1
|
Hołaj-Krzak JT. Assessment of the usefulness of β-cyclodextrin in the removal of progesterone from the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174908. [PMID: 39038685 DOI: 10.1016/j.scitotenv.2024.174908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
The paper presents the results and interpretation of theoretical calculations for the progesterone-β-cyclodextrin (P@β-CD; G4MP2) and progesterone-β-cyclodextrin-β-cyclodextrin (P@β-CD-β-CD; G2) systems. The geometry of the progesterone molecule was optimized on basis of the DFT theory using the B3LYP, PBE1PBE and M06-2X functionals, for selected Pople basis sets [6-31G, 6-31++G, 6-31++G(d,p), 6-311G, 6-311++G, 6-311++G(d,p)] and the Dunning basis set (aug-cc-pVDZ). Presented results of theoretical calculations provide insight into the mechanism of formation of supramolecular systems of progesterone and β-cyclodextrin, allowing us to understand the impact of differences in the polarizability of specific fragments of the "guest" molecule, through the analysis of the Mulliken population distribution, on the tendency for equilibrium inclusion by "host" molecules characterized by selective affinity towards hydrophilic and hydrophobic molecular systems. The comparison of model structures of "guest-host" systems with 1:1 and 1:2 stoichiometry allows us to assess the contribution of a given type of non-covalent interactions (hydrogen bonds, van der Waals interactions, London dispersion forces) in the formation of supramolecular complexes. Due to the complexity of the real research object, including interactions between large molecules in solution, in this work it was decided to choose an approximation that reflects only the key effects. The results presented in this paper constitute a starting point for both theoretical research on analogous supramolecular systems based on β-cyclodextrin derivatives, as well as instrumental studies (NMR, FT-IR, HPLC) of preparations of real inclusion complexes. The approach adopted now can contribute to a better understanding of the phenomenon used in the development of water purification technologies.
Collapse
Affiliation(s)
- Jakub T Hołaj-Krzak
- Institute of Technology and Life Sciences - National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland.
| |
Collapse
|
2
|
Evans NM, Shivers LR, To AJ, Murphy GK, Dieckmann T. Biophysical characterization and design of a minimal version of the Hoechst RNA aptamer. Biochem Biophys Res Commun 2024; 711:149908. [PMID: 38613867 DOI: 10.1016/j.bbrc.2024.149908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
RNA aptamers are oligonucleotides, selected through Systematic Evolution of Ligands by EXponential Enrichment (SELEX), that can bind to specific target molecules with high affinity. One such molecule is the RNA aptamer that binds to a blue-fluorescent Hoechst dye that was modified with bulky t-Bu groups to prevent non-specific binding to DNA. This aptamer has potential for biosensor applications; however, limited information is available regarding its conformation, molecular interactions with the ligand, and binding mechanism. The study presented here aims to biophysically characterize the Hoechst RNA aptamer when complexed with the t-Bu Hoechst dye and to further optimize the RNA sequence by designing and synthesizing new sequence variants. Each variant aptamer-t-Bu Hoechst complex was evaluated through a combination of fluorescence emission, native polyacrylamide gel electrophoresis, fluorescence titration, and isothermal titration calorimetry experiments. The results were used to design a minimal version of the aptamer consisting of only 21 nucleotides. The performed study also describes a more efficient method for synthesizing the t-Bu Hoechst dye derivative. Understanding the biophysical properties of the t-Bu Hoechst dye-RNA complex lays the foundation for nuclear magnetic resonance spectroscopy studies and its potential development as a building block for an aptamer-based biosensor that can be used in medical, environmental or laboratory settings.
Collapse
Affiliation(s)
- Natasha M Evans
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Lindsey R Shivers
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Avery J To
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
3
|
Alambiaga-Caravaca AM, González Iglesias LG, Rodilla V, Kalia YN, López-Castellano A. Biodistribution of progesterone in the eye after topical ocular administration via drops or inserts. Int J Pharm 2022; 630:122453. [PMID: 36455753 DOI: 10.1016/j.ijpharm.2022.122453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Progesterone (PG) has been shown to have a slowing effect on photoreceptor cell death in mouse models of retinitis pigmentosa when administered orally. The aim of this study was to investigate whether ophthalmically administered progesterone was able to reach neuroretina and thus, the distribution through ocular tissues of different PG formulations was studied. The effect of different initial PG concentration was also investigated. Different formulations with PG in their composition (drops, a corneal/scleral-insert and scleral-inserts) were prepared and assayed. Using whole porcine eyes, the different formulations were topically administered to the ocular surface. Frozen eyes were dissected, the PG in each tissue was extracted in acetonitrile and the amount of PG quantified by UHPLC-MS/MS. Our results show that after topical administration, PG diffuses from the ocular surface and distributes throughout all tissues of the eye. Lower levels of PG were found in sclera, choroid and neuroretina when PG was applied as drops compared to inserts. Our results also show that an increase in the initial PG concentrations applied, resulted in a statistically significant increase in the amounts of PG in aqueous humour, sclera, choroid and neuroretina.
Collapse
Affiliation(s)
- Adrián M Alambiaga-Caravaca
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Laura G González Iglesias
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU-1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Vicent Rodilla
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU-1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Alicia López-Castellano
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain.
| |
Collapse
|
4
|
Liu Z, Lansley AB, Duong TN, Smart JD, Pannala AS. Increasing Cellular Uptake and Permeation of Curcumin Using a Novel Polymer-Surfactant Formulation. Biomolecules 2022; 12:biom12121739. [PMID: 36551167 PMCID: PMC9775279 DOI: 10.3390/biom12121739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Several therapeutically active molecules are poorly water-soluble, thereby creating a challenge for pharmaceutical scientists to develop an active solution for their oral drug delivery. This study aimed to investigate the potential for novel polymer-surfactant-based formulations (designated A and B) to improve the solubility and permeability of curcumin. A solubility study and characterization studies (FTIR, DSC and XRD) were conducted for the various formulations. The cytotoxicity of formulations and commercial comparators was tested via MTT and LDH assays, and their permeability by in vitro drug transport and cellular drug uptake was established using the Caco-2 cell model. The apparent permeability coefficients (Papp) are considered a good indicator of drug permeation. However, it can be argued that the magnitude of Papp, when used to reflect the permeability of the cells to the drug, can be influenced by the initial drug concentration (C0) in the donor chamber. Therefore, Papp (suspension) and Papp (solution) were calculated based on the different values of C0. It was clear that Papp (solution) can more accurately reflect drug permeation than Papp (suspension). Formulation A, containing Soluplus® and vitamin E TPGs, significantly increased the permeation and cellular uptake of curcumin compared to other samples, which is believed to be related to the increased aqueous solubility of the drug in this formulation.
Collapse
Affiliation(s)
- Zhenqi Liu
- Biomaterials and Drug Delivery Research Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Alison B. Lansley
- Biomaterials and Drug Delivery Research Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Tu Ngoc Duong
- Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - John D. Smart
- Biomaterials and Drug Delivery Research Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Ananth S. Pannala
- Biomaterials and Drug Delivery Research Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
- Correspondence:
| |
Collapse
|
5
|
Unusual solubilization capacity of hydrophobic drug olanzapine in polysorbate micelles for improved sustained drug release. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Alambiaga-Caravaca AM, Cantó A, Rodilla V, Miranda M, López-Castellano A. Topical Ocular Administration of Progesterone Decreases Photoreceptor Cell Death in Retinal Degeneration Slow (rds) Mice. Pharmaceuticals (Basel) 2022; 15:ph15030328. [PMID: 35337126 PMCID: PMC8953546 DOI: 10.3390/ph15030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited eye disorder which triggers a cascade of retinal disorders leading to photoreceptor cell death and for which there is currently no effective treatment. The purpose of this research was to study whether ocular administration of a solution of progesterone (PG) in β-cyclodextrins (CD) could delay photoreceptor cell death and counteract the gliosis process in an animal model of RP (rds mice). The possible effect of PG reaching the contralateral eye through the circulatory system was also evaluated. Finally, this research discusses and evaluates the diffusion of the drug from possible topical formulations for ocular administration of PG. A group of rds mice received one drop of a solution of PG in CD every 12 h for 10 days to the left eye, while the right eye was left untreated. Another group of rds mice (control) received the drug vehicle (PBS) on the left eye and, again, the right eye was left untreated. Once the treatment was finished on postnatal day 21, the animals were euthanized and histological immunofluorescence studies (TUNEL, GFAP, and DAPI staining) were carried out. Our results showed that the administration of a solution of PG in CD (CD-PG) as drops significantly decreased cell death and inflammation in the retina of the PG-treated eyes of rds mice. No effect was seen in the contralateral eye from PG that may have entered systemic circulation. In conclusion, CD-PG applied topically as drops to the eye decreases photoreceptor cell death in the early stages of RP, delaying vision loss and decreasing gliosis.
Collapse
Affiliation(s)
- Adrián M Alambiaga-Caravaca
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Antolín Cantó
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Vicent Rodilla
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - María Miranda
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Alicia López-Castellano
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
7
|
Determination of Paclitaxel Solubility and Stability in the Presence of Injectable Excipients. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Khalil NK, Abo Dena AS, El-Sherbiny IM. Boosting the mechanical strength and solubility-enhancement properties of hydroxypropyl-β-cyclodextrin nanofibrous films. Drug Dev Ind Pharm 2021; 47:1413-1423. [PMID: 34735303 DOI: 10.1080/03639045.2021.1995407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
2-hydroxypropyl-β-cyclodextrin (HPβCD) nanofiber films have high surface-to-volume ratio and show high dissolution rate of hydrophobic drugs. However, the solubility-enhancement effect of HPβCD films may not be enough to include an effective dose in a sublingually administrable film. Moreover, unmodified HPβCD films are very brittle and difficultly transported and/or handled. So, the addition of polyethylene glycol (PEG) as a plasticizer was suggested to improve their ultimate tensile strength (UTS) and solubilization of hydrophobic drugs. Accordingly, six nanofiber films were developed and characterized, using three molecular weights of PEG (400, 1500 and 6000 Da) with two concentrations each (1:100 and 2:100 PEG:HPβCD), in addition to the unmodified HPβCD nanofibrous film. The results revealed that adding 1:100 of PEG 400 increases the UTS (∼2-fold) and the average fiber diameter (AFD) (∼3-fold). Moreover, the addition of PEG 400 significantly increased the solubility of two hydrophobic model drugs; coumarin (up to 7.7-fold of the original solubility) and 2-nitroimidazole (up to 1.6-fold of the original solubility). However, with higher PEG concentration/molecular weight, both AFD and UTS of the films decreased. On the other hand, it was noted that the solubility of the two model drugs decreased upon using 1500-Da PEG, and then increased with 6000-Da PEG.
Collapse
Affiliation(s)
- Noha K Khalil
- Nanomedicine Laboratory, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Laboratory, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt.,Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
9
|
Shen W, Sun W, Yang W, Xu H, Hu G, Zhao G, Deng Z, Feng J, Li F, Hu Y. Solubility determination and thermodynamic modelling of Progesterone in twelve pure solvents and three binary solvents at 278.15 to 323.15 K. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114715] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Alambiaga-Caravaca AM, Domenech-Monsell IM, Sebastián-Morelló M, Miranda M, Balaguer-Fernández C, Calatayud-Pascual A, Rodilla V, López-Castellano A. HPLC-UV analytical validation of a method for quantification of progesterone in ex vivo trans-corneal and trans-scleral diffusion studies. J Pharm Biomed Anal 2020; 193:113749. [PMID: 33217709 DOI: 10.1016/j.jpba.2020.113749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Abstract
Progesterone (PG) diminishes free radical damage and thus can afford protection against oxidative stress affecting the retina. The therapeutic use of PG is limited because it is a highly hydrophobic steroid hormone with very low solubility in water. This is the main drawback for the therapeutic application of PG at ocular level. The aims of this study were: (i) to analyze if PG causes ocular irritation (ii) to validate a HPLC method to determine PG in ex vivo studies and (iii) to evaluate PG permeation through cornea and sclera. A high performance liquid chromatographic method was developed and validated to detect PG incorporated to β-cyclodextrin using a Waters Sunfire C18 (150 × 4.6 mm) reverse-phase column packed with 5 μm silica particles using a mobile phase consisted of a mixture of acetonitrile (ACN) and pure water 80:20 (v/v), pH 7.4. The limit of detection and the limit of quantification for 50 μL injection of PG were found to be 0.42 and 1.26 μg/mL, respectively. The calibration curve showed excellent linearity over the concentration range (0.5 μg/mL to 100 μg/mL). As proof of concept, ex-vivo experiments to investigate PG permeation through cornea and sclera with vertical diffusion cells were carried out to quantify PG diffusion. Ex vivo experiments demonstrate its applicability to investigate permeation levels of PG from 6.57 ± 0.37 μg/cm2 at cornea and 8.13 ± 0.85 μg/cm2 sclera. In addition, at the end of diffusion studies the amount of PG retained in each tissue was also quantified, and it was 40.87 ± 9.84 μg/cm2 (mean ± SD; n = 6) in cornea and 56.11 ± 16.67 μg/cm2 (mean ± SD; n = 6) in sclera.
Collapse
Affiliation(s)
- Adrián M Alambiaga-Caravaca
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115, Valencia, Spain
| | - Iris M Domenech-Monsell
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115, Valencia, Spain
| | - María Sebastián-Morelló
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115, Valencia, Spain
| | - María Miranda
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115, Valencia, Spain; Departamentos de Farmacia y #Ciencias Biomédicas, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115, Valencia, Spain
| | - Cristina Balaguer-Fernández
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115, Valencia, Spain
| | - Aracely Calatayud-Pascual
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115, Valencia, Spain
| | - Vicent Rodilla
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115, Valencia, Spain.
| | - Alicia López-Castellano
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115, Valencia, Spain.
| |
Collapse
|
11
|
Audira G, Siregar P, Chen JR, Lai YH, Huang JC, Hsiao CD. Systematical exploration of the common solvent toxicity at whole organism level by behavioral phenomics in adult zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115239. [PMID: 32795887 DOI: 10.1016/j.envpol.2020.115239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Common solvents are frequently used as carriers to dissolve chemicals with a hydrophobic property that is extensively applied in the industrial and biomedical fields. In this study, we aimed to systematically study the sub-chronic effect of ten common solvents at low concentration exposure in adult zebrafish and perform neurobehavioral assessments for mechanistic exploration. After exposed to ten common solvents, including methanol, ethanol (EtOH), dimethyl sulfoxide (DMSO), isopropanol, acetone, polyethylene glycol-400 (PEG-400), glycerol, butanol, pentane, and tetrahydrofuran for continuous 10 day at 0.1% concentration level, adult zebrafish were subjected to perform a serial of behavioral tests, such as novel tank, mirror biting, predator avoidance, social interaction and shoaling. Later, 20 behavioral endpoints obtained from these five tests were transformed into a scoring matrix. Principal component analysis (PCA) and hierarchy clustering were performed to evaluate and compare the zebrafish behavior profiling. By using this phenomic approach, we were able to systematically evaluate the toxicity of the common solvents in zebrafish at a neurobehavioral level for the first time and found each common solvent-induced unique behavioral alteration to produce fingerprint-like patterns in hierarchy clustering and heatmap analysis. Among all tested common solvents, acetone and PEG-400 displayed better biocompatibility and less toxicity since they triggered less behavioral and biochemical alterations while methanol and DMSO caused severe behavior alterations in zebrafish after chronic exposure of these solvents. We conclude the behavioral phenomic approach conducted in this study providing a powerful tool to a systematical exploration of the common solvent toxicity at the whole organism level.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Jung-Ren Chen
- Department of Biological Science & Technology, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, 11114, Taipei, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, 900391, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan.
