2
|
Rasool MF, Khalid R, Imran I, Majeed A, Saeed H, Alasmari F, Alanazi MM, Alqahtani F. Investigating the Role of Altered Systemic Albumin Concentration on the Disposition of Theophylline in Adult and Pediatric Patients with Asthma by Using the Physiologically Based Pharmacokinetic Approach. Drug Metab Dispos 2020; 48:570-579. [PMID: 32393652 DOI: 10.1124/dmd.120.090969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Theophylline is commonly used for the treatment of asthma and has a low hepatic clearance. The changes in plasma albumin concentration occurring in asthma may affect the exposure of theophylline. The aim of the presented work was to predict theophylline pharmacokinetics (PK) after incorporating the changes in plasma albumin concentration occurring in patients with asthma into a physiologically based pharmacokinetic (PBPK) model to see whether these changes can affect the systemic theophylline concentrations in asthma. The PBPK model was developed following a systematic model building approach using Simcyp. The predictions were performed initially in healthy adults after intravenous and oral drug administration. Only when the developed adult PBPK model had adequately predicted theophylline PK in healthy adults, the changes in plasma albumin concentrations were incorporated into the model for predicting drug exposure in patients with asthma. After evaluation of the developed model in the adult population, it was scaled to children on physiologic basis. The model evaluation was performed by using visual predictive checks and comparison of ratio of observed and predicted (Robs/Pre) PK parameters along with their 2-fold error range. The developed PBPK model has effectively described theophylline PK in both healthy and diseased populations, as Robs/Pre for all the PK parameters were within the 2-fold error limit. The predictions in patients with asthma showed that there were no significant changes in PK parameters after incorporating the changes in serum albumin concentration. The mechanistic nature of the developed asthma-PBPK model can facilitate its extension to other drugs. SIGNIFICANCE STATEMENT: Exposure of a low hepatic clearance drug like theophylline may be susceptible to plasma albumin concentration changes that occur in asthma. These changes in systemic albumin concentrations can be incorporated into a physiologically based pharmacokinetic model to predict theophylline pharmacokinetics in adult and pediatric asthma populations. The presented work is focused on predicting theophylline absorption, distribution, metabolism, and elimination in adult and pediatric asthma populations after incorporating reported changes in serum albumin concentrations to see their impact on the systemic theophylline concentrations.
Collapse
Affiliation(s)
- Muhammad Fawad Rasool
- Departments of Pharmacy Practice (M.F.R., R.K., A.M.) and Pharmacology (I.I.), Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan; Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan (H.S.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.F.A., M.M.A., F.A.)
| | - Ramsha Khalid
- Departments of Pharmacy Practice (M.F.R., R.K., A.M.) and Pharmacology (I.I.), Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan; Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan (H.S.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.F.A., M.M.A., F.A.)
| | - Imran Imran
- Departments of Pharmacy Practice (M.F.R., R.K., A.M.) and Pharmacology (I.I.), Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan; Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan (H.S.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.F.A., M.M.A., F.A.)
| | - Abdul Majeed
- Departments of Pharmacy Practice (M.F.R., R.K., A.M.) and Pharmacology (I.I.), Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan; Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan (H.S.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.F.A., M.M.A., F.A.)
| | - Hamid Saeed
- Departments of Pharmacy Practice (M.F.R., R.K., A.M.) and Pharmacology (I.I.), Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan; Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan (H.S.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.F.A., M.M.A., F.A.)
| | - Fawaz Alasmari
- Departments of Pharmacy Practice (M.F.R., R.K., A.M.) and Pharmacology (I.I.), Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan; Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan (H.S.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.F.A., M.M.A., F.A.)
| | - Mohammed Mufadhe Alanazi
- Departments of Pharmacy Practice (M.F.R., R.K., A.M.) and Pharmacology (I.I.), Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan; Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan (H.S.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.F.A., M.M.A., F.A.)
| | - Faleh Alqahtani
- Departments of Pharmacy Practice (M.F.R., R.K., A.M.) and Pharmacology (I.I.), Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan; Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan (H.S.); and Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.F.A., M.M.A., F.A.)
