2
|
Li H, Xu S, Quan J, Yung BC, Pang J, Zhou C, Cho YA, Zhang M, Liu S, Muthusamy N, Chan KK, Byrd JC, Lee LJ, Marcucci G, Lee RJ. CD33-Targeted Lipid Nanoparticles (aCD33LNs) for Therapeutic Delivery of GTI-2040 to Acute Myelogenous Leukemia. Mol Pharm 2015; 12:2010-8. [PMID: 25871632 DOI: 10.1021/mp5008212] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD33-targeted lipid nanoparticles (aCD33LNs) were synthesized for delivery of GTI-2040, an antisense oligonucleotide (ASO) against the R2 subunit of ribonucleotide reductase, to acute myelogenous leukemia (AML). These LNs incorporated a deoxycholate-polyethylenimine (DOC-PEI) conjugate, which has shown significant activity to facilitate oligonucleotide delivery. Anti-CD33 scFv (aCD33) was added as a targeting ligand. The delivery efficiency of this system was investigated both in vitro and in vivo. When cells were treated with aCD33LN/GTI-2040, significant uptake was observed in CD33 positive Kasumi-1 cells. aCD33LNs loaded with GTI-2040 induced significant down-regulation of R2 mRNA and protein levels in AML cells. Moreover, aCD33LN/GTI-2040 showed a 15-fold reduction in the IC50 of antileukemic drug Ara-C in Kasumi-1 cells. In Kasumi-1 xenograft model, aCD33LN/GTI-2040 showed significant R2 downregulation compared to LN/GTI-2040. Furthermore, aCD33LN/GTI-2040 coadministered with Ara-C was shown to be highly effective in tumor growth inhibition and to greatly increase survival time of mice bearing Kasumi-1 xenograft tumors. The conjugate DOC-PEI has shown an ability to include calcein release from lipid nanoparticles, suggesting a potential mechanism contributing to efficient endosome release by DOC-PEI2K. These results indicate that aCD33LNs are a highly effective vehicle for the therapeutic delivery of antisense agents to AML.
Collapse
Affiliation(s)
- Hong Li
- †Division of Pharmaceutics, College of Pharmacy, ‡Division of Hematology-Oncology, §Molecular, Cellular and Developmental Biology Program, and ∥Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Songlin Xu
- †Division of Pharmaceutics, College of Pharmacy, ‡Division of Hematology-Oncology, §Molecular, Cellular and Developmental Biology Program, and ∥Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jishan Quan
- †Division of Pharmaceutics, College of Pharmacy, ‡Division of Hematology-Oncology, §Molecular, Cellular and Developmental Biology Program, and ∥Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States.,⊥Pharmacy College, Yanbian University, Yanji, Jilin 133002, China
| | - Bryant C Yung
- †Division of Pharmaceutics, College of Pharmacy, ‡Division of Hematology-Oncology, §Molecular, Cellular and Developmental Biology Program, and ∥Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Chenguang Zhou
- †Division of Pharmaceutics, College of Pharmacy, ‡Division of Hematology-Oncology, §Molecular, Cellular and Developmental Biology Program, and ∥Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Young-Ah Cho
- †Division of Pharmaceutics, College of Pharmacy, ‡Division of Hematology-Oncology, §Molecular, Cellular and Developmental Biology Program, and ∥Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | | - Kenneth K Chan
- †Division of Pharmaceutics, College of Pharmacy, ‡Division of Hematology-Oncology, §Molecular, Cellular and Developmental Biology Program, and ∥Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | | - Robert J Lee
- †Division of Pharmaceutics, College of Pharmacy, ‡Division of Hematology-Oncology, §Molecular, Cellular and Developmental Biology Program, and ∥Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Song G, Wang L, Bi K, Jiang G. Regulation of the C/EBPα signaling pathway in acute myeloid leukemia (Review). Oncol Rep 2015; 33:2099-106. [PMID: 25760953 DOI: 10.3892/or.2015.3848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 11/05/2022] Open
Abstract
The transcription factor CCAAT/enhancer binding protein α (C/EBPα), as a critical regulator of myeloid development, directs granulocyte and monocyte differentiation. Various mechanisms have been identified to explain how C/EBPα functions in patients with acute myeloid leukemia (AML). C/EBPα expression is suppressed as a result of common leukemia-associated genetic and epigenetic alterations such as AML1-ETO, RARα-PLZF or gene promoter methylation. Recent data have shown that ubiquitination modification also contributes to its downregulation. In addition, 10-15% of patients with AML in an intermediate cytogenetic risk subgroup were characterized by mutations of the C/EBPα gene. As a transcription factor, C/EBPα can translocate into the nucleus and further regulate a variety of genes directly or indirectly, which are all key factors for cell differentiation. This review summarizes recent reports concerning the dysregulation of C/EBPα expression at various levels in human AML. The currently available data are persuasive evidence suggesting that impaired abnormal C/EBPα expression contributes to the development of AML, and restoration of C/EBPα expression as well as its function represents a promising target for novel therapeutic strategies in AML.
Collapse
Affiliation(s)
- Guanhua Song
- Department of Hemato-Oncology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Key Laboratory for Modern Medicine and Technology of Shandong Province, Key Laboratory for Rare and Uncommon Diseases, Key Medical Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology of Shandong Province, Jinan, Shandong 250062, P.R. China
| | - Lin Wang
- Research Center for Medical Biotechnology, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Kehong Bi
- Department of Hematology, Qianfoshan Mountain Hospital of Shandong University, Jinan, Shandong 250014, P.R. China
| | - Guosheng Jiang
- Department of Hemato-Oncology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Key Laboratory for Modern Medicine and Technology of Shandong Province, Key Laboratory for Rare and Uncommon Diseases, Key Medical Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology of Shandong Province, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
5
|
Lenalidomide-mediated enhanced translation of C/EBPα-p30 protein up-regulates expression of the antileukemic microRNA-181a in acute myeloid leukemia. Blood 2012; 121:159-69. [PMID: 23100311 DOI: 10.1182/blood-2012-05-428573] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, we showed that increased miR-181a expression was associated with improved outcomes in cytogenetically normal acute myeloid leukemia (CN-AML). Interestingly, miR-181a expression was increased in CN-AML patients harboring CEBPA mutations, which are usually biallelic and associate with better prognosis. CEBPA encodes the C/EBPα transcription factor. We demonstrate here that the presence of N-terminal CEBPA mutations and miR-181a expression are linked. Indeed, the truncated C/EBPα-p30 isoform, which is produced from the N-terminal mutant CEBPA gene or from the differential translation of wild-type CEBPA mRNA and is commonly believed to have no transactivation activity, binds to the miR-181a-1 promoter and up-regulates the microRNA expression. Furthermore, we show that lenalidomide, a drug approved for myelodysplastic syndromes and multiple myeloma, enhances translation of the C/EBPα-p30 isoform, resulting in higher miR-181a levels. In xenograft mouse models, ectopic miR-181a expression inhibits tumor growth. Similarly, lenalidomide exhibits antitumorigenic activity paralleled by increased miR-181a expression. This regulatory pathway may explain an increased sensitivity to apoptosis-inducing chemotherapy in subsets of AML patients. Altogether, our data provide a potential explanation for the improved clinical outcomes observed in CEBPA-mutated CN-AML patients, and suggest that lenalidomide treatment enhancing the C/EBPα-p30 protein levels and in turn miR-181a may sensitize AML blasts to chemotherapy.
Collapse
|