1
|
Tsolaki E, Healy AM, Ferguson S. Development of polymer-encapsulated microparticles of a lipophilic API-IL and its lipid based formulations for enhanced solubilisation. Int J Pharm 2024; 667:124878. [PMID: 39491654 DOI: 10.1016/j.ijpharm.2024.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Active Pharmaceutical Ingredient-Ionic liquids (API-ILs) have the potential to improve the bioavailability of BCS Class IV Drugs. However, the problematic physical handling properties of room temperature API-ILs have impaired clinical and commercial exploitation to date. Lipid-based formulