1
|
Cook I, Leyh TS. Sulfotransferase 2B1b, Sterol Sulfonation, and Disease. Pharmacol Rev 2023; 75:521-531. [PMID: 36549865 PMCID: PMC10158503 DOI: 10.1124/pharmrev.122.000679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The primary function of human sulfotransferase 2B1b (SULT2B1b) is to sulfonate cholesterol and closely related sterols. SULT2B1b sterols perform a number of essential cellular functions. Many are signaling molecules whose activities are redefined by sulfonation-allosteric properties are switched "on" or "off," agonists are transformed into antagonists, and vice versa. Sterol sulfonation is tightly coupled to cholesterol homeostasis, and sulfonation imbalances are causally linked to cholesterol-related diseases including certain cancers, Alzheimer disease, and recessive X-linked ichthyosis-an orphan skin disease. Numerous studies link SULT2B1b activity to disease-relevant molecular processes. Here, these multifaceted processes are integrated into metabolic maps that highlight their interdependence and how their actions are regulated and coordinated by SULT2B1b oxysterol sulfonation. The maps help explain why SULT2B1b inhibition arrests the growth of certain cancers and make the novel prediction that SULT2B1b inhibition will suppress production of amyloid β (Aβ) plaques and tau fibrils while simultaneously stimulating Aβ plaque phagocytosis. SULT2B1b harbors a sterol-selective allosteric site whose structure is discussed as a template for creating inhibitors to regulate SULT2B1b and its associated biology. SIGNIFICANCE STATEMENT: Human sulfotransferase 2B1b (SULT2B1b) produces sterol-sulfate signaling molecules that maintain the homeostasis of otherwise pro-disease processes in cancer, Alzheimer disease, and X-linked ichthyosis-an orphan skin disease. The functions of sterol sulfates in each disease are considered and codified into metabolic maps that explain the interdependencies of the sterol-regulated networks and their coordinate regulation by SULT2B1b. The structure of the SULT2B1b sterol-sensing allosteric site is discussed as a means of controlling sterol sulfate biology.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
2
|
Liu Y, Lu Y, Li X, Zhang Z, Sun L, Wang Y, He Z, Liu Z, Zhu L, Fu L. Kaempferol suppression of acute colitis is regulated by the efflux transporters BCRP and MRP2. Eur J Pharm Sci 2022; 179:106303. [DOI: 10.1016/j.ejps.2022.106303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
|
3
|
Wu J, Duan R, Deng H, Li L, Zhao Y, Yu Z. The effect of compatibility of Aconiti Radix and honey on the pharmacokinetics of five Aconitum alkaloids in rat plasma. Biomed Chromatogr 2022; 36:e5453. [PMID: 35853731 DOI: 10.1002/bmc.5453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022]
Abstract
Aconiti Radix (Chuanwu [CW]), is widely used for the treatment of the chronic and intractable diseases due to its remarkable curative effect. CW has been combined with honey for thousands of years to reduce toxicity and enhance efficacy. This study first clarified compatibility mechanism of CW co-used with honey using a comparative pharmacokinetic idea. We developed and validated a simple, sensitive, specific, and accurate UHPLC-MS/MS method to simultaneously determine five Aconitum alkaloids in rat plasma after oral administration of CW decoction and CW-honey concentrated solution. Pharmacokinetic parameters were significantly different between the two groups (P<0.01 and P<0.05). Compared with CW group, Cmax and AUC0→t were decreased in CW-honey group for three diester-diterpenoid alkaloids (hypaconitine, mesaconitine and aconitine); Tmax and T1/2 were prolonged. However, Cmax and AUC0→t were increased in CW-honey group for two monoester-diterpenoid alkaloids (benzoylaconine and benzoylmesaconine); Tmax was shortened; T1/2 was prolonged. These findings suggest that honey affected the pharmacokinetic behaviors of five Aconitum alkaloids. We speculate that the detoxification and synergism of honey might result from reducing the toxicity of diester-diterpenoid alkaloids and promoting the biological activity of monoester-diterpenoid alkaloids in vivo. This study provides a theoretical basis for the clinical use of CW combined with honey.
Collapse
Affiliation(s)
- Jiaofeng Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Rong Duan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Haoran Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Lele Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yunli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhiguo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
4
|
Tao G, Dagher F, Li L, Singh R, Hu M, Ghose R. Irinotecan decreases intestinal UDP-glucuronosyltransferase (UGT) 1A1 via TLR4/MyD88 pathway prior to the onset of diarrhea. Food Chem Toxicol 2022; 166:113246. [PMID: 35728726 DOI: 10.1016/j.fct.2022.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
5
|
Guo X, Cao X, Fang X, Guo A, Li E. Involvement of phase II enzymes and efflux transporters in the metabolism and absorption of naringin, hesperidin and their aglycones in rats. Int J Food Sci Nutr 2022; 73:480-490. [PMID: 34974785 DOI: 10.1080/09637486.2021.2012562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
This study examined the effects of phase II metabolism and efflux transportation on the bioavailability of naringin, hesperidin, and their aglycones (naringenin and hesperetin) in rats. Results indicated naringin and hesperidin have a lower oral bioavailability than their aglycones. Of all the phase II enzymes tested, UDP-glucuronosyltransferase (UGT) 1A1, UGT1A2, UGT1A3, UGT1A7 and SULT sulfotransferase (SULT) 1B1 were of minor importance regarding the phase II metabolism of naringenin and hesperetin in the small intestine. Naringin, hesperidin, and their aglycones were all extensively metabolised in the liver. Naringin and hesperidin were more extensively transported by efflux transporters compared to their aglycones. Significant correlations between phase II enzymes and efflux transporters were detected. In conclusion, more extensive metabolism of naringin and hesperidin than their aglycones in the small intestine, and the interplay of phase II enzymes and efflux transporters in the small intestine explain the lower relative oral bioavailability of naringin and hesperidin than their aglycones.
Collapse
Affiliation(s)
- Xiao Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuedan Cao
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Xiugui Fang
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Erhu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Tao G, Dagher F, Ghose R. Neratinib causes non-recoverable gut injury and reduces intestinal cytochrome P450 3A enzyme in mice. Toxicol Res (Camb) 2022; 11:184-194. [PMID: 35237423 PMCID: PMC8882787 DOI: 10.1093/toxres/tfab111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neratinib is a pan-HER tyrosine kinase inhibitor newly approved by FDA in 2017 to treat HER2-positive breast cancer, but the phase III trial of neratinib showed that 96% of the patients taking neratinib experienced diarrhea. So far very few mechanistic studies explore neratinib-induced gastrointestinal (GI) toxicity. Hereby, we performed toxicity studies in mice to characterize the potential mechanism underlying this adverse effect. C57BL/6 J mice were separated into three groups A, B, C. Group A received vehicle; group B was orally dosed with 100 mg/kg neratinib once daily for 18 days. Group C was dosed with 100 mg/kg neratinib for 12 days and switched to vehicle for 6 days. Intestine and liver were collected for further analysis. Human intestine-derived cells were treated with neratinib in vitro. Our results showed that 12 days treatment of neratinib caused persistent histological damage in mouse GI tract. Both gene expression and activity of Cyp3a11, the major enzyme metabolizing neratinib in mice was reduced in small intestine. The gene expression of proinflammatory cytokines increased throughout the GI tract. Such damages were not recovered after 6 days without neratinib treatment. In addition, in vitro data showed that neratinib was potent in killing human intestine-derived cell lines. Based on such findings, we hypothesized that neratinib downregulates intestinal CYP3A enzyme to cause excessive drug disposition, eventually leading to gut injury.
Collapse
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Romi Ghose
- Correspondence address. Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health Building 2, Room 7045, 4849 Calhoun Rd., 4349 Martin Luther King Blvd., Houston, TX 77204, USA. Tel: +1-832-842-8343. E-mail:
| |
Collapse
|
7
|
Du T, Sun R, Siddiqui N, Moatamed L, Zhang Y, Liang D, Hu M, Gao S. A positive-negative switching LC-MS/MS method for quantification of fenoldopam and its phase II metabolites: Applications to a pharmacokinetic study in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122854. [PMID: 34242859 PMCID: PMC8403159 DOI: 10.1016/j.jchromb.2021.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Fenoldopam is an approved drug used to treat hypotension. The purpose of this study is to develop and validate an LC-MS method to quantify fenoldopam and its major metabolites fenoldopam-glucuronide and fenoldopam-sulfate in plasma and apply the method to a pharmacokinetic study in rats. A Waters C18 column was used with 0.1% formic acid in acetonitrile and 0.1% formic acid in water as the mobile phases to elute the analytes. A positive-negative switching method was performed in a triple quadrupole mass spectrometer using Multiple Reaction Monitoring (MRM) mode. A one-step protein precipitation using methanol and ethyl acetate was successfully applied for plasma sample preparation. The method was validated following the FDA guidance. The results show that the LLOQ of fenoldopam, fenoldopam-glucuronide and fenoldopam-sulfate is 0.98, 9.75 and 0.98 nM, respectively. The intraday and interday variance is less than 8.4% and the accuracy is between 82.5 and 116.0 %. The extraction recovery for these three analytes ranged from 81.3 ± 4.1% to 113.9 ± 13.2%. There was no significant matrix effect and no significant degradation under the experimental conditions. PK studies showed that fenoldopam was rapidly eliminated (t1/2 = 0.63 ± 0.24 h) from the plasma and glucuronide is the major metabolite. This method was suitably selective and sensitive for pharmacokinetic and phase II metabolism studies.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, TX 77204, USA
| | - Nyma Siddiqui
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Linda Moatamed
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Yun Zhang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Dong Liang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, TX 77204, USA
| | - Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| |
Collapse
|
8
|
Cook I, Cacace M, Wang T, Darrah K, Deiters A, Leyh TS. Small-molecule control of neurotransmitter sulfonation. J Biol Chem 2021; 296:100094. [PMID: 33485192 PMCID: PMC7948405 DOI: 10.1074/jbc.ra120.015177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022] Open
Abstract
Controlling unmodified serotonin levels in brain synapses is a primary objective when treating major depressive disorder-a disease that afflicts ∼20% of the world's population. Roughly 60% of patients respond poorly to first-line treatments and thus new therapeutic strategies are sought. To this end, we have constructed isoform-specific inhibitors of the human cytosolic sulfotransferase 1A3 (SULT1A3)-the isoform responsible for sulfonating ∼80% of the serotonin in the extracellular brain fluid. The inhibitor design includes a core ring structure, which anchors the inhibitor into a SULT1A3-specific binding pocket located outside the active site, and a side chain crafted to act as a latch to inhibit turnover by fastening down the SULT1A3 active-site cap. The inhibitors are allosteric, they bind with nanomolar affinity and are highly specific for the 1A3 isoform. The cap-stabilizing effects of the latch can be accurately calculated and are predicted to extend throughout the cap and into the surrounding protein. A free-energy correlation demonstrates that the percent inhibition at saturating inhibitor varies linearly with cap stabilization - the correlation is linear because the rate-limiting step of the catalytic cycle, nucleotide release, scales linearly with the fraction of enzyme in the cap-open form. Inhibitor efficacy in cultured cells was studied using a human mammary epithelial cell line that expresses SULT1A3 at levels comparable with those found in neurons. The inhibitors perform similarly in ex vivo and in vitro studies; consequently, SULT1A3 turnover can now be potently suppressed in an isoform-specific manner in human cells.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mary Cacace
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kristie Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
9
|
Li X, Lu Y, Ou X, Zeng S, Wang Y, Qi X, Zhu L, Liu Z. Changes and sex- and age-related differences in the expression of drug metabolizing enzymes in a KRAS-mutant mouse model of lung cancer. PeerJ 2020; 8:e10182. [PMID: 33240601 PMCID: PMC7680056 DOI: 10.7717/peerj.10182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/23/2020] [Indexed: 01/16/2023] Open
Abstract
Background This study aimed to systematically profile the alterations and sex- and age-related differences in the drug metabolizing enzymes (DMEs) in a KRAS-mutant mouse model of lung cancer (KRAS mice). Methodology In this study, the LC-MS/MS approach and a probe substrate method were used to detect the alterations in 21 isoforms of DMEs, as well as the enzymatic activities of five isoforms, respectively. Western blotting was applied to study the protein expression of four related receptors. Results The proteins contents of CYP2C29 and CYP3A11, were significantly downregulated in the livers of male KRAS mice at 26 weeks (3.7- and 4.4-fold, respectively, p < 0.05). SULT1A1 and SULT1D1 were upregulated by 1.8- to 7.0- fold at 20 (p = 0.015 and 0.017, respectively) and 26 weeks (p = 0.055 and 0.031, respectively). There were positive correlations between protein expression and enzyme activity for CYP2E1, UGT1A9, SULT1A1 and SULT1D1 (r2 ≥ 0.5, p < 0.001). Western blotting analysis revealed the downregulation of AHR, FXR and PPARα protein expression in male KRAS mice at 26 weeks. For sex-related differences, CYP2E1 was male-predominant and UGT1A2 was female-predominant in the kidney. UGT1A1 and UGT1A5 expression was female-predominant, whereas UGT2B1 exhibited male-predominant expression in liver tissue. For the tissue distribution of DMEs, 21 subtypes of DMEs were all expressed in liver tissue. In the intestine, the expression levels of CYP2C29, CYP27A1, UGT1A2, 1A5, 1A6a, 1A9, 2B1, 2B5 and 2B36 were under the limitation of quantification. The subtypes of CYP7A1, 1B1, 2E1 and UGT1A1, 2A3, 2B34 were detected in kidney tissue. Conclusions This study, for the first time, unveils the variations and sex- and age-related differences in DMEs in C57 BL/6 (WT) mice and KRAS mice.
Collapse
Affiliation(s)
- Xiaoyan Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyan Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojun Ou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sijing Zeng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
10
|
Du T, Sun R, Li L, Ebuzoeme C, Bui D, Zheng Z, Yin T, Liang D, Hu M, Gao S. Development and validation of ultra-high-performance liquid chromatography-mass spectrometry method for the determination of raloxifene and its phase II metabolites in plasma: Application to pharmacokinetic studies in rats. J Sep Sci 2020; 43:4414-4423. [PMID: 33119204 DOI: 10.1002/jssc.202000835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study is to establish a reliable liquid chromatography-mass spectrometry method to simultaneously quantitate raloxifene, and its major metabolites, raloxifene-6-glucuronide, raloxifene-4'-glucuronide, and raloxifene-6-sulfate in rat plasma samples for pharmacokinetic studies. The separation of the analytes was achieved on a Waters BEH C18 column. Water (0.1% formic acid) and acetonitrile were used as the mobile phases for elution. A one-step protein precipitation using a mixture solvent was applied for plasma sample preparation. The method was validated following the FDA guidance. The results showed that the linear range were 1.95-1000 nM for raloxifene-6-glucuronide, and raloxifene-4'-glucuronide, 0.195-100 nM for raloxifene-6-sulfate, and 0.195-200 nM for raloxifene, respectively. The lower limit of quantification was 1.95, 1.95, 0.195, and 0.195 nM for raloxifene-6-glucuronide, raloxifene-4'-glucuronide, raloxifene-6-sulfate, and raloxifene, respectively. Only 20 µl of plasma sample was required since the method is sensitive. The intra- and interday variance is <15% and the accuracy is within 85-115%. The variance of matrix effect and recovery were <15%. The method was successfully applied in a pharmacokinetic study in rats with oral administration of raloxifene.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Christabel Ebuzoeme
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| | - Dinh Bui
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Zicong Zheng
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Dong Liang
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, Houston, Texas, USA
| | - Song Gao
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
11
|
Sun R, Zhu L, Li L, Song W, Gong X, Qi X, Wang Y, Ghose R, Gao S, Hu M, Liu Z. Irinotecan-mediated diarrhea is mainly correlated with intestinal exposure to SN-38: Critical role of gut Ugt. Toxicol Appl Pharmacol 2020; 398:115032. [DOI: 10.1016/j.taap.2020.115032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/09/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
12
|
Bui D, Li L, Yin T, Wang X, Gao S, You M, Singh R, Hu M. Pharmacokinetic and Metabolic Profiling of Key Active Components of Dietary Supplement Magnolia officinalis Extract for Prevention against Oral Carcinoma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6576-6587. [PMID: 32348135 PMCID: PMC7604171 DOI: 10.1021/acs.jafc.0c01475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Among the three key active components (KACs) of Magnolia officinalis bark extract (ME), 4-O-methylhonokiol and honokiol showed higher antiproliferation activities than magnolol in the oral squamous cancer cell lines (Cal-27, SCC-9, and SCC-4). Oral bioavailabilities of ME-KACs were poor (<0.2%) in C57BL/6 mice primarily due to their extensive first-pass phase II metabolism and poor solubilities. High plasma concentration of glucuronides upon oral administration and faster rate of glucuronidation by intestinal microsomes indicated intestine as one of the major metabolic organs for ME-KACs. Despite the increase in bioavailabilities of ME-KACs (∼8-10-fold) and decrease in AUC0-24 of glucuronides (∼10-fold) upon ME solubility enhancement, systemic exposure of ME-KACs failed to improve meaningfully. In conclusion, we propose a quality-controlled and chemically defined ME mixture, containing an optimized ratio of three KACs, delivered locally in the oral cavity as the most promising strategy for ME use as an oral cancer chemopreventive dietary supplement.
Collapse
Affiliation(s)
- Dinh Bui
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Xinli Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
- Fujian Medical University Union Hospital, Gulou District, Fuzhou City, Fujian, China
| | - Song Gao
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas
| | - Ming You
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
- Corresponding Authors: [Tel: (832) 842-8320; Fax: (713) 743-1884; ] [Tel: (832) 518-9110; ]
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
- Corresponding Authors: [Tel: (832) 842-8320; Fax: (713) 743-1884; ] [Tel: (832) 518-9110; ]
| |
Collapse
|
13
|
Wang L, Sun R, Zhang Q, Luo Q, Zeng S, Li X, Gong X, Li Y, Lu L, Hu M, Liu Z. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin Drug Metab Toxicol 2018; 15:151-165. [PMID: 30583703 DOI: 10.1080/17425255.2019.1559815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Polyphenols, which are widely distributed in plants and the human diets, are known to have numerous biological activities. However, the low bioavailability of polyphenols is mediated by coupled metabolic pathways. Areas covered: The key role of the interplay between drug metabolic enzymes (DMEs) and efflux transporters (ETs), nuclear receptors (NRs), and intestinal microflora in the disposition of polyphenols is summarized. Expert opinion: ETs are shown to act as a 'revolving door', facilitating and/or controlling cellular polyphenol glucuronide/sulfate excretion. Elucidating the mechanisms underlying the glucuronidation/sulfation-transport interplay and structure-activity relationships (SAR) of glucuronide/sulfate efflux by an ET is important. Some new physiologically based pharmacokinetic (PBPK) models could be developed to predict the interplay between glucuronides/sulfates and ETs. Additionally, the combined actions of uridine-5'-diphosphate glucuronosyltransferases, ETs, and intestinal microflora/enterocyte-derived β-glucuronidase enable triple recycling (local, enteric, and enterohepatic recycling), thereby increasing the residence time of polyphenols and their glucuronides in the local intestine and liver. Further studies are necessary to explore these recycling mechanisms and interactions between polyphenols and the intestinal microbiota. Since NRs govern the inducible expression of target genes that encode DMEs and ETs. Determination of the regulation mechanism mediated by NRs using transgenic and knockout animals is still needed.
Collapse
Affiliation(s)
- Liping Wang
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Rongjin Sun
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Qisong Zhang
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Qing Luo
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Sijing Zeng
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Xiaoyan Li
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Xia Gong
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Yuhuan Li
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Linlin Lu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Ming Hu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China.,c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Zhongqiu Liu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China.,b State Key Laboratory of Quality Research in Chinese Medicine , Macau University of Science and Technology , Macau , SAR , China
| |
Collapse
|
14
|
Brito AF, Zang Y. A Review of Lignan Metabolism, Milk Enterolactone Concentration, and Antioxidant Status of Dairy Cows Fed Flaxseed. Molecules 2018; 24:E41. [PMID: 30583523 PMCID: PMC6337492 DOI: 10.3390/molecules24010041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Lignans are polyphenolic compounds with a wide spectrum of biological functions including antioxidant, anti-inflammatory, and anticarcinogenic activities, therefore, there is an increasing interest in promoting the inclusion of lignan-rich foods in humans' diets. Flaxseed is the richest source of the lignan secoisolariciresinol diglucoside-a compound found in the outer fibrous-containing layers of flax. The rumen appears to be the major site for the conversion of secoisolariciresinol diglucoside to the enterolignans enterodiol and enterolactone, but only enterolactone has been detected in milk of dairy cows fed flaxseed products (whole seeds, hulls, meal). However, there is limited information regarding the ruminal microbiota species involved in the metabolism of secoisolariciresinol diglucoside. Likewise, little is known about how dietary manipulation such as varying the nonstructural carbohydrate profile of rations affects milk enterolactone in dairy cows. Our review covers the gastrointestinal tract metabolism of lignans in humans and animals and presents an in-depth assessment of research that have investigated the impacts of flaxseed products on milk enterolactone concentration and animal health. It also addresses the pharmacokinetics of enterolactone consumed through milk, which may have implications to ruminants and humans' health.
Collapse
Affiliation(s)
- André F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824, USA.
| | - Yu Zang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
15
|
The Effects of Synthetically Modified Natural Compounds on ABC Transporters. Pharmaceutics 2018; 10:pharmaceutics10030127. [PMID: 30096910 PMCID: PMC6161255 DOI: 10.3390/pharmaceutics10030127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is a major hurdle which must be overcome to effectively treat cancer. ATP-binding cassette transporters (ABC transporters) play pivotal roles in drug absorption and disposition, and overexpression of ABC transporters has been shown to attenuate cellular/tissue drug accumulation and thus increase MDR across a variety of cancers. Overcoming MDR is one desired approach to improving the survival rate of patients. To date, a number of modulators have been identified which block the function and/or decrease the expression of ABC transporters, thereby restoring the efficacy of a range of anticancer drugs. However, clinical MDR reversal agents have thus far proven ineffective and/or toxic. The need for new, effective, well-tolerated and nontoxic compounds has led to the development of natural compounds and their derivatives to ameliorate MDR. This review evaluates whether synthetically modifying natural compounds is a viable strategy to generate potent, nontoxic, ABC transporter inhibitors which may potentially reverse MDR.
Collapse
|
16
|
Wang L, Chen Q, Zhu L, Zeng X, Li Q, Hu M, Wang X, Liu Z. Simultaneous determination of tilianin and its metabolites in mice using ultra-high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. Biomed Chromatogr 2017; 32. [PMID: 29144552 DOI: 10.1002/bmc.4139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Liping Wang
- International Institute for Translational Chinese Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
- The First Affiliated Hospital of the Medical College; Shihezi University; Shihezi China
| | - Qingwei Chen
- The First Affiliated Hospital of the Medical College; Shihezi University; Shihezi China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Xuejun Zeng
- The First Affiliated Hospital of the Medical College; Shihezi University; Shihezi China
| | - Qiang Li
- International Institute for Translational Chinese Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Ming Hu
- International Institute for Translational Chinese Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
- College of Pharmacy; University of Houston; Houston TX USA
| | - Xinchun Wang
- The First Affiliated Hospital of the Medical College; Shihezi University; Shihezi China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| |
Collapse
|
17
|
Guan HY, Li PF, Wang XM, Yue JJ, He Y, Luo XM, Su MF, Liao SG, Shi Y. Shengjiang Xiexin Decoction Alters Pharmacokinetics of Irinotecan by Regulating Metabolic Enzymes and Transporters: A Multi-Target Therapy for Alleviating the Gastrointestinal Toxicity. Front Pharmacol 2017; 8:769. [PMID: 29163158 PMCID: PMC5663900 DOI: 10.3389/fphar.2017.00769] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022] Open
Abstract
Shengjiang Xiexin decoction (SXD), a classic traditional Chinese medical formula chronicled in Shang Han Lun, is used in modern clinical practice to decrease gastrointestinal toxicity induced by the chemotherapeutic drug irinotecan (CPT-11). In this study, the effect of SXD on the pharmacokinetics of CPT-11 and its active metabolites (SN-38 and SN-38G), and the underlying mechanisms were further examined. An ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the simultaneous quantification of CPT-11, SN-38, and SN-38G in the plasma, bile, liver, intestine, and intestinal contents of control and SXD-pre-treated rats after intravenous administration of CPT-11. SXD pretreatment increased the area under the curve (AUC) and the initial plasma concentration (C0) of CPT-11 but decreased the plasma clearance (CL). The AUC and the maximum plasma concentration (Cmax) of SN-38 decreased, whereas the Cmax of SN-38G increased. Compared with that of the control group, the biliary excretion of CPT-11, SN-38, and SN-38G was inhibited. The CPT-11, SN-38, and SN-38G concentrations in the liver, intestine, and intestinal contents were different between the two groups. Furthermore, the hepatic expression of multidrug resistance-associated protein-2 (Mrp-2), P-glycoprotein (P-gp), and carboxylesterase 2 (CES2) was significantly down-regulated by SXD, while the hepatic and jejunal uridine diphosphate (UDP)-glucuronosyltransferase 1A1 (UGT1A1) expression was elevated. The hydrolysis of CPT-11 to SN-38 by CES and the glucuronidation of SN-38 to SN-38G by UGT were affected by liver and jejunum S9 fractions from rats pre-treated with SXD. Therefore, this study demonstrated for the first time that SXD could alter the pharmacokinetics of CPT-11 and its metabolites to alleviate CPT-11-induced diarrhea. And the underlying mechanism of drug interaction between CPT-11 and SXD involves decreasing hepatic Mrp-2 and P-gp expression and altering the activities of CES and UGT.
Collapse
Affiliation(s)
- Huan-Yu Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Peng-Fei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Ming Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Jing Yue
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Mei Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Feng Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shang-Gao Liao
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Zhang Q, Zhu L, Gong X, Ruan Y, Yu J, Jiang H, Wang Y, Qi X, Lu L, Liu Z. Sulfonation Disposition of Acacetin: In Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4921-4931. [PMID: 28540728 DOI: 10.1021/acs.jafc.7b00854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acacetin, an important component of acacia honey, exerts extensive therapeutic effects on many cancers. However, the sulfonation disposition of acacetin has rarely been reported. Therefore, this study aimed to investigate the sulfonation disposition of acacetin systematically. The results showed that acacetin-7-sulfate was the main metabolite mediated primarily by sulfotransferases (SULT) 1A1. Dog liver S9 presented the highest formation rate of acacetin-7-sulfate. Compared with that in wild-type Friend Virus B (FVB) mice, plasma exposure of acacetin-7-sulfate decreased significantly in multidrug resistance protein 1 knockout (Mrp1-/-) mice vut increased clearly in breast cancer resistance protein knockout (Bcrp-/-) mice. In Caco-2 monolayers, the efflux and clearance of acacetin-7-sulfate was reduced distinctly by the BCRP inhibitor Ko143 on the apical side and by the MRP1 inhibitor MK571 on the basolateral side. In conclusion, acacetin sulfonation was mediated mostly by SULT1A1. Acacetin-7-sulfate was found to be transported mainly by BCRP and MRP1. Hence, SULT1A1, BCRP, and MRP1 are responsible for acacetin-7-sulfate exposure in vivo.
Collapse
Affiliation(s)
- Qisong Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Xia Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Yanjiao Ruan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - XiaoXiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| |
Collapse
|
19
|
Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 2017; 49:105-138. [PMID: 28266877 DOI: 10.1080/03602532.2017.1293682] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.