| |
Collapse
|
3
|
Conner KP, Devanaboyina SC, Thomas VA, Rock DA. The biodistribution of therapeutic proteins: Mechanism, implications for pharmacokinetics, and methods of evaluation. Pharmacol Ther 2020; 212:107574. [PMID: 32433985 DOI: 10.1016/j.pharmthera.2020.107574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic proteins (TPs) are a diverse drug class that include monoclonal antibodies (mAbs), recombinantly expressed enzymes, hormones and growth factors, cytokines (e.g. chemokines, interleukins, interferons), as well as a wide range of engineered fusion scaffolds containing IgG1 Fc domain for half-life extension. As the pharmaceutical industry advances more potent and selective protein-based medicines through discovery and into the clinical stages of development, it has become widely appreciated that a comprehensive understanding of the mechanisms of TP biodistribution can aid this endeavor. This review aims to highlight the literature that has advanced our understanding of the determinants of TP biodistribution. A particular emphasis is placed on the multi-faceted role of the neonatal Fc receptor (FcRn) in mAb and Fc-fusion protein disposition. In addition, characterization of the TP-target interaction at the cell-level is discussed as an essential strategy to establish pharmacokinetic-pharmacodynamic (PK/PD) relationships that may lead to more informed human dose projections during clinical development. Methods for incorporation of tissue and cell-level parameters defining these characteristics into higher-order mechanistic and semi-mechanistic PK models will also be presented.
Collapse
Affiliation(s)
- Kip P Conner
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Siva Charan Devanaboyina
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Veena A Thomas
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Dan A Rock
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| |
Collapse
|
4
|
Jiang L, Wang Z, Wang X, Wang S, Cao J, Liu Y. Exploring the inhibitory mechanism of piceatannol on α-glucosidase relevant to diabetes mellitus. RSC Adv 2020; 10:4529-4537. [PMID: 35495253 PMCID: PMC9049079 DOI: 10.1039/c9ra09028b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/08/2020] [Indexed: 11/25/2022] Open
Abstract
Due to their association with type 2 diabetes mellitus treatment, α-glucosidase inhibitors have attracted increasing attention of researchers. In this study, we systemically investigated the kinetics and inhibition mechanism of piceatannol on α-glucosidase. Enzyme kinetics analyses showed that piceatannol exhibited strong inhibition on α-glucosidase in a non-competitive manner. Spectroscopy analyses indicated that piceatannol could bind with α-glucosidase to form complexes via high affinity. Further, computational molecular dynamics and molecular docking studies validated that the binding of piceatannol was outside the catalytic site of α-glucosidase, which would induce conformational changes of α-glucosidase and block the entrance of substrate, causing declines in α-glucosidase activities. Our results provide useful information not only for the inhibition mechanism of piceatannol against α-glucosidase but also for a novel target site for developing novel α-glucosidase inhibitors as potential therapeutic agents in the treatment of type 2 diabetes mellitus. The non-competitive inhibition of piceatannol on α-glucosidase. A combination of dynamic and static process with one binding site. The involvement of hydrophobic interactions and hydrogen bonding. Dietary recommendations for diabetes or potential antidiabetic drug.![]()
Collapse
Affiliation(s)
- Lili Jiang
- School of Life and Pharmaceutical Sciences
- Dalian University of Technology
- Panjin 124221
- China
| | - Zhen Wang
- School of Life and Pharmaceutical Sciences
- Dalian University of Technology
- Panjin 124221
- China
| | - Xiaoyu Wang
- School of Life and Pharmaceutical Sciences
- Dalian University of Technology
- Panjin 124221
- China
| | - Shujuan Wang
- School of Life and Pharmaceutical Sciences
- Dalian University of Technology
- Panjin 124221
- China
| | - Jun Cao
- Department of Occupational and Environmental Health
- Dalian Medical University
- Dalian 116044
- China
| | - Yong Liu
- School of Life and Pharmaceutical Sciences
- Dalian University of Technology
- Panjin 124221
- China
| |
Collapse
|
5
|
Glassman PM, Balthasar JP. Physiologically-based modeling of monoclonal antibody pharmacokinetics in drug discovery and development. Drug Metab Pharmacokinet 2019; 34:3-13. [PMID: 30522890 PMCID: PMC6378116 DOI: 10.1016/j.dmpk.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
Abstract
Over the past few decades, monoclonal antibodies (mAbs) have become one of the most important and fastest growing classes of therapeutic molecules, with applications in a wide variety of disease areas. As such, understanding of the determinants of mAb pharmacokinetic (PK) processes (absorption, distribution, metabolism, and elimination) is crucial in developing safe and efficacious therapeutics. In the present review, we discuss the use of physiologically-based pharmacokinetic (PBPK) models as an approach to characterize the in vivo behavior of mAbs, in the context of the key PK processes that should be considered in these models. Additionally, we discuss current and potential future applications of PBPK in the drug discovery and development timeline for mAbs, spanning from identification of potential target molecules to prediction of potential drug-drug interactions. Finally, we conclude with a discussion of currently available PBPK models for mAbs that could be implemented in the drug development process.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214 United States; Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 United States
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214 United States.
| |
Collapse
|