1
|
Mao J, Wang Y, Zhang W, Shen Y, Zhang G, Xi W, Wang Q, Ruan Z, Wang J, Xi X. Long-term correction of hemorrhagic diathesis in hemophilia A mice by an AAV-delivered hybrid FVIII composed of the human heavy chain and the rat light chain. Front Med 2022; 16:584-595. [PMID: 35038106 DOI: 10.1007/s11684-021-0844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/29/2020] [Indexed: 12/01/2022]
Abstract
Conventional therapies for hemophilia A (HA) are prophylactic or on-demand intravenous FVIII infusions. However, they are expensive and inconvenient to perform. Thus, better strategies for HA treatment must be developed. In this study, a recombinant FVIII cDNA encoding a human/rat hybrid FVIII with an enhanced procoagulant potential for adeno-associated virus (AAV)-delivered gene therapy was developed. Plasmids containing human FVIII heavy chain (hHC), human light chain (hLC), and rat light chain (rLC) were transfected into cells and hydrodynamically injected into HA mice. Purified AAV viruses were intravenously injected into HA mice at two doses. Results showed that the hHC + rLC protein had a higher activity than the hHC + hLC protein at comparable expression levels. The specific activity of hHC + rLC was about 4- to 8-fold higher than that of their counterparts. Hydrodynamic injection experiments obtained consistent results. Notably, the HA mice undergoing the AAV-delivered hHC + rLC treatment exhibited a visibly higher activity than those treated with hHC + hLC, and the therapeutic effects lasted for up to 40 weeks. In conclusion, the application of the hybrid FVIII (hHC + rLC) via an AAV-delivered gene therapy substantially improved the hemorrhagic diathesis of the HA mice. These data might be of help to the development of optimized FVIII expression cassette for HA gene therapy.
Collapse
Affiliation(s)
- Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yun Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics and Department of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- Research Center for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guowei Zhang
- The School of Medicine, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wenda Xi
- Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics and Department of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Shearin S, Venkateswarlu D. Computational analysis of Asp519 and Glu665 mutations of coagulation factor FVIIIa: Implications for enhanced binding affinity of A2-domain. J Mol Graph Model 2017; 76:441-447. [DOI: 10.1016/j.jmgm.2017.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022]
|
3
|
Shestopal SA, Hao JJ, Karnaukhova E, Liang Y, Ovanesov MV, Lin M, Kurasawa JH, Lee TK, Mcvey JH, Sarafanov AG. Expression and characterization of a codon-optimized blood coagulation factor VIII. J Thromb Haemost 2017; 15:709-720. [PMID: 28109042 DOI: 10.1111/jth.13632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 08/31/2023]
Abstract
Essentials Recombinant factor VIII (FVIII) is known to be expressed at a low level in cell culture. To increase expression, we used codon-optimization of a B-domain deleted FVIII (BDD-FVIII). This resulted in 7-fold increase of the expression level in cell culture. The biochemical properties of codon-optimized BDD-FVIII were similar to the wild-type protein. SUMMARY Background Production of recombinant factor VIII (FVIII) is challenging because of its low expression. It was previously shown that codon-optimization of a B-domain-deleted FVIII (BDD-FVIII) cDNA resulted in increased protein expression. However, it is well recognized that synonymous mutations may affect the protein structure and function. Objectives To compare biochemical properties of a BDD-FVIII variants expressed from codon-optimized and wild-type cDNAs (CO and WT, respectively). Methods Each variant of the BDD-FVIII was expressed in several independent Chinese hamster ovary (CHO) cell lines, generated using a lentiviral platform. The proteins were purified by two-step affinity chromatography and analyzed in parallel by PAGE-western blot, mass spectrometry, circular dichroism, surface plasmon resonance, and chromogenic, clotting and thrombin generation assays. Results and conclusion The average yield of the CO was 7-fold higher than WT, whereas both proteins were identical in the amino acid sequences (99% coverage) and very similar in patterns of the molecular fragments (before and after thrombin cleavage), glycosylation and tyrosine sulfation, secondary structures and binding to von Willebrand factor and to a fragment of the low-density lipoprotein receptor-related protein 1. The CO preparations had on average 1.5-fold higher FVIII specific activity (activity normalized to protein mass) than WT preparations, which was attributed to better preservation of the CO structure as a result of considerably higher protein concentrations during the production. We concluded that the codon-optimization of the BDD-FVIII resulted in significant increase of its expression and did not affect the structure-function properties.
Collapse
Affiliation(s)
- S A Shestopal
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J-J Hao
- Poochon Scientific, Frederick, MD, USA
| | - E Karnaukhova
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Y Liang
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - M V Ovanesov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - M Lin
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J H Kurasawa
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - T K Lee
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J H Mcvey
- School of Biosciences and Medicine, University of Surrey, Surrey, UK
| | - A G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|