) was prepared and conjugated to a linear cyclodextrin polymer (CDP) with a loading of 12.4% w/w. The polymer conjugate (CDP-MP) self-assembled into nanoparticles with a size of 27 nm. Release kinetics of MP from the polymer conjugate showed a half-life (t1/2) of 50 h in phosphate buffer solution (PBS) and 19 h in human plasma. In vitro, the proliferation of human lymphocytes was suppressed to a similar extent but with a delayed effect when CDP-MP was compared with free MP. In vivo, CDP-MP was administered intravenously to mice with collagen-induced arthritis and compared with free MP. CDP-MP was administered weekly for six weeks (0.07, 0.7, and 7 mg/kg/week) and MP was administered daily for six weeks (0.01, 0.1, and 1 mg/kg/day). Body weight changes were minimal in all animals. After 28 days, a significant decrease in arthritis score was observed in animals treated weekly with an intermediate or high dose of CDP-MP. Additionally, dorsoplantar swelling was reduced to baseline in animals treated with CDP-MP at the intermediate and high dose level. Histological evaluation showed a reduction in synovitis, pannus formation and disruption of architecture at the highest dose level of CDP-MP. MP administered daily at equivalent cumulative doses showed minimal efficacy in this model. This study demonstrates that conjugation of MP to a cyclodextrin-polymer may improve its efficacy, leading to lower doses and less frequent administration for a safer and more convenient management of rheumatoid arthritis.
Collapse
|
27
|
|
28
|
Debbage P, Jaschke W. Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 2008; 130:845-75. [PMID: 18825403 DOI: 10.1007/s00418-008-0511-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2008] [Indexed: 10/25/2022]
Abstract
Molecular imaging, first developed to localise antigens in light microscopy, now encompasses all imaging modalities including those used in clinical care: optical imaging, nuclear medical imaging, ultrasound imaging, CT, MRI, and photoacoustic imaging. Molecular imaging always requires accumulation of contrast agent in the target site, often achieved most efficiently by steering nanoparticles containing contrast agent into the target. This entails accessing target molecules hidden behind tissue barriers, necessitating the use of targeting groups. For imaging modalities with low sensitivity, nanoparticles bearing multiple contrast groups provide signal amplification. The same nanoparticles can in principle deliver both contrast medium and drug, allowing monitoring of biodistribution and therapeutic activity simultaneously (theranostics). Nanoparticles with multiple bioadhesive sites for target recognition and binding will be larger than 20 nm diameter. They share functionalities with many subcellular organelles (ribosomes, proteasomes, ion channels, and transport vesicles) and are of similar sizes. The materials used to synthesise nanoparticles include natural proteins and polymers, artificial polymers, dendrimers, fullerenes and other carbon-based structures, lipid-water micelles, viral capsids, metals, metal oxides, and ceramics. Signal generators incorporated into nanoparticles include iron oxide, gadolinium, fluorine, iodine, bismuth, radionuclides, quantum dots, and metal nanoclusters. Diagnostic imaging applications, now appearing, include sentinal node localisation and stem cell tracking.
Collapse
Affiliation(s)
- Paul Debbage
- Department of Anatomy, Division of Histology and Embryology, Medical University Innsbruck, Muellerstrasse 59, 6020, Innsbruck, Austria.
| | | |
Collapse
|
29
|
Vicent MJ, Dieudonné L, Carbajo RJ, Pineda-Lucena A. Polymer conjugates as therapeutics: future trends, challenges and opportunities. Expert Opin Drug Deliv 2008; 5:593-614. [DOI: 10.1517/17425247.5.5.593] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|