Collapse
Affiliation(s)
- Guangyi Yang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China.,b Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine , Shiyan , Hubei , China
| | - Shufan Ge
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Rashim Singh
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Sumit Basu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Katherine Shatzer
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Ming Zen
- d Department of Thoracic and Cardiomacrovascular Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jiong Liu
- e Department of Digestive Diseases Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Yifan Tu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Chenning Zhang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jinbao Wei
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jian Shi
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Lijun Zhu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Zhongqiu Liu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Yuan Wang
- g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Song Gao
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Ming Hu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| |
Collapse
|
20
|
Yu J, Zhu L, Zheng H, Gong X, Jiang H, Chen J, Li Y, Zheng H, Qi X, Wang Y, Hu M, Lu L, Liu Z. Sulfotransferases and Breast Cancer Resistance Protein Determine the Disposition of Calycosin in Vitro and in Vivo. Mol Pharm 2017; 14:2917-2929. [DOI: 10.1021/acs.molpharmaceut.7b00042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jia Yu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Haihui Zheng
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xia Gong
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huangyu Jiang
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiamei Chen
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuhuan Li
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Hongming Zheng
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaoxiao Qi
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ying Wang
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ming Hu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Linlin Lu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- International Institute
for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- State Key Laboratory
of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
21
|
Soukup ST, Müller DR, Kurrat A, Diel P, Kulling SE. Influence of testosterone on phase II metabolism and availability of soy isoflavones in male Wistar rats. Arch Toxicol 2017; 91:1649-1661. [PMID: 27743010 DOI: 10.1007/s00204-016-1853-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 01/16/2023]
Abstract
Genistein and daidzein are the main isoflavones in soy. Their potential beneficial or adverse effects in males like the prevention of prostate cancer or the impact on reproductive functions are controversially discussed. Major determinants of their bioactivity are the absorption and biotransformation of isoflavones. In this study, we focused on the influence of testosterone on plasma availability and phase II metabolism of isoflavones. Male Wistar rats, receiving an isoflavones rich diet, were randomized into three groups: Two groups were orchiectomized (ORX) at postnatal day (PND) 80 and treated for 11 days with testosterone propionate (TP) (ORX TP group) or a vehicle (ORX group) after a 7 days lasting hormonal decline. The third group served as control and remained intact. Rats were sacrificed at PND 98. ORX rats had reduced isoflavones plasma levels. Differently regulated mRNA expressions of transporters relevant for transport of phase II metabolites in liver and kidney may be responsible for this reduction, more precisely Slc10a1 and Slc21a1 in kidney as well as Slc22a8 in liver. While main phase II metabolites in intact rats were disulfates and sulfoglucuronides, the amount of sulfate conjugates was significantly diminished by ORX. In accordance with that, mRNA expression of different sulfotransferases was reduced in liver by ORX. The observed effects could be almost restored by TP treatment. In conclusion, testosterone, and likely further androgens, has a huge impact on phase II metabolism and availability of isoflavones by influencing the expression of different sulfotransferases and transporters.
Collapse
Affiliation(s)
- Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Dennis R Müller
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Anne Kurrat
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
22
|
Chen J, Zhu L, Li X, Zheng H, Yan T, Xie C, Zeng S, Yu J, Jiang H, Lu L, Qi X, Wang Y, Hu M, Liu Z. High-Throughput and Reliable Isotope Label-free Approach for Profiling 24 Metabolic Enzymes in FVB Mice and Sex Differences. Drug Metab Dispos 2017; 45:624-634. [DOI: 10.1124/dmd.116.074682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/22/2017] [Indexed: 02/05/2023] Open
|
23
|
Ge S, Wei Y, Yin T, Xu B, Gao S, Hu M. Transport–Glucuronidation Classification System and PBPK Modeling: New Approach To Predict the Impact of Transporters on Disposition of Glucuronides. Mol Pharm 2017; 14:2884-2898. [DOI: 10.1021/acs.molpharmaceut.6b00941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shufan Ge
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Yingjie Wei
- Key
Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Street, Nanjing 210028, China
| | - Taijun Yin
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Beibei Xu
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Song Gao
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| | - Ming Hu
- Department
of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, Texas 77030, United States
| |
Collapse
|
24
|
Wang L, Chen Q, Zhu L, Li Q, Zeng X, Lu L, Hu M, Wang X, Liu Z. Metabolic Disposition of Luteolin Is Mediated by the Interplay of UDP-Glucuronosyltransferases and Catechol-O-Methyltransferases in Rats. Drug Metab Dispos 2016; 45:306-315. [PMID: 28031430 DOI: 10.1124/dmd.116.073619] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/27/2016] [Indexed: 11/22/2022] Open
Abstract
Luteolin partially exerts its biologic effects via its metabolites catalyzed by UDP-glucuronosyltransferases (UGTs) and catechol-O-methyltransferases (COMTs). However, the interplay of UGTs and COMTs in mediating luteolin disposition has not been well clarified. In this study, we investigated the glucuronidation and methylation pathways of luteolin mediated by the interplay of UGTs and COMTs in vivo and in vitro. A total of nine luteolin metabolites was detected in rat plasma and bile by liquid chromatography-tandem mass spectrometry, namely, three glucuronides, two methylated metabolites, and four methylated glucuronides. Luteolin-3'-glucuronide (Lut-3'-G) exhibited the highest systemic exposure among these metabolites. Kinetics studies in rat liver S9 fractions suggested two pathways, as follows: 1) Luteolin was glucuronidated to luteolin-7-glucuronide, luteolin-4'-glucuronide, and Lut-3'-G by UGTs, and then Lut-7-G was methylated to chrysoeriol-7-glucuronide and diosmetin-7-glucuronide by COMTs. 2) Alternatively, luteolin was methylated to chrysoeriol and diosmetin by COMTs, and then chrysoeriol and diosmetin were glucuronidated by UGTs to their respective glucuronides. The methylation rate of luteolin was significantly increased by the absence of glucuronidation, whereas the glucuronidation rate was increased by the absence of methylation, but to a lesser extent. In conclusion, two pathways mediated by the interplay of UGTs and COMTs are probably involved in the metabolic disposition of luteolin. The glucuronidation and methylation of luteolin compensate for each other, although glucuronidation is the predominant pathway.
Collapse
Affiliation(s)
- Liping Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, PR China (L.W., Q.C., X.Z., X.W.); International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China (L.W., L.Z., L.L., M.H., Z.L.); Department of Pharmacy, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China (Q.L.); and College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Qingwei Chen
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, PR China (L.W., Q.C., X.Z., X.W.); International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China (L.W., L.Z., L.L., M.H., Z.L.); Department of Pharmacy, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China (Q.L.); and College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Lijun Zhu
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, PR China (L.W., Q.C., X.Z., X.W.); International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China (L.W., L.Z., L.L., M.H., Z.L.); Department of Pharmacy, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China (Q.L.); and College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Qiang Li
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, PR China (L.W., Q.C., X.Z., X.W.); International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China (L.W., L.Z., L.L., M.H., Z.L.); Department of Pharmacy, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China (Q.L.); and College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Xuejun Zeng
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, PR China (L.W., Q.C., X.Z., X.W.); International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China (L.W., L.Z., L.L., M.H., Z.L.); Department of Pharmacy, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China (Q.L.); and College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Linlin Lu
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, PR China (L.W., Q.C., X.Z., X.W.); International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China (L.W., L.Z., L.L., M.H., Z.L.); Department of Pharmacy, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China (Q.L.); and College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Ming Hu
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, PR China (L.W., Q.C., X.Z., X.W.); International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China (L.W., L.Z., L.L., M.H., Z.L.); Department of Pharmacy, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China (Q.L.); and College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Xinchun Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, PR China (L.W., Q.C., X.Z., X.W.); International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China (L.W., L.Z., L.L., M.H., Z.L.); Department of Pharmacy, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China (Q.L.); and College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Zhongqiu Liu
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, PR China (L.W., Q.C., X.Z., X.W.); International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China (L.W., L.Z., L.L., M.H., Z.L.); Department of Pharmacy, Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China (Q.L.); and College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| |
Collapse
|
25
|
Ge S, Tu Y, Hu M. Challenges and Opportunities with Predicting in Vivo Phase II Metabolism via Glucuronidation from in Vitro Data. ACTA ACUST UNITED AC 2016; 2:326-338. [PMID: 28966903 DOI: 10.1007/s40495-016-0076-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glucuronidation is the most important phase II metabolic pathway which is responsible for the clearance of many endogenous and exogenous compounds. To better understand the elimination process for compounds undergoing glucuronidation and identify compounds with desirable in vivo pharmacokinetic properties, many efforts have been made to predict in vivo glucuronidation using in vitro data. In this article, we reviewed typical approaches used in previous predictions. The problems and challenges in prediction of glucuronidation were discussed. Besides that different incubation conditions can affect the prediction accuracy, other factors including efflux / uptake transporters, enterohepatic recycling, and deglucuronidation reactions also contribute to the disposition of glucuronides and make the prediction more difficult. PBPK modeling, which can describe more complicated process in vivo, is a promising prediction strategy which may greatly improve the prediction of glucuronidation and potential DDIs involving glucuronidation. Based on previous studies, we proposed a transport-glucuronidation classification system, which was built based on the kinetics of both glucuronidation and transport of the glucuronide. This system could be a very useful tool to achieve better in vivo predictions.