| |
Collapse
|
12
|
Carriers based on poly-3-hydroxyalkanoates containing nanomagnetite to trigger hormone release. Int J Biol Macromol 2020; 166:448-458. [PMID: 33127545 DOI: 10.1016/j.ijbiomac.2020.10.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
Poly-3-hydroxybutyrate (P(3HB)) and poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P(3HB-co-3HHx)) are biocompatible and bioabsorbable biopolymers produced by different bacteria with potential for drug delivery in thermo-responsive magnetic microcarriers. Microparticles of P(3HB) and P(3HB-co-3HHx), with 5.85% mol of 3HHx, produced by Burkholderia sacchari, containing nanomagnetite (nM) and lipophilic hormone were prepared by simple emulsion (oil/water) technique leading to progesterone (Pg) encapsulation efficiency higher than 70% and magnetite loads of 3.1 and 2.3% (w/w) for P(3HB)/nM/Pg and P(3HB-co-3HHx)/nM/Pg, respectively. These formulations were characterized by Infrared spectroscopy, X-ray diffraction, Thermal gravimetric analysis and Electron microscopy (TEM, SEM) techniques. The P(3HB)/nM/Pg and P(3HB-co-3HHx)/nM/Pg microparticles presented spherical geometry with wrinkled surfaces and average size between 2 and 40 μm for 90% of the microparticles. The release profiles of the P(3HB)/nM/Pg and P(3HB-co-3HHx)/nM/Pg formulations showed a hormone release trigger (6.9 and 11.1%, respectively) effect induced by oscillating external magnetic field (0.2 T), after 72 h. Progesterone release in non-magnetic tests with P(3HB-co-3HHx)/nM/Pg revealed a slight increment (5.6%) in relation to P(3HB)/nM/Pg. The experimental release of the P(3HB)/nM/Pg and P(3HB-co-3HHx)/nM/Pg samples presented a good agreement with Higuchi model. The 3HHx comonomer content improves the hormone release of the P(3HB-co-3HHx)/nM/Pg formulation with potential for application to synchronize the estrous cycle.
Collapse
|
13
|
Alambiaga-Caravaca AM, Calatayud-Pascual MA, Rodilla V, Concheiro A, López-Castellano A, Alvarez-Lorenzo C. Micelles of Progesterone for Topical Eye Administration: Interspecies and Intertissues Differences in Ex Vivo Ocular Permeability. Pharmaceutics 2020; 12:pharmaceutics12080702. [PMID: 32722548 PMCID: PMC7464168 DOI: 10.3390/pharmaceutics12080702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023] Open
Abstract
Progesterone (PG) may provide protection to the retina during retinitis pigmentosa, but its topical ocular supply is hampered by PG poor aqueous solubility and low ocular bioavailability. The development of efficient topical ocular forms must face up to two relevant challenges: Protective barriers of the eyes and lack of validated ex vivo tests to predict drug permeability. The aims of this study were: (i) To design micelles using Pluronic F68 and Soluplus copolymers to overcome PG solubility and permeability; and (ii) to compare drug diffusion through the cornea and sclera of three animal species (rabbit, porcine, and bovine) to investigate interspecies differences. Micelles of Pluronic F68 (3–4 nm) and Soluplus (52–59 nm) increased PG solubility by one and two orders of magnitude, respectively and exhibited nearly a 100% encapsulation efficiency. Soluplus systems showed in situ gelling capability in contrast to the low viscosity Pluronic F68 micelles. The formulations successfully passed the hen’s egg-chorioallantoic membrane test (HET-CAM) test. PG penetration through rabbit cornea and sclera was faster than through porcine or bovine cornea, although the differences were also formulation-dependent. Porcine tissues showed intermediate permeability between rabbit and bovine. Soluplus micelles allowed greater PG accumulation in cornea and sclera whereas Pluronic F68 promoted a faster penetration of lower PG doses.
Collapse
Affiliation(s)
- Adrián M. Alambiaga-Caravaca
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain; (A.M.A.-C.); (M.A.C.-P.); (V.R.)
| | - María Aracely Calatayud-Pascual
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain; (A.M.A.-C.); (M.A.C.-P.); (V.R.)
| | - Vicent Rodilla
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain; (A.M.A.-C.); (M.A.C.-P.); (V.R.)
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group, Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Alicia López-Castellano
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain; (A.M.A.-C.); (M.A.C.-P.); (V.R.)
- Correspondence: (A.L.-C.); (C.A.-L.); Tel.: +34-961-369-000 (ext. 64906) (A.L.-C.); +34-881-815-239 (C.A.-L.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group, Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Correspondence: (A.L.-C.); (C.A.-L.); Tel.: +34-961-369-000 (ext. 64906) (A.L.-C.); +34-881-815-239 (C.A.-L.)
| |
Collapse
|
14
|
Chen X, Partheniadis I, Nikolakakis I, Al-Obaidi H. Solubility Improvement of Progesterone from Solid Dispersions Prepared by Solvent Evaporation and Co-milling. Polymers (Basel) 2020; 12:polym12040854. [PMID: 32272718 PMCID: PMC7240508 DOI: 10.3390/polym12040854] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this contribution was to evaluate the impact of processing methods and polymeric carriers on the physicochemical properties of solid dispersions of the poorly soluble drug progesterone (PG). Five polymers: hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC), polyvinylpyrrolidone (PVP) and silica (SiO2), and two processing methods: solvent evaporation (SE) and mechano-chemical activation by co-milling (BM) were applied. H-bonding was demonstrated by FTIR spectra as clear shifting of drug peaks at 1707 cm−1 (C20 carbonyl) and 1668 cm−1 (C3 carbonyl). Additionally, spectroscopic and thermal analysis revealed the presence of unstable PG II polymorphic form and a second heating DSC cycle, the presence of another polymorph possibly assigned to form III, but their influence on drug solubility was not apparent. Except for PG–MCC, solid dispersions improved drug solubility compared to physical mixtures. For SE dispersions, an inverse relationship was found between drug water solubility and drug–polymer Hansen solubility parameter difference (Δδt), whereas for BM dispersions, the solubility was influenced by both the intermolecular interactions and the polymer Tg. Solubility improvement with SE was demonstrated for all except PG–MCC dispersions, whereas improvement with BM was demonstrated by the PG–HPMC, PG–PVP and PG–HPMCAS dispersions, the last showing impressive increase from 34.21 to 82.13 μg/mL. The extensive H-bonding between PG and HPMCAS was proved by FTIR analysis of the dispersion in the liquid state. In conclusion, although SE improved drug solubility, BM gave more than twice greater improvement. This indicates that directly operating intermolecular forces are more efficient than the solvent mediated.