Collapse
Affiliation(s)
- Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX, 77030, USA
| | - Yifan Tu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX, 77030, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX, 77030, USA
| |
Collapse
|
26
|
Xie B, Wang H, Zou H, Liu Y, Kong X, Fang X. Increased Intestinal Absorption of Genistein by Coadministering Verapamil in Rats. Eur J Drug Metab Pharmacokinet 2016; 41:637-43. [PMID: 27604118 DOI: 10.1007/s13318-015-0274-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
Combination of genistein (GT) and verapamil, a P-glycoprotein (P-gp) inhibitor, can increase GT absorption in situ perfusion technology in rat. To date, little information is yet available about the effect of verapamil on oral absorption of GT in vivo. In this study, a simple and reproducible HPLC-UV method was developed and validated for determination of total GT in rat plasma. Based on this, a pharmacokinetic experiment was designed to characterize biopharmaceutical properties of GT with or without coadministration of verapamil (10.0, 20.0, 30.0 mg/kg) in rats. The coadministration of verapamil (30.0 mg/kg) with GT caused a significant increase of the maximum GT plasma concentration (1.31-fold vs. GT, P < 0.05) and area under the curve (1.39-fold vs. GT, P < 0.05). Our data show that verapamil would increase intestinal absorption of GT in rat, suggesting there is some drug-nutrition interaction between verapamil and GT.
Collapse
Affiliation(s)
- Baogang Xie
- School of Pharmaceutical Science, Nanchang University, No 461, bayi Ave., Nanchang, 330006, Republic of China.
| | - Huiyun Wang
- School of Pharmaceutical Science, Nanchang University, No 461, bayi Ave., Nanchang, 330006, Republic of China
| | - Huiqin Zou
- School of Pharmaceutical Science, Nanchang University, No 461, bayi Ave., Nanchang, 330006, Republic of China
| | - Yalan Liu
- School of Pharmaceutical Science, Nanchang University, No 461, bayi Ave., Nanchang, 330006, Republic of China
| | - Xiangyu Kong
- Nanchang University Archives, Nanchang, 330047, People's Republic of China
| | - Xiuzhong Fang
- School of Science, Nanchang University, Nanchang, 330006, People's Republic of China
| |
Collapse
|
27
|
Zheng L, Zhu L, Zhao M, Shi J, Li Y, Yu J, Jiang H, Wu J, Tong Y, Liu Y, Hu M, Lu L, Liu Z. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters. AAPS JOURNAL 2016; 18:1289-1299. [PMID: 27393480 DOI: 10.1208/s12248-016-9951-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/16/2016] [Indexed: 12/28/2022]
Abstract
Kaempferol is a well-known flavonoid; however, it lacks extensive pharmacokinetic studies. Phase II metabolic enzymes and efflux transporters play an important role in the disposition of flavonoids. This study aimed to investigate the mechanism by which phase II metabolic enzymes and efflux transporters determine the in vivo exposure of kaempferol. Pharmacokinetic analysis in Sprague-Dawley rats revealed that kaempferol was mostly biotransformed to conjugates, namely, kaempferol-3-glucuronide (K-3-G), kaempferol-7-glucuronide (K-7-G), and kaempferol-7-sulfate, in plasma. K-3-G represented the major metabolite. Compared with that in wild-type mice, pharmacokinetics in knockout FVB mice demonstrated that the absence of multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP) significantly increased the area under the curve (AUC) of the conjugates. The lack of MRP1 resulted in a much lower AUC of the conjugates. Intestinal perfusion in rats revealed that the glucuronide conjugates were mainly excreted in the small intestine, but 7-sulfate was mainly excreted in the colon. In Caco-2 monolayers, K-7-G efflux toward the apical (AP) side was significantly higher than K-3-G efflux. In contrast, K-3-G efflux toward the basolateral (BL) side was significantly higher than K-7-G efflux. The BL-to-AP efflux was significantly reduced in the presence of the MRP2 inhibitor LTC4. The AP-to-BL efflux was significantly decreased in the presence of the BL-side MRPs inhibitor MK571. The BCRP inhibitor Ko143 decreased the glucuronide conjugate efflux. Therefore, kaempferol is mainly exposed as K-3-G in vivo, which is driven by phase II metabolic enzymes and efflux transporters (i.e., BCRP and MRPs).
Collapse
Affiliation(s)
- Liang Zheng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Min Zhao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jian Shi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yuhuan Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jinjun Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yunli Tong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yuting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ming Hu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas, 77030, USA
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China. .,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
28
|
Wang M, Yang G, He Y, Xu B, Zeng M, Ge S, Yin T, Gao S, Hu M. Establishment and use of new MDCK II cells overexpressing both UGT1A1 and MRP2 to characterize flavonoid metabolism via the glucuronidation pathway. Mol Nutr Food Res 2016; 60:1967-83. [PMID: 26833852 DOI: 10.1002/mnfr.201500321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022]
Abstract
SCOPE The purpose of this study is to characterize how overexpression of an efflux transporter and an UDP-glucuronosyltransferase (UGT) affects the cellular kinetics of glucuronidation processes. METHODS AND RESULTS A new MDCK II cell line overexpressing both MRP2 and UGT1A1 (MDCKII-UGT1A1/MRP2 cells) was developed and used to determine how overexpression of an efflux transporter affects the kinetics of cellular flavonoid glucuronide production. The results showed that most model flavonoids (from a total of 13) were mainly metabolized into glucuronides in the MDCKII-UGT1A1/MRP2 cells and the glucuronides were rapidly excreted. Flavonoids with three or fewer hydroxyl group at 7, 3' or 6 hydroxyl group were also metabolized into sulfates. Mechanistic studies using 7-hydroxylflavone showed that its glucuronide was mainly (90%) effluxed by BCRP with a small (10%) but significant contribution from MRP2. Maximal velocity of glucuronide production MDCK-MRP2/UGT1A1 cells showed a fairly good correlation (R(2) >0.8) with those derived using UGT1A1 microsomes, but other kinetic parameters (e.g., Km ) did not correlate. CONCLUSION Overexpression of a second efficient efflux transporter did not significantly change the fact that BCRP is the dominant transporter for flavonoid glucuronide nor did it diminish the influence of the efflux transporter as the "gate keeper" of glucuronidation process.
Collapse
Affiliation(s)
- Meifang Wang
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Guangyi Yang
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.,Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu He
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Beibei Xu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Min Zeng
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Song Gao
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ming Hu
- Hubei University of Medicine and University-Affiliated Taihe Hospital, Shiyan, China. .,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.
| |
Collapse
|
29
|
Chimezie C, Ewing A, Schexnayder C, Bratton M, Glotser E, Skripnikova E, Sá P, Boué S, Stratford RE. Glyceollin Effects on MRP2 and BCRP in Caco-2 Cells, and Implications for Metabolic and Transport Interactions. J Pharm Sci 2016; 105:972-981. [PMID: 26296158 DOI: 10.1002/jps.24605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 12/28/2022]
Abstract
Glyceollins are phytoalexins produced in soybeans under stressful growth conditions. On the basis of prior evaluations, they show potential to treat multiple diseases, including certain cancers, Type 2 diabetes, and cardiovascular conditions. The aim of the present study was to expand on recent studies designed to initially characterize the intestinal disposition of glyceollins. Specifically, studies were undertaken in Caco-2 cells to evaluate glyceollins' effects on apical efflux transporters, namely, MRP2 and BCRP, which are the locus of several intestinal drug-drug and drug-food interactions. 5- (and 6)-carboxy-2',7'-dichloroflourescein (CDF) was used to provide a readout on MRP2 activity, whereas BODIPY-prazosin provided an indication of BCRP alteration. Glyceollins were shown to reverse MRP2-mediated CDF transport asymmetry in a concentration-dependent manner, with activity similar to the MRP2 inhibitor, MK-571. Likewise, they demonstrated concentration-dependent inhibition of BCRP-mediated efflux of BODIPY-prazosin with a potency similar to that of Ko143. Glyceollin did not appreciably alter MRP2 or BCRP expression following 24 h of continuous exposure. The possibility that glyceollin mediated inhibition of genistein metabolite efflux by either transporter was evaluated. However, results demonstrated an interaction at the level of glyceollin inhibition of genistein metabolism rather than inhibition of metabolite transport.
Collapse
Affiliation(s)
- Chukwuemezie Chimezie
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Adina Ewing
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Chandler Schexnayder
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Melyssa Bratton
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Elena Glotser
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Elena Skripnikova
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Pedro Sá
- Universidade Federal do Vale do São Francisco, Petrolina, PE 56403-917, Brazil
| | - Stephen Boué
- Southern Regional Research Center, U.S.D.A., New Orleans, Louisiana 70124
| | - Robert E Stratford
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125.
| |
Collapse
|
30
|
Genistein and Glyceollin Effects on ABCC2 (MRP2) and ABCG2 (BCRP) in Caco-2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010017. [PMID: 26703673 PMCID: PMC4730408 DOI: 10.3390/ijerph13010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
The goal of the present study was to determine the effects of glyceollins on intestinal ABCC2 (ATP Binding Cassette C2, multidrug resistance protein 2, MRP2) and ABCG2 (ATP Binding Cassette G2, breast cancer resistance protein, BCRP) function using the Caco-2 cell intestinal epithelial cell model. Glyceollins are soy-derived phytoestrogens that demonstrate anti-proliferative activity in several sources of cancer cells. 5 (and 6)-carboxy-2′,7′-dichloroflourescein (CDF) was used as a prototypical MRP2 substrate; whereas BODIPY-prazosin provided an indication of BCRP function. Comparison studies were conducted with genistein. Glyceollins were shown to inhibit MRP2-mediated CDF transport, with activity similar to the MRP2 inhibitor, MK-571. They also demonstrated concentration-dependent inhibition BCRP-mediated efflux of BODIPY-prazosin, with a potency similar to that of the recognized BCRP inhibitor, Ko143. In contrast, genistein did not appear to alter MRP2 activity and even provided a modest increase in BCRP efflux of BODIPY-prazosin. In particular, glyceollin inhibition of these two important intestinal efflux transporters suggests the potential for glyceollin to alter the absorption of other phytochemicals with which it might be co-administered as a dietary supplement, as well as alteration of the absorption of pharmaceuticals that may be administered concomitantly.
Collapse
|
31
|
Zhou X, Wang S, Sun H, Wu B. Sulfonation of raloxifene in HEK293 cells overexpressing SULT1A3: Involvement of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in excretion of sulfate metabolites. Drug Metab Pharmacokinet 2015; 30:425-33. [DOI: 10.1016/j.dmpk.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/07/2015] [Accepted: 09/29/2015] [Indexed: 11/16/2022]
|
32
|
Efflux transport of chrysin and apigenin sulfates in HEK293 cells overexpressing SULT1A3: The role of multidrug resistance-associated protein 4 (MRP4/ABCC4). Biochem Pharmacol 2015; 98:203-14. [DOI: 10.1016/j.bcp.2015.08.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022]
|
33
|
Curcumin Affects Phase II Disposition of Resveratrol Through Inhibiting Efflux Transporters MRP2 and BCRP. Pharm Res 2015; 33:590-602. [PMID: 26502886 DOI: 10.1007/s11095-015-1812-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the impact of curcumin on the disposition of resveratrol phase II metabolites in vivo, and explain the observations by performing in vitro studies in transporter-overexpressed cells. METHODS Pharmacokinetic studies of resveratrol with and without the co-administration of curcumin were performed in both FVB wild-type and Bcrp1 (-/-) mice. Human UGT1A9-overexpressing HeLa cells and human MRP2-overexpressing MDCK II-UGT1A1 cells were used as in vitro tools to further determine the impact of curcumin as a transporter inhibitor on resveratrol metabolites. RESULTS We observed higher exposure of resveratrol conjugates in Bcrp1 (-/-) mice compared to wild-type mice. In wild-type mice, curcumin increased the AUC of resveratrol glucuronide by 4-fold compared to the mice treated without curcumin. The plasma levels of resveratrol and its sulfate conjugate also increased moderately. In Bcrp1 (-/-) mice, there was a further increase (6-fold increase) in AUC of resveratrol glucuronide observed when curcumin was co-administered compared to AUC values obtained in wild-type mice without curcumin treatment. In the presence of 50 nM curcumin, the clearance of resveratrol-3-O-glucuronide and resveratrol-3-O-sulfate reduced in both MRP2-overexpressing MDCKII-UGT1A1 cells and Human UGT1A9-overexpressing HeLa cells. CONCLUSIONS These results suggest that curcumin alters the phase II distribution of resveratrol through inhibiting efflux transporters including MRP2 and BCRP.
Collapse
|
34
|
Sun H, Wang X, Zhou X, Lu D, Ma Z, Wu B. Multidrug Resistance-Associated Protein 4 (MRP4/ABCC4) Controls Efflux Transport of Hesperetin Sulfates in Sulfotransferase 1A3–Overexpressing Human Embryonic Kidney 293 Cells. Drug Metab Dispos 2015; 43:1430-40. [DOI: 10.1124/dmd.115.065953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/29/2015] [Indexed: 01/27/2023] Open
|
35
|
Bircsak KM, Aleksunes LM. Interaction of Isoflavones with the BCRP/ABCG2 Drug Transporter. Curr Drug Metab 2015; 16:124-40. [PMID: 26179608 PMCID: PMC4713194 DOI: 10.2174/138920021602150713114921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
This review will provide a comprehensive overview of the interactions between dietary isoflavones and the ATP-binding cassette (ABC) G2 efflux transporter, which is also named the breast cancer resistance protein (BCRP). Expressed in a variety of organs including the liver, kidneys, intestine, and placenta, BCRP mediates the disposition and excretion of numerous endogenous chemicals and xenobiotics. Isoflavones are a class of naturallyoccurring compounds that are found at high concentrations in commonly consumed foods and dietary supplements. A number of isoflavones, including genistein and daidzein and their metabolites, interact with BCRP as substrates, inhibitors, and/or modulators of gene expression. To date, a variety of model systems have been employed to study the ability of isoflavones to serve as substrates and inhibitors of BCRP; these include whole cells, inverted plasma membrane vesicles, in situ organ perfusion, as well as in vivo rodent and sheep models. Evidence suggests that BCRP plays a role in mediating the disposition of isoflavones and in particular, their conjugated forms. Furthermore, as inhibitors, these compounds may aid in reversing multidrug resistance and sensitizing cancer cells to chemotherapeutic drugs. This review will also highlight the consequences of altered BCRP expression and/or function on the pharmacokinetics and toxicity of chemicals following isoflavone exposure.
Collapse
Affiliation(s)
| | - Lauren M Aleksunes
- Dept. of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd. Piscataway, NJ 08854, USA.
| |
Collapse
|
36
|
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014; 88:1205-48. [DOI: 10.1007/s00204-014-1224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
|
37
|
Chimezie C, Ewing AC, Quadri SS, Cole RB, Boué SM, Omari CF, Bratton M, Glotser E, Skripnikova E, Townley I, Stratford RE. Glyceollin transport, metabolism, and effects on p-glycoprotein function in Caco-2 cells. J Med Food 2014; 17:462-71. [PMID: 24476214 PMCID: PMC3993029 DOI: 10.1089/jmf.2013.0115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
Glyceollins are phytoalexins produced in soybeans from their isoflavone precursor daidzein. Their impressive anticancer and glucose normalization effects in rodents have generated interest in their therapeutic potential. The aim of the present studies was to begin to understand glyceollin intestinal transport and metabolism, and their potential effects on P-glycoprotein (Pgp) in Caco-2 cells. At 10 and 25 μM, glyceollin permeability was 2.4±0.16×10(-4) cm/sec and 2.1±0.15×10(-4) cm/sec, respectively, in the absorptive direction. Basolateral to apical permeability at 25 μM was 1.6±0.10×10(-4) cm/sec. Results suggest high absorption potential of glyceollin by a passive-diffusion-dominated mechanism. A sulfate conjugate at the phenolic hydroxyl position was observed following exposure to Caco-2 cells. In contrast to verapamil inhibition of the net secretory permeability of rhodamine 123 (R123) and its enhancement of calcein AM uptake into Caco-2 cells, neither glyceollin nor genistein inhibited Pgp (MDR1; ABCB1) up to 300 μM. There was no significant change in MDR1 mRNA expression, Pgp protein expression, or R123 transport in cells exposed to glyceollin or genistein for 24 h up to 100 μM. Collectively, these results suggest that glyceollin has the potential to be well absorbed, but that, similar to the isoflavone genistein, its absorption may be reduced substantially by intestinal metabolism; further, they indicate that glyceollin does not appear to alter Pgp function in Caco-2 cells.
Collapse
Affiliation(s)
- Chukwuemezie Chimezie
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Adina C. Ewing
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Syeda S. Quadri
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| | - Richard B. Cole
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
- Laboratory of Organic and Biological Structural Chemistry, Université Pierre et Marie Curie (Paris 6), Paris, France
| | - Stephen M. Boué
- Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| | - Christopher F. Omari
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Melyssa Bratton
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Elena Glotser
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Elena Skripnikova
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Ian Townley
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Robert E. Stratford
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| |
Collapse
|
38
|
Miguel V, Otero JA, García-Villalba R, Tomás-Barberán F, Espín JC, Merino G, Álvarez AI. Role of ABCG2 in transport of the mammalian lignan enterolactone and its secretion into milk in Abcg2 knockout mice. Drug Metab Dispos 2014; 42:943-6. [PMID: 24568887 DOI: 10.1124/dmd.113.055970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lignans are phytoestrogens that are metabolized by the gut microbiota to enterodiol and enterolactone, the main biologically active enterolignans. Substantial interindividual variation in plasma concentration and urinary excretion of enterolignans has been reported, this being determined, at least in part, by the intake of lignan precursors, the gut microbiota, and the host's phase 2 conjugating enzyme activity. However, the role of ATP-binding cassette (ABC) transporters in the transport and disposition of enterolactone has not been reported so far. Active transport assays using parental and Madin-Darby canine kidney epithelial cells transduced with murine and human ABCG2 showed a significant increase in apically directed translocation of enterolactone in transduced cells, which was confirmed by using the selective ABCG2 inhibitor Ko143. In addition, enterolactone also inhibited transport of the antineoplastic agent mitoxantrone as a model substrate, with inhibition percentages of almost 40% at 200 μM for human ABCG2. Furthermore, the endogenous levels in plasma and milk of enterolactone in wild-type and Abcg2((-/-)) knockout female mice were analyzed. The milk/plasma ratio decreased significantly in the Abcg2((-/-)) phenotype, as compared with the wild-type mouse group (0.4 ± 0.1 as against 6.4 ± 2.6). This paper is the first to report that enterolactone is a transported substrate and therefore most probably a competitive inhibitor of ABCG2, which suggests it has a role in the interindividual variations in the disposition of enterolactone and its secretion into milk. The inhibitory activity identified provides a solid basis for further investigation in possible food-drug interactions.
Collapse
Affiliation(s)
- Verónica Miguel
- Department of Biomedical Sciences, Physiology, Veterinary Faculty (V.M., A.I.A., J.A.O., G.M.) and Instituto de Desarrollo Ganadero y Sanidad Animal (J.A.O., G.M.), University of Leon, Leon, Spain; and Research Group on Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura, Murcia, Spain (R.G.-V., F.T.-B., J.C.E.)
| | | | | | | | | | | | | |
Collapse
|
39
|
Kobayashi S, Shinohara M, Nagai T, Konishi Y. Transport mechanisms for soy isoflavones and microbial metabolites dihydrogenistein and dihydrodaidzein across monolayers and membranes. Biosci Biotechnol Biochem 2013; 77:2210-7. [PMID: 24200780 DOI: 10.1271/bbb.130404] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Isoflavone data concerning the metabolism and permeability on intestinal epithelial cells are scarce, particularly for microbial isoflavone metabolites. This study evaluates the absorption mechanisms for the isoflavones, genistein and daidzein, and their microbial metabolites, dihydrogenistein (DHG) and dihydrodaidzein (DHD). The permeability characteristics of isoflavones were compared by using the Caco-2 human colon adenocarcinoma cell line for a parallel artificial membrane permeability assay, and comparing their physicochemical properties. The data suggest that genistein, DHG and DHD were efficiently transported by passive diffusion according to the pH-partition hypothesis. Genistein was conjugated by phase II metabolizing enzymes and acted as a substrate of the breast cancer resistance protein (BCRP). Daidzein was not conjugated but did act as a substrate for BCRP, multidrug resistance-associated proteins, and P-glycoprotein. In contrast, DHG and DHD were markedly more permeable than their parent isoflavones; they were therefore difficult to transport by the efflux effect, and glucuronidation/sulfation was limited by the flux time.
Collapse
Affiliation(s)
- Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | | | | | | |
Collapse
|
40
|
Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer Agents Med Chem 2013; 12:1264-80. [PMID: 22583407 DOI: 10.2174/187152012803833107] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/11/2022]
Abstract
Genistein, one of the most active natural flavonoids, exerts various biological effects including chemoprevention, antioxidation, antiproliferation and anticancer. More than 30 clinical trials of genistein with various disease indications have been conducted to evaluate its clinical efficacy. Based on many animals and human pharmacokinetic studies, it is well known that the most challenge issue for developing genistein as a chemoprevention agent is the low oral bioavailability, which may be the major reason relating to its ambiguous therapeutic effects and large interindividual variations in clinical trials. In order to better correlate pharmacokinetic to pharmacodynamics results in animals and clinical studies, an in-depth understanding of pharmacokinetic behavior of genistein and its ADME properties are needed. Numerous in vitro/in vivo ADME studies had been conducted to reveal the main factors contributing to the low oral bioavailability of genistein. Therefore, this review focuses on summarizing the most recent progress on mechanistic studies of genistein ADME and provides a systemic view of these processes to explain genistein pharmacokinetic behaviors in vivo. The better understanding of genistein ADME property may lead to development of proper strategy to improve genistein oral bioavailability via mechanism-based approaches.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
41
|
Quadri SS, Stratford RE, Boué SM, Cole RB. Screening and identification of glyceollins and their metabolites by electrospray ionization tandem mass spectrometry with precursor ion scanning. Anal Chem 2013; 85:1727-33. [PMID: 23294002 PMCID: PMC3593975 DOI: 10.1021/ac3030398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method has been developed for screening glyceollins and their metabolites based on precursor ion scanning. Under higher-energy collision conditions with the employment of a triple quadrupole mass spectrometer in the negative ion mode, deprotonated glyceollin precursors yield a diagnostic radical product ion at m/z 148. We propose this resonance-stabilized radical anion, formed in violation of the even-electron rule, to be diagnostic of glyceollins and glyceollin metabolites. Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) established that scanning for precursors of m/z 148 can identify glyceollins and their metabolites from plasma samples originating from rats dosed with glyceollins. Precursor peaks of interest were found at m/z 337, 353, 355, 417, and 433. The peak at m/z 337 corresponds to deprotonated glyceollins, whereas the others represent metabolites of glyceollins. Accurate mass measurement confirmed m/z 417 to be a sulfated metabolite of glyceollins. The peak at m/z 433 is also sulfated, but it contains an additional oxygen, as confirmed by accurate mass measurement. The latter metabolite differs from the former likely by the replacement of a hydrogen with a hydroxyl moiety. The peaks at m/z 353 and 355 are proposed to correspond to hydroxylated metabolites of glyceollins, wherein the latter additionally undergoes a double bond reduction.
Collapse
Affiliation(s)
- Syeda S Quadri
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148, United States
| | | | | | | |
Collapse
|
42
|
Jiang W, Hu M. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC Adv 2012; 2:7948-7963. [PMID: 25400909 PMCID: PMC4228968 DOI: 10.1039/c2ra01369j] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Flavonoids, existing mainly as glycosides in nature, have multiple "claimed" beneficial effects in humans. Flavonoids are extensively metabolized in enterocytes and hepatocytes by phase II enzymes such as UGTs and SULTs to form glucuronides and sulfates, respectively. These glucuronides and sulfates are subsequently excreted via ABC transporters (e.g., MRP2 or BCRP). Therefore, it is the interplay between phase II enzymes and efflux transporters that affects the disposition of flavonoids and leads to the low bioavailability of flavonoid aglycones. Flavonoids can also serve as chemical regulators that affect the activity or expression levels of phase II enzymes including UGTs, SULTs and GSTs, and transporters including P-gp, MRP2, BCRP, OATP and OAT. In general, flavonoids may exert the inhibitory or inductive effects on the phase II enzymes and transporters via multiple mechanisms that may involve different nuclear receptors. Since flavonoids may affect the metabolic pathways shared by many important clinical drugs, drug-flavonoid interaction is becoming an increasingly important concern. This review article focused on the disposition of flavonoids and effects of flavonoids on relevant enzymes (e.g. UGTs and SULTs) and transporters (e.g. MRP2 and BCRP) involved in the interplay between phase II enzymes and efflux transporters. The effects of flavonoids on other metabolic enzymes (e.g. GSTs) or transporters (e.g. P-gp, OATP and OAT) are also addressed but that is not the emphasis of this review.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA ; Pharmaceutics Graduate Program, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| |
Collapse
|
43
|
Liu W, Feng Q, Li Y, Ye L, Hu M, Liu Z. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin. Toxicol Appl Pharmacol 2012; 265:316-24. [PMID: 22982073 DOI: 10.1016/j.taap.2012.08.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 11/16/2022]
Abstract
Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized to emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B-A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A-B) and B-A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
44
|
Yang Z, Zhu W, Gao S, Yin T, Jiang W, Hu M. Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab Dispos 2012; 40:1883-93. [PMID: 22736306 DOI: 10.1124/dmd.111.043901] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It was recently proposed that the improved oral bioavailability of genistein aglycone and conjugates in Bcrp1(-/-) mice is mainly due to increased intestinal absorption of aglycone and subsequent elevated exposure to conjugation enzymes. Here we tested this proposed mechanism and found that intestinal absorption of genistein aglycone did not increase in Bcrp1(-/-) mice compared with wild-type mice using an in situ mouse intestinal perfusion model and that inhibition of breast cancer resistance protein (BCRP) in Caco-2 cells also did not significantly increase permeability or intracellular concentration of aglycone. Separately, we showed that 5- to 10-fold increases in exposures of conjugates and somewhat lower fold increases (<2-fold) in exposures of aglycone were apparent after both oral and intraperitoneal administration in Bcrp1(-/-) mice. In contrast, the intestinal and biliary excretion of genistein conjugates significantly decreased in Bcrp1(-/-) mice without corresponding changes in aglycone excretion. Likewise, inhibition of BCRP functions in Caco-2 cells altered polarized excretion of genistein conjugates by increasing their basolateral excretion. We further found that genistein glucuronides could be hydrolyzed back to genistein, whereas sulfates were stable in blood. Because genistein glucuronidation rates were 110% (liver) and 50% (colon) higher and genistein sulfation rates were 40% (liver) and 42% (colon) lower in Bcrp1(-/-) mice, the changes in genistein exposures are not mainly due to changes in enzyme activities. In conclusion, improved bioavailability of genistein and increased plasma area under the curve of its conjugates in Bcrp1(-/-) mice is due to altered distribution of genistein conjugates to the systemic circulation.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
45
|
van de Wetering K, Sapthu S. ABCG2 functions as a general phytoestrogen sulfate transporter in vivo. FASEB J 2012; 26:4014-24. [PMID: 22707564 DOI: 10.1096/fj.12-210039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABCG2 is an ATP-dependent efflux transporter that limits the systemic exposure of its substrates. The preferred substrates of ABCG2 in vivo are largely unknown. We aimed to identify the compounds transported by ABCG2 under physiological conditions. In vitro, ABCG2 transports several sulfate conjugates at high rates. We therefore used targeted metabolomics, specifically detecting compounds conjugated to sulfate, to search in plasma, urine, and bile samples of wild-type and Abcg2-/- mice for differentially present compounds, which are likely to represent in vivo ABCG2 substrates. Levels of many sulfate conjugates were up to 15-fold higher in plasma and urine of Abcg2-/- than of wild-type mice, with the opposite effect seen in bile. These differentially present compounds were identified as the sulfate conjugates of phytoestrogens, compounds with weak pro- or antiestrogenic properties. We confirmed that these sulfate conjugates were ABCG2 substrates using transportomics, a method that uses vesicular transport assays to screen for substrates of ABC transporters in body fluids. In conclusion, our results show that ABCG2 limits the systemic exposure to many different phytoestrogens, a class of compounds to which mammals are exposed on a daily basis via food of plant origin, by directing their sulfate conjugates for excretion via the feces.
Collapse
Affiliation(s)
- Koen van de Wetering
- Division of Molecular Oncology (H5), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
46
|
Yuan B, Wang L, Jin Y, Zhen H, Xu P, Xu Y, Li C, Xu H. Role of metabolism in the effects of genistein and its phase II conjugates on the growth of human breast cell lines. AAPS JOURNAL 2012; 14:329-44. [PMID: 22415614 DOI: 10.1208/s12248-012-9338-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 02/16/2012] [Indexed: 11/30/2022]
Abstract
Genistein has been investigated for several decades for its potential role in breast cancer prevention. Previous researches have shown that glucuronide and sulfate conjugates are the major species circulating in the blood after genistein ingestion. It was hypothesized that enzymes (UDP-glucuronosyltransferases, sulphotransferases, β-glucuronidases, and sulphatases) present in breast tissues would catalyze the inter-conversion between the aglycone and the conjugates in situ. Therefore, our aim was to investigate how genistein, genistein-7-glucuronide (G-7-G), genistein-7-sulfate (G-7-S), and 4'-sulfate (G-4'-S) were metabolized in mammary cells and to determine the effects of metabolism on their proliferative actions using cultured breast cell lines. As expected, genistein stimulated the cell growth of breast cancer cells (MCF-7 and T47D) concentration-dependently at lower concentrations but inhibited their growth at higher concentration. It showed low activities in a non-tumorigenic cell line (MCF-10A) due to the absence of ERα. Genistein was extensively metabolized to glucuronides by MCF-7 and to sulfates by T47D, while it was poorly metabolized by MCF-10A. G-7-G displayed weak stimulation activity in breast cancer cells. G-7-G underwent extensive metabolism in T47D and MCF-10A but not in MCF-7. The proliferative effects of G-7-G on MCF-7 and T47D were associated with its hydrolysis to genistein in these cells. In contrast, G-7-S and G-4'-S were not metabolized by these three cells and had no effects on their growth. In conclusion, production of phase II metabolites did not affect the proliferation effect of genistein on MCF-7 and T47D. Deconjugation was correlated to the apparent proliferative effects of G-7-G in breast cancer cells.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fan Y, Tang L, Zhou J, Feng Q, Xia B, Liu Z. Simultaneous Determination of Sulfation and Glucuronidation of Flavones in FVB Mouse Intestinein Vitroandin Vivo. J Appl Toxicol 2011; 33:273-80. [DOI: 10.1002/jat.1737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Yanfang Fan
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| | - Lan Tang
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| | - Juan Zhou
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| | - Qian Feng
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| | - Bijun Xia
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences; Southern Medical University; Guangzhou; Guangdong; China
| |
Collapse
|
48
|
Li C, Zhang L, Zhou L, Wo SK, Lin G, Zuo Z. Comparison of intestinal absorption and disposition of structurally similar bioactive flavones in Radix Scutellariae. AAPS JOURNAL 2011; 14:23-34. [PMID: 22167378 DOI: 10.1208/s12248-011-9310-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/11/2011] [Indexed: 02/02/2023]
Abstract
Radix Scutellariae is a commonly used herbal medicine. Baicalein, wogonin, and oroxylin A are three major bioactive flavones in Radix Scutellariae and share similar chemical structures. The intestinal absorption and disposition of baicalein have been systematically investigated by our group before. In this study, the intestinal absorption and disposition of wogonin and oroxylin A were further explored and compared with the profiles of baicalein to find potential structure-activity relationship. Absorptive models including Caco-2 cell monolayer model and rat in situ single-pass intestinal perfusion model as well as in vitro enzymatic kinetic study were employed in the current study. The absorption of baicalein, wogonin, and oroxylin A were favorable with wogonin showing the highest permeability based on two absorptive models. However, three flavones underwent a fast and extensive phase II metabolism. The intestinal metabolism of three flavones exhibited species difference between human and rat. Oroxylin A demonstrated the highest intrinsic clearance of glucuronidation among three flavones. The multidrug resistance proteins might be involved in the efflux of their intracellularly formed conjugated metabolites. The pathway of intestinal absorption and disposition of B, W, and OA was similar. However, the extent of permeability and metabolism was different among three flavones which might be due to the number and position of the hydroxyl group.
Collapse
Affiliation(s)
- Chenrui Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
49
|
Jiang W, Xu B, Wu B, Yu R, Hu M. UDP-glucuronosyltransferase (UGT) 1A9-overexpressing HeLa cells is an appropriate tool to delineate the kinetic interplay between breast cancer resistance protein (BRCP) and UGT and to rapidly identify the glucuronide substrates of BCRP. Drug Metab Dispos 2011; 40:336-45. [PMID: 22071170 DOI: 10.1124/dmd.111.041467] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interplay between phase II enzymes and efflux transporters leads to extensive metabolism and low bioavailability for flavonoids. To investigate the simplest interplay between one UDP-glucuronosyltransferase isoform and one efflux transporter in flavonoid disposition, engineered HeLa cells stably overexpressing UGT1A9 were developed, characterized, and further applied to investigate the metabolism of two model flavonoids (genistein and apigenin) and excretion of their glucuronides. The results indicated that the engineered HeLa cells overexpressing UGT1A9 rapidly excreted the glucuronides of genistein and apigenin. The kinetic characteristics of genistein or apigenin glucuronidation were similar with the use of UGT1A9 overexpressed in HeLa cells or the commercially available UGT1A9. Small interfering (siRNA)-mediated UGT1A9 silencing resulted in a substantial decrease in glucuronide excretion (>75%, p < 0.01). Furthermore, a potent inhibitor of breast cancer resistance protein (BCRP), 3-(6-isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]indol-3-yl)-propionic acid tert-butyl ester (Ko143), caused, in a dose-dependent manner, a substantial and marked reduction of the clearance (74-94%, p < 0.01), and a substantial increase in the intracellular glucuronide levels (4-8-fold, p < 0.01), resulting in a moderate decrease in glucuronide excretion (19-59%, p < 0.01). In addition, a significant, albeit moderate, reduction in the fraction of genistein metabolized (f(met)) in the presence of Ko143 was observed. In contrast, leukotriene C₄ and siRNA against multidrug resistance protein (MRP) 2 and MRP3 did not affect excretion of flavonoid glucuronides. In conclusion, the engineered HeLa cells overexpressing UGT1A9 is an appropriate model to study the kinetic interplay between UGT1A9 and BCRP in the phase II disposition of flavonoids. This simple cell model should also be very useful to rapidly identify whether a phase II metabolite is the substrate of BCRP.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
50
|
Álvarez AI, Vallejo F, Barrera B, Merino G, Prieto JG, Tomás-Barberán F, Espín JC. Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab Dispos 2011; 39:2008-12. [PMID: 21828252 DOI: 10.1124/dmd.111.040881] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The dietary polyphenols genistein and daidzein are potent effectors of biological processes. The plasma profile of both isoflavones is governed by the presence of phase II conjugates, mainly glucuronides and sulfates. Breast cancer resistance protein (ABCG2/BCRP) interacts with genistein and daidzein, which are among the natural substrates of the transporter and competitively inhibit ABCG2-mediated drug efflux. ABCG2/BCRP can also transport glucuronide and sulfate conjugates. In this study, we analyzed the plasma levels of aglycones and derived conjugated metabolites, glucuronides, and sulfates, after intragastric administration of these isoflavones to wild-type and Bcrp1(-/-) knockout mice. The results show that overall plasmatic profile is mainly governed by sulfate and glucuronide derivatives, the concentration of which was significantly increased (7- to 10-fold) in Bcrp1(-/-) mice. The total AUC h nM (0-180 min), as the sum of aglycones, glucuronides, and sulfates, was 901 ± 207 in wild-type mice versus 4988 ± 508 in Bcrp1(-/-) mice after genistein administration (50 mg/kg b.wt.); 584.3 ± 90 in wild-type mice versus 4012 ± 612 in Bcrp1(-/-) after daidzein administration (50 mg/kg); and 926 ± 140 in wild-type mice versus 5174 ± 696 in Bcrp1(-/-) after genistein+daidzein administration (25 + 25 mg/kg). Therefore, our results indicate a direct and conclusive Bcrp1 efflux action on phase II metabolites of these isoflavones in vivo and suggest a possible novel concept for ABCG2/BCRP as part of metabolism-driven efflux transport of these conjugates.
Collapse
Affiliation(s)
- Ana I Álvarez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon 2407, Campus de Vegazana, León, Spain.
| | | | | | | | | | | | | |
Collapse
|