Collapse
Affiliation(s)
- Xing Chen
- The School of Pharmacy, University of Reading, Reading RG6 6AD, UK;
| | - Ioannis Partheniadis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (I.N.); (H.A.-O.); Tel.: +30-2310-997-635 (I.N.); +44-1183-786-261 (H.A.-O.)
| | - Hisham Al-Obaidi
- The School of Pharmacy, University of Reading, Reading RG6 6AD, UK;
- Correspondence: (I.N.); (H.A.-O.); Tel.: +30-2310-997-635 (I.N.); +44-1183-786-261 (H.A.-O.)
| |
Collapse
|
15
|
Gadalla HH, Mohammed FA, El-Sayed AM, Soliman GM. Colon-targeting of progesterone using hybrid polymeric microspheres improves its bioavailability and in vivo biological efficacy. Int J Pharm 2020; 577:119070. [PMID: 31981708 DOI: 10.1016/j.ijpharm.2020.119070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 01/20/2023]
Abstract
This study aims to enhance progesterone (PG) oral bioavailability via its incorporation into hybrid colon-targeted pectin/NaCMC microspheres (MS) cross-linked with Zn2+ and Al3+. The MS were characterized for particle morphology, encapsulation efficiency, swelling behavior, drug release, mucoadhesivity and colon-specific degradability. Response-surface methodology was adopted to optimize the fabrication conditions. Enhancement of in vivo drug performance was evaluated through pharmacokinetic and pharmacodynamic studies. The optimized formulation was typically spherical with a mean diameter of 1031 µm and drug entrapment efficiency of 88.8%. This formulation exhibited pH-dependent swelling, negligible drug release in simulated gastric fluid and sustained-release pattern in simulated small intestinal fluid with a mean t50% of 26.5 h. It also showed prolonged and preferential adhesion to rat colonic mucosa, as well as expedited degradation in presence of rat caecal contents. The MS significantly increased the area under the curve and mean residence time by 1.8 and 2.3-fold, respectively compared to the free drug. Orally administered MS showed ~10 times increase in myometrial thickness compared with the drug suspension and elicited uterine responses very similar to that obtained parenterally. These results confirm the ability of this new carrier system to improve the oral bioavailability of PG and attain adequate clinical efficacy.
Collapse
Affiliation(s)
- Hytham H Gadalla
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Fergany A Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed M El-Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
16
|
Gutiérrez A, Gomez J, Yarce CJ, Salamanca CH. Pre-formulation studies for water-dispersible powdered beverages using contact angles and wetting properties. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Garcia Ferreira P, Guimarães de Souza Lima C, Noronha LL, de Moraes MC, Silva FDCD, Lifsitch Viçosa A, Omena Futuro D, Francisco Ferreira V. Development of a Method for the Quantification of Clotrimazole and Itraconazole and Study of Their Stability in a New Microemulsion for the Treatment of Sporotrichosis. Molecules 2019; 24:molecules24122333. [PMID: 31242573 PMCID: PMC6630458 DOI: 10.3390/molecules24122333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Sporotrichosis occurs worldwide and is caused by the fungus Sporothrix brasiliensis. This agent has a high zoonotic potential and is transmitted mainly by bites and scratches from infected felines. A new association between the drugs clotrimazole and itraconazole is shown to be effective against S. brasiliensis yeasts. This association was formulated as a microemulsion containing benzyl alcohol as oil, Tween® 60 and propylene glycol as surfactant and cosurfactant, respectively, and water. Initially, the compatibility between clotrimazole and itraconazole was studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (PXRD). Additionally, a simple and efficient analytical HPLC method was developed to simultaneously determine the concentration of clotrimazole and itraconazole in the novel microemulsion. The developed method proved to be efficient, robust, and reproducible for both components of the microemulsion. We also performed an accelerated stability study of this formulation, and the developed analytical method was applied to monitor the content of active ingredients. Interestingly, these investigations led to the detection of a known clotrimazole degradation product whose structure was confirmed using NMR and HRMS, as well as a possible interaction between itraconazole and benzyl alcohol.
Collapse
Affiliation(s)
- Patricia Garcia Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | | | - Letícia Lorena Noronha
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Marcela Cristina de Moraes
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói-RJ 24210-141, Brazil.
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói-RJ 24210-141, Brazil.
| | - Alessandra Lifsitch Viçosa
- Fundação Oswaldo Cruz (FIOCRUZ), Farmanguinhos-Manguinhos, Avenida Sinzenando Nabuco 100, Rio de Janeiro-RJ 21045-900, Brazil.
| | - Débora Omena Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| |
Collapse
|
18
|
Qiu J, Albrecht J, Janey J. Synergistic Solvation Effects: Enhanced Compound Solubility Using Binary Solvent Mixtures. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Qiu
- Product Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jacob Albrecht
- Product Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jacob Janey
- Product Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
19
|
Hussain A, Smith G, Khan KA, Bukhari NI, Pedge NI, Ermolina I. Solubility and dissolution rate enhancement of ibuprofen by co-milling with polymeric excipients. Eur J Pharm Sci 2018; 123:395-403. [DOI: 10.1016/j.ejps.2018.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/15/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022]
|
20
|
Fatty alcohol containing nanostructured lipid carrier (NLC) for progesterone oral delivery: In vitro and ex vivo studies. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Neufeld L, Bianco-Peled H. Pectin–chitosan physical hydrogels as potential drug delivery vehicles. Int J Biol Macromol 2017; 101:852-861. [DOI: 10.1016/j.ijbiomac.2017.03.167] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
|
22
|
Scavone C, Bonagura AC, Fiorentino S, Cimmaruta D, Cenami R, Torella M, Fossati T, Rossi F. Efficacy and Safety Profile of Diclofenac/Cyclodextrin and Progesterone/Cyclodextrin Formulations: A Review of the Literature Data. Drugs R D 2017; 16:129-40. [PMID: 26939533 PMCID: PMC4875918 DOI: 10.1007/s40268-016-0123-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background According to health technology assessment, patients deserve the best medicine. The development of drugs associated with solubility enhancers, such as cyclodextrins, represents a measure taken in order to improve the management of patients. Different drugs, such as estradiol, testosterone, dexamethasone, opioids, non-steroidal anti-inflammatories (NSAIDs; i.e. diclofenac), and progesterone are associated with cyclodextrins. Products containing the association of diclofenac/cyclodextrins are available for subcutaneous, intramuscular, and intravenous administration in doses that range from 25 to 75 mg. Medicinal products containing the association of progesterone/cyclodextrins are indicated for intramuscular and subcutaneous injection at a dose equal to 25 mg. Objectives and Methods The effects of cyclodextrins have been discussed in the solubility profile and permeability through biological membranes of drug molecules. A literature search was performed in order to give an overview of the pharmacokinetic characteristics, and efficacy and safety profiles of diclofenac/hydroxypropyl-β-cyclodextrin (HPβCD) and progesterone/HPβCD associations. Results The results of more than 20 clinical studies were reviewed. It was suggested that the new diclofenac/HPβCD formulation gives a rapid and effective response to acute pain and, furthermore, has pharmacokinetic and efficacy/safety profiles comparable to other medicinal products not containing cyclodextrins. One of the principal aspects of these new diclofenac formulations is that in lowering the dose (lower than 50 mg) the drugs could be more tolerable, especially in patients with comorbid conditions. Moreover, results of studies investigating the characteristics of progesterone and cyclodextrins showed that the new formulation (progesterone/HPβCD 25 mg solution) has the same bioavailability as other products containing progesterone. It is more rapidly absorbed and allows the achievement of peak plasma concentrations in a shorter time. Finally, the new formulation of progesterone was shown to be safe and not inferior to other products already on the market, with the exception of progesterone administered vaginally. Conclusions As shown by the results of clinical studies presented in this review, the newly approved medicines containing cyclodextrins have been found to be as effective and as well-tolerated as other medicinal products that do not contain cyclodextrins. Moreover, the newly approved lower dose of diclofenac associated with cyclodextrins is consistent with the European Medicines Agency recommendations reported in the revision of the Assessment Report for Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Cardiovascular Risk. Finally, the use of cyclodextrins led to significant increases in solubility and bioavailability of drugs, such as diclofenac and progesterone, and improvement in the efficacy and safety of these drugs.
Collapse
Affiliation(s)
- Cristina Scavone
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", School of Medicine, Second University of Naples, Via De Crecchio, 7, Naples, 80138, Italy.
| | - Angela Colomba Bonagura
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", School of Medicine, Second University of Naples, Via De Crecchio, 7, Naples, 80138, Italy
| | - Sonia Fiorentino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", School of Medicine, Second University of Naples, Via De Crecchio, 7, Naples, 80138, Italy
| | - Daniela Cimmaruta
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", School of Medicine, Second University of Naples, Via De Crecchio, 7, Naples, 80138, Italy
| | - Rosina Cenami
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", School of Medicine, Second University of Naples, Via De Crecchio, 7, Naples, 80138, Italy
| | - Marco Torella
- Department of Women, Child, General and Specialised Surgery, Second University of Naples, Caserta, Italy
| | | | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", School of Medicine, Second University of Naples, Via De Crecchio, 7, Naples, 80138, Italy
| |
Collapse
|
23
|
Jadhav N, Irny P, Patil U. Solid state behavior of progesterone and its release from Neusilin US2 based liquisolid compacts. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Gullapalli RP, Mazzitelli CL. Polyethylene glycols in oral and parenteral formulations—A critical review. Int J Pharm 2015; 496:219-39. [DOI: 10.1016/j.ijpharm.2015.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
|
25
|
Zhang P, Huang Y, Kwon YT, Li S. PEGylated Fmoc–Amino Acid Conjugates as Effective Nanocarriers for Improved Drug Delivery. Mol Pharm 2015; 12:1680-90. [DOI: 10.1021/acs.molpharmaceut.5b00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Yong Tae Kwon
- Protein
Metabolism Medical Research Center and Department of Biomedical Sciences,
College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | | |
Collapse
|
26
|
Morales-Sanfrutos J, Lopez-Jaramillo FJ, Elremaily MAA, Hernández-Mateo F, Santoyo-Gonzalez F. Divinyl sulfone cross-linked cyclodextrin-based polymeric materials: synthesis and applications as sorbents and encapsulating agents. Molecules 2015; 20:3565-81. [PMID: 25706758 PMCID: PMC6272569 DOI: 10.3390/molecules20033565] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/13/2015] [Indexed: 01/23/2023] Open
Abstract
The aim of this study was to evaluate the crosslinking abilities of divinyl sulfone (DVS) for the preparation of novel water-insoluble cyclodextrin-based polymers (CDPs) capable of forming inclusion complexes with different guest molecules. Reaction of DVS with native α-cyclodextrin (α-CD), β-cyclodextrin (β-CD) and/or starch generates a variety of homo- and hetero-CDPs with different degrees of crosslinking as a function of the reactants’ stoichiometric ratio. The novel materials were characterized by powder X-ray diffraction, electron microscopy and for their sorption of phenol and 4-nitrophenol. They were further evaluated as sorbents with phenolic pollutants (bisphenol A and β-naphthol) and bioactive compounds (the hormone progesterone and curcumin). Data obtained from the inclusion experiments show that the degree of cross-linking has a minor influence on the yield of inclusion complex formation and highlight the important role of the CDs, supporting a sorption process based on the formation of inclusion complexes. In general, the inclusion processes are better described by a Freundlich isotherm although an important number of them can also be fitted to the Langmuir isotherm with R2 ≥ 0.9, suggesting a sorption onto a monolayer of homogeneous sites.
Collapse
Affiliation(s)
- Julia Morales-Sanfrutos
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, E1871 Granada, Spain.
| | - Francisco Javier Lopez-Jaramillo
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, E1871 Granada, Spain.
| | - Mahmoud A A Elremaily
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, E1871 Granada, Spain.
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Fernando Hernández-Mateo
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, E1871 Granada, Spain.
| | - Francisco Santoyo-Gonzalez
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, E1871 Granada, Spain.
| |
Collapse
|
27
|
Almomen A, Cho S, Yang CH, Li Z, Jarboe EA, Peterson CM, Huh KM, Janát-Amsbury MM. Thermosensitive progesterone hydrogel: a safe and effective new formulation for vaginal application. Pharm Res 2015; 32:2266-79. [PMID: 25609012 PMCID: PMC4452141 DOI: 10.1007/s11095-014-1616-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/26/2014] [Indexed: 12/16/2022]
Abstract
Purpose The safe and functional delivery of progesterone through the vaginal route remains an unmet clinical need. The purpose of this work is to prepare a new progesterone (P4) gel for vaginal application using a thermosensitive mucoadhesive polymer, glycol chitin (GC). Method Thermogelling, mucoadhesive, mechanical, and viscoelastic properties of GC and the new formulation were evaluated using rheometry. In vitro release profile and the bioactivity of P4 were determined using vaginal fluid simulant (VFS) pH 4.2, and PR-reporter gene assay, respectively. In vitro safety of the formulations was tested using (VK2/E6E7) vaginal epithelial cell line and Lactobacillus Crispatus. Finally, in vivo safety and the efficacy of this formulation were evaluated using an endometrial hypoplasia mouse model. Results Results shows the aqueous solution of 5%; (w/v) GC loaded with 0.1%; (w/v) P4 prepared in pH 4.2, (GC-P4), forms a thermosensitive mucoadhesive hydrogel and can maintain stable physical properties at 37°C. GC-P4 gel release 50% of P4 in 4 h after exposure to VFS, and no significant decrease in % viability of VK2/E6E7 or Lactobacillus was found after exposure to 5% GC or GC-P4. GC-P4 does not exhibit obvious toxicities to vaginal tissue in vivo even after repeated application. Efficacy studies indicated that GC-P4 was capable of preventing the progression of simple endometrial hyperplasia (SEH) to complex atypical endometrial hyperplasia (CAEH) in vivo. Conclusions Results indicates that GC-P4 retains many characteristics for an effective vaginal delivery system for P4. Therefore we believe that GC-P4 formulation is a promising alternative to current vaginal P4 formulation. Electronic supplementary material The online version of this article (doi:10.1007/s11095-014-1616-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aliyah Almomen
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Utah, Salt Lake City, Utah 84132 USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112 USA
| | - Sungpil Cho
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Utah, Salt Lake City, Utah 84132 USA
| | - Chieh-Hsiang Yang
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Utah, Salt Lake City, Utah 84132 USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 USA
| | - Zhengzheng Li
- School of Materials Science and Chemical Engineering, Tianjin University of Science & Technology, Tianjin, 300457 China
| | - Elke A. Jarboe
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Utah, Salt Lake City, Utah 84132 USA
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112 USA
| | - C. Matthew Peterson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Utah, Salt Lake City, Utah 84132 USA
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 305-764 Republic of Korea
| | - Margit M. Janát-Amsbury
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Utah, Salt Lake City, Utah 84132 USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112 USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 USA
| |
Collapse
|
28
|
Cona MM, Feng Y, Zhang J, Li Y, Verbruggen A, Oyen R, Ni Y. Sodium cholate, a solubilizing agent for the necrosis avid radioiodinated hypericin in rabbits with acute myocardial infarction. Drug Deliv 2014; 22:427-35. [DOI: 10.3109/10717544.2013.873838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
29
|
Dwivedi S, Bardhan S, Ghosh P, Das S. A green protocol for the Pd catalyzed ligand free homocoupling reaction of arylboronic acids under ambient conditions. RSC Adv 2014. [DOI: 10.1039/c4ra05230g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A simple, competent, green pathway has been developed for the Pd catalyzed ligand free homocoupling reaction of arylboronic acids in water under ambient conditions.
Collapse
Affiliation(s)
- Seema Dwivedi
- Department of Chemistry
- University of North Bengal
- Darjeeling 734 013, India
| | - Soumik Bardhan
- Department of Chemistry
- University of North Bengal
- Darjeeling 734 013, India
| | - Prasanjit Ghosh
- Department of Chemistry
- University of North Bengal
- Darjeeling 734 013, India
| | - Sajal Das
- Department of Chemistry
- University of North Bengal
- Darjeeling 734 013, India
| |
Collapse
|
30
|
Zhang P, Lu J, Huang Y, Zhao W, Zhang Y, Zhang X, Li J, Venkataramanan R, Gao X, Li S. Design and evaluation of a PEGylated lipopeptide equipped with drug-interactive motifs as an improved drug carrier. AAPS JOURNAL 2013; 16:114-24. [PMID: 24281690 DOI: 10.1208/s12248-013-9536-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/19/2013] [Indexed: 12/24/2022]
Abstract
Micelles are attractive delivery systems for hydrophobic drugs due to their small size and the ease of application. However, the limited drug loading capacity and the intrinsic poor stability of drug-loaded formulations represent two major issues for some micellar systems. In this study, we designed and synthesized a micelle-forming PEG-lipopeptide conjugate with two Fmoc groups located at the interfacial region, and two oleoyl chains as the hydrophobic core. The significance of Fmoc groups as a broadly applicable drug-interactive motif that enhances the carrier-drug interaction was examined using eight model drugs of diverse structures. Compared with an analogue without carrying a Fmoc motif, PEG5000-(Fmoc-OA)₂ demonstrated a lower value of critical micelle concentration and three-fold increases of loading capacity for paclitaxel (PTX). These micelles showed tubular structures and small particle sizes (∼70 nm), which can be lyophilized and readily reconstituted with water without significant changes in particle sizes. Fluorescence quenching study illustrated the Fmoc/PTX π-π stacking contributes to the carrier/PTX interaction, and drug-release study demonstrated a much slower kinetics than Taxol, a clinically used PTX formulation. PTX/PEG5000-(Fmoc-OA)₂ mixed micelles exhibited higher levels of cytotoxicity than Taxol in several cancer cell lines and more potent inhibitory effects on tumor growth than Taxol in a syngeneic murine breast cancer model (4T1.2). We have further shown that seven other drugs can be effectively formulated in PEG5000-(Fmoc-OA)₂ micelles. Our study suggests that micelle-forming PEG-lipopeptide surfactants with interfacial Fmoc motifs may represent a promising formulation platform for a broad range of drugs with diverse structures.
Collapse
Affiliation(s)
- Peng Zhang
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The Optimization of an Intravaginal Ring Releasing Progesterone Using a Mathematical Model. Pharm Res 2013; 31:795-808. [DOI: 10.1007/s11095-013-1201-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
|
32
|
Glyceride Lipid Formulations: Molecular Dynamics Modeling of Phase Behavior During Dispersion and Molecular Interactions Between Drugs and Excipients. Pharm Res 2013; 30:3238-53. [DOI: 10.1007/s11095-013-1206-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
|
33
|
Wu Z, Hassan D, Shaw JP. In-vitro prediction of bioavailability following extravascular injection of poorly soluble drugs: an insight into clinical failure and the role of delivery systems. J Pharm Pharmacol 2013; 65:1429-39. [DOI: 10.1111/jphp.12114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/18/2013] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
To investigate the feasibility of using an in-vitro model to simulate the incidence of post-injection drug precipitation (PDP), and to identify the roles of drug properties and delivery systems in its occurrence.
Methods
A literature review on incomplete absorption following extravascular injection (subcutaneous and intramuscular) was conducted. Six model drugs in nine different formulations were studied for an in-vitro/in-vivo correlation. A rapid in-vitro dilution method using a 96-well plate was used for predicting PDP by dilution with a physiological buffer. New formulations based on hydroxypropyl-β-cyclodextrin (CD), with and without co-solvents or pH control, were developed and tested on the in-vitro model.
Key findings
The occurrence of precipitation detected from the in-vitro dilution model appeared to be correlated with clinical reports and animal studies. The formulation components played an important role in determining the potential for drug precipitation on dilution or pH neutralization. CD was found to reduce the tendency for precipitation. The addition of co-solvents may reduce the effect of CD, depending on the solvent used.
Conclusions
The in-vitro model can be used as a cost-effective screening tool in injectable formulation development for safe and effective delivery of poorly soluble drugs. PDP can be circumvented with a well-designed formulation.
Collapse
Affiliation(s)
- Zimei Wu
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Dalia Hassan
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - John P Shaw
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Falconer JR, Wen J, Zargar-Shoshtari S, Chen JJ, Farid M, Tallon SJ, Alany RG. Preparation and characterization of progesterone dispersions using supercritical carbon dioxide. Drug Dev Ind Pharm 2013; 40:458-69. [PMID: 23418960 DOI: 10.3109/03639045.2013.768630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Supercritical fluid methods offer an alternative to conventional mixing methods, particularly for heat sensitive drugs and where an organic solvent is undesirable. OBJECTIVE To design, develop and construct a unit for the particles from a gas-saturated suspension/solution (PGSS) method and form endogenous progesterone (PGN) dispersion systems using SC-CO2. MATERIALS AND METHODS The PGN dispersions were manufactured using three selected excipients: polyethylene glycol (PEG) 400/4000 (50:50), Gelucire 44/14 and D-α-tocopheryl PEG 1000 succinate (TPGS). Semisolid dispersions of PGN prepared by PGSS method were compared to the conventional methods; comelting (CM), cosolvent (CS) and physical mixing (PM). The dispersion systems made were characterized by Raman and Fourier transform infrared (FTIR) spectroscopies, X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), PGN recovery, uniformity and in vitro dissolution, analyzed by high-performance liquid chromatography (HPLC). RESULTS Raman spectra revealed no changes in the crystalline structure of PGN treated with SC-CO2 compared to that of untreated PGN. XRPD and FTIR showed the presence of peaks and bands for PGN confirming that PGN has been incorporated well with each individual excipient. All PGN dispersions prepared by the PGSS method resulted in the improvement of PGN dissolution rates compared to that prepared by the conventional methods and untreated PGN after 60 min (p value < 0.05). CONCLUSION The novel PGN dispersions prepared by the PGSS method offer the great potential to enhance PGN dissolution rate, reduce preparation time and form stable crystalline dispersion systems over those prepared by conventional methods.
Collapse
Affiliation(s)
- James R Falconer
- Drug Delivery Research Unit (2DRU), School of Pharmacy, Faculty of Medical and Health Sciences and
| | | | | | | | | | | | | |
Collapse
|
35
|
Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013; 65:315-499. [PMID: 23383426 DOI: 10.1124/pr.112.005660] [Citation(s) in RCA: 1031] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drugs with low water solubility are predisposed to low and variable oral bioavailability and, therefore, to variability in clinical response. Despite significant efforts to "design in" acceptable developability properties (including aqueous solubility) during lead optimization, approximately 40% of currently marketed compounds and most current drug development candidates remain poorly water-soluble. The fact that so many drug candidates of this type are advanced into development and clinical assessment is testament to an increasingly sophisticated understanding of the approaches that can be taken to promote apparent solubility in the gastrointestinal tract and to support drug exposure after oral administration. Here we provide a detailed commentary on the major challenges to the progression of a poorly water-soluble lead or development candidate and review the approaches and strategies that can be taken to facilitate compound progression. In particular, we address the fundamental principles that underpin the use of strategies, including pH adjustment and salt-form selection, polymorphs, cocrystals, cosolvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and lipid-based formulations. In each case, the theoretical basis for utility is described along with a detailed review of recent advances in the field. The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology (e.g., solid dispersions, lipid-based formulations, or salt forms) where required.
Collapse
Affiliation(s)
- Hywel D Williams
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Uma HK, Menon SK. Crown Ether Bis-diazo Dyes for Aqueous Inkjet Inks by Micro Emulsion Technique. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proeng.2013.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Mahajan HS, Pingale MH, Agrawal KM. Solubility and dissolution enhancement of saquinavir mesylate by inclusion complexation technique. J INCL PHENOM MACRO 2012. [DOI: 10.1007/s10847-012-0269-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Liang H, Yuan Q, Vriesekoop F, Lv F. Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chem 2012; 135:1020-7. [DOI: 10.1016/j.foodchem.2012.05.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/23/2012] [Accepted: 05/14/2012] [Indexed: 11/26/2022]
|
39
|
Kaur G, Chiappisi L, Prévost S, Schweins R, Gradzielski M, Mehta SK. Probing the microstructure of nonionic microemulsions with ethyl oleate by viscosity, ROESY, DLS, SANS, and cyclic voltammetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10640-10652. [PMID: 22720716 DOI: 10.1021/la300540d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microemulsions are important formulations in cosmetics and pharmaceutics and one peculiarity lies in the so-called "phase inversion" that takes place at a given water-to-oil concentration ratio and where the average curvature of the surfactant film is zero. In that context, we investigated the structural transitions occurring in Brij 96-based microemulsions with the cosmetic oil ethyl oleate and studied the influence of the short chain alcohol butanol on their structure and properties as a function of water addition. The characterization has been carried out by means of transport properties, spectroscopy, DLS, SANS, and electrochemical methods. The results confirm that the nonionic Brij 96 in combination with butanol as cosurfactant forms a U-type microemulsion that upon addition of water undergoes a continuous transition from swollen reverse micelles to oil-in-water (O/W) microemulsion via a bicontinuous region. After determining the structural transition through viscosity and surface tension, the 2D-ROESY studies give an insight into the microstructure, i.e., the oil component ethyl oleate mainly is located at the hydrophobic tails of surfactant while butanol molecules reside preferentially in the interface. SANS experiments show a continuous increase of the size of the structural units with increasing water content. The DLS results are more complex and show the presence of two relaxation modes in these microemulsions for low water content and a single diffusive mode only for the O/W microemulsion droplets. The fast relaxation reflects the size of the structural units while the slower one is attributed to the formation of a network of percolated microemulsion aggregates. Electrochemical studies using ferrocene have been carried out and successfully elucidated the structural transformations with the help of diffusion coefficients. An unusual behavior of ferrocene has been observed in the present microheterogeneous medium, giving a deeper insight into ferrocene electrochemistry. NMR-ROESY experiments give information regarding the internal organization of the microemulsion droplets. In general, one finds a continuous structural transition from a W/O over a bicontinuous to an O/W microemulsion, however with a peculiar network formation over an extended concentration range, which is attributed to the somewhat amphiphilic oil ethyl oleate. The detailed knowledge of the structural behavior of this type of system might be important for their future applications.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India
| | | | | | | | | | | |
Collapse
|
40
|
Hernandez-Raquet G. Fate of Emerging Contaminants During Aerobic and Anaerobic Sludge Treatment. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/698_2012_160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
41
|
Meng X, Yang D, Keyvan G, Michniak-Kohn B, Mitra S. Synthesis and immobilization of micro-scale drug particles in presence of β-cyclodextrins. Colloids Surf B Biointerfaces 2012; 92:213-22. [DOI: 10.1016/j.colsurfb.2011.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
42
|
Miranda JCD, Martins TEA, Veiga F, Ferraz HG. Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs. BRAZ J PHARM SCI 2011. [DOI: 10.1590/s1984-82502011000400003] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides composed of D-glucopyranoside units linked by glycosidic bonds. Their main property is the ability to modify the physicochemical and biological characteristics of low-soluble drugs through the formation of drug:CD inclusion complexes. Inclusion complexation requires that host molecules fit completely or partially within the CD cavity. This adjustment is directly related to the physicochemical properties of the guest and host molecules, easy accommodation of guest molecules within the CD cavity, stoichiometry, therapeutic dose, and toxicity. However, dosage forms may achieve a high volume, depending on the amount of CD required. Thus, it is necessary to increase solubilization efficiency in order to use smaller amounts of CD. This can be achieved by adding small amounts of water-soluble polymers to the system. This review addresses aspects related to drug complexation with CDs using water-soluble polymers to optimize the amount of CD used in the formulation in order to increase drug solubility and reduce dosage form volume.
Collapse
|
43
|
Ukmar T, Maver U, Planinšek O, Kaučič V, Gaberšček M, Godec A. Understanding controlled drug release from mesoporous silicates: Theory and experiment. J Control Release 2011; 155:409-17. [DOI: 10.1016/j.jconrel.2011.06.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/18/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022]
|
44
|
Radia O, Rogalska E, Moulay-Hassane G. Preparation of meloxicam-β-cyclodextrin-polyethylene glycol 6000 ternary system: characterization, in vitro and in vivo bioavailability. Pharm Dev Technol 2011; 17:632-7. [PMID: 21428700 DOI: 10.3109/10837450.2011.565347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ternary complexes of meloxicam (ML), a poorly water-soluble anti-inflammatory drug, with β-cyclodextrin (βCD) and polyethylene glycol (PEG) 6000 were prepared from an equimolar (ML-βCD) and 10% of PEG. Characterization of the ternary complex was carried out by differential scanning calorimetry and X-ray diffractometry. The solubility of ML increased as a function of increasing the concentration of βCD and PEG 6000. Ternary system increased significantly ML solubility in water. Ternary complexes improved drug release compared with ML and ML-βCD. The oral bioavailability of ML-βCD-PEG was investigated by administration to rat and compared with ML and ML-βCD. The results confirmed that the oral bioavailability of ML was significantly improved by complexation with βCD in the presence of PEG.
Collapse
Affiliation(s)
- Ourezki Radia
- Laboratoire de chromatographie, Faculté de chimie, El-Alia, Bab-Ezzouar, Alger, Algeria
| | | | | |
Collapse
|
45
|
Kim JY, Kim S, Pinal R, Park K. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs. J Control Release 2011; 152:13-20. [PMID: 21352878 DOI: 10.1016/j.jconrel.2011.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/04/2011] [Accepted: 02/11/2011] [Indexed: 11/26/2022]
Abstract
Polymer micelles have been used widely for delivery of poorly water-soluble drugs. Such drug delivery, however, has been based primarily on hydrophobic interactions. For better drug loading and improved stability, hydrotropic polymer micelles were used. To develop a versatile polymer micelle for solubilizing various poorly soluble drugs, two different hydrotropic agents were examined. The solubilizing properties of two hydrotropic agents, N,N-diethylnicotinamide (DENA) and N,N-dimethylbenzamide (DMBA), in polymeric form were investigated for their ability to solubilize five drugs with low aqueous solubility covering a wide range of hydrophobicity and molecular structures. The hydrotropes were covalently linked to the hydrophobic block of a block copolymer that also had a hydrophilic poly(ethylene glycol) (PEG) block. The solubilizing capacity of the polymeric hydrotropes was compared with that of the non polymeric hydrotropes, as well as of two conventional (non hydrotropic) copolymer systems. The solubilizing capacity of polymeric hydrotropes reflects combined effects of the micellar solubilization by the hydrophobic micelle core and hydrotropic solubilization. Because of the highly localized configuration, hydrotropes in the polymeric form are more powerful solubilizers than in the monomeric (non-polymeric) solution. It is possible to produce 1~3 orders of magnitude increase in solubility with polymeric hydrotropes at the 1% (w/v) level. Of the two hydrotropic polymeric systems in this study, the DENA-based system is highly specific, whereas the DMBA-based system is a general solubilizer of hydrophobic drugs. An additional advantage of polymeric hydrotropes over the non-polymeric form is absence of high concentrations of free hydrotropes in the formulation. Solubilization vehicles based on polymeric hydrotropes are expected to provide a new and versatile means of preparing formulations for various poorly soluble drugs and drug candidates without using organic solvents. This advantage is accompanied with the inherent controlled release property of the hydrotropic polymer micelles, making them ideal for pharmaceutical formulations used in drug candidate screening and toxicology studies.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
46
|
Kim JY, Kim S, Papp M, Park K, Pinal R. Hydrotropic solubilization of poorly water-soluble drugs. J Pharm Sci 2010; 99:3953-65. [PMID: 20607808 DOI: 10.1002/jps.22241] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The solubilizing ability of two aromatic hydrotropes, N,N-diethylnicotinamide (DENA) and N,N-dimethylbenzamide (DMBA), was investigated using a set of 13 poorly soluble, structurally diverse drugs. The number of aromatic rings in the solute molecule has a very strong effect on the solubility enhancement produced by either hydrotrope. However, although solubility enhancements in the order of 1000- to 10,000-fold were obtained with each of the hydrotropic agents, important differences were found between the two. DMBA is more hydrophobic and undergoes more extensive self-association than DENA, as determined by vapor osmometry. As a result, DMBA is generally a more powerful solubilizer of hydrophobic drugs. DENA, on the other hand, is more polar and its self-association is essentially limited to dimer formation. However, despite being less hydrophobic, DENA is an extremely powerful solubilizer of paclitaxel, a highly hydrophobic compound. Such a result is attributed to the higher hydrogen bonding ability of DENA over DMBA and the very high hydrogen bonding ability of paclitaxel. These observations in turn illustrate the strong interplay between specific and hydrophobic interactions on the observed solubilization by hydrotropic agents.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Industrial and Physical Pharmacy, Purdue University, College of Pharmacy, 575 Stadium Mall Drive, West Lafayette, Indiana 47907-2091, USA
| | | | | | | | | |
Collapse
|
47
|
Zargar-Shoshtari S, Wen J, Alany RG. Formulation and Physicochemical Characterization of Imwitor 308 Based Self Microemulsifying Drug Delivery Systems. Chem Pharm Bull (Tokyo) 2010; 58:1332-8. [DOI: 10.1248/cpb.58.1332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Jingyuan Wen
- Drug Delivery Research Unit (2DRU), School of Pharmacy, University of Auckland
| | - Raid Ghassan Alany
- Drug Delivery Research Unit (2DRU), School of Pharmacy, University of Auckland
| |
Collapse
|
48
|
Roques-Carmes T, Gigante A, Commenge JM, Corbel S. Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12771-12779. [PMID: 19785398 DOI: 10.1021/la900882h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The advantage of using electrowetting as a novel principle for a reflective display has been previously demonstrated. The principle is based on the controlled two-dimensional movement of an oil/water interface across a hydrophobic fluoropolymer insulator. The main objective of this paper is to show experimentally the influence of surfactants on the electro-optic behavior of a single electrowetting pixel. The concentration and type of nonionic surfactant (Tween 80 and Span 20) have been varied. The experimental data are compared with calculations from the electro-optic model developed previously. The electro-optic performance is significantly affected by the nature and the concentration of surfactant. In the presence of Tween, at concentrations lower than the critical micelle concentration (CMC), and mixtures of Tween and Span the electro-optic behavior can be related to the interfacial tension. When decreasing the oil/water interfacial tension, the amplitude of the driving voltage required for obtaining a given oil displacement decreases and the switching curve becomes steeper. These effects can be accurately reproduced by means of the previously developed electro-optic model. Mixtures of Tween and Span produce a significant synergetic reduction of the driving voltage. For Tween concentrations higher than the CMC and Span, a strong disagreement is observed between the previously developed model and experimental data. Here a new physical model is reported that describes the electro-optic behavior of electrowetting-based optical elements in the presence of surfactants. The model takes into account the actual voltage used to control the liquid movement in electrowetting (lower than the applied voltage), the amount of surfactant adsorbed at the decane/water interface, and the dipole moment of the surfactant molecules. The calculated results are in very good agreement with experimental data without employing fitting parameters. The dipoles interact with the applied field and lower the actual applied field. This reduction of the effective electric field across the solid-liquid interface induces a decrease in the charge density at the solid-liquid interface and reduces the electrowetting force. For surfactant concentrations higher than the CMC, the electro-optic performance does not depend on the surfactant concentration. This demonstrates that the reduction of the electrowetting field due to the large dipole moment of the surfactant molecules occurs at the oil/water interface. A new method for the test cell fabrication is also presented.
Collapse
Affiliation(s)
- Thibault Roques-Carmes
- Departement de Chimie Physique des Réactions, UMR 7630 CNRS-INPL, Nancy-Université 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France.
| | | | | | | |
Collapse
|
49
|
Abstract
The aim of this review is to describe the theoretical background lying behind the solid drug mechanochemical activation by cogrinding pointing out its advantages and drawbacks. A brief historical introduction precedes the discussion about the mechanisms leading to solid drug activation. This allows to clarify the concept of solid activation whose main effect is to improve drug solubility and, thus, drug bioavailability. Then, the attention is focused on the experimental tools used to evaluate drug activation before the in vivo use. This, of course, permits to properly modulate the milling conditions (milling time, mill revolution speed, drug/carrier ratio and so on) in the light of the optimisation of milling process and activated system properties. Thereafter, the discussion shifts on the different kinds of mills that can be used and on mills classification based on the energy transferred to the materials. Fundamental tool to perform this task is the mathematical modelling of mill dynamics that is here shown for different mills kinds. Finally, some examples of activated systems performance both in vitro and in vivo are presented and discussed. In conclusion, mechanochemical activation improves drug bioavailability. Interestingly, this activation does not require the use of solvents whose elimination from the activated product can be difficult and expensive but a relatively simple mechanical treatment. On the other hand, this approach, usually, works only for poorly water soluble drugs (solubility <100 microg/mL) that do not exhibit permeability problems.
Collapse
Affiliation(s)
- I Colombo
- Eurand S.p.A., Physical Pharmacy Laboratory, via Martin Luther King, 13-20060 Pessano con, Bornago, Milano, Italy
| | | | | |
Collapse
|
50
|
Wan J, Yuan S, Mak K, Chen J, Li T, Lin L, Lu X. Enhanced washing of HCB contaminated soils by methyl-beta-cyclodextrin combined with ethanol. CHEMOSPHERE 2009; 75:759-764. [PMID: 19217639 DOI: 10.1016/j.chemosphere.2009.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 05/27/2023]
Abstract
The present study investigates the combined effect of cyclodextrin (CD) and cosolvent on the washing of hexachlorobenzene (HCB) from contaminated soils. Methyl-beta-cyclodextrin (MCD), ethanol, a natural soil (NS) and kaolin, were selected. Batch equilibrium experiments were conducted to quantify the performance of HCB solubilization and recovery by varied MCD/ethanol systems. Results show that with 30% or 50% of added ethanol, considerable synergistic effect on HCB solubilization was achieved in MCD/ethanol system. The formation of ternary MCD/ethanol/HCB complex is most likely responsible for the synergy. Similar synergy was further evidenced in the washing of HCB from kaolin and NS by MCD/ethanol system containing 30% ethanol. Unexpectedly, the combination of MCD and 50% ethanol exhibited negligible synergy of HCB recovery. The failure in promotion is probably due to a nonextractable fraction of HCB for NS, or a nearly complete HCB recovery from kaolin by 50% ethanol alone. Results also indicate that the synergistic effect of the MCD/ethanol system will be significantly hindered by a higher organic content and longer aging of the soil. Generally, our study suggests that compared to conventional CD or cosolvent-aided soil remediation, the combined use of CD and cosolvents would offer great superiority to the contaminant recovery.
Collapse
Affiliation(s)
- Jinzhong Wan
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | | | | | | | | | | |
Collapse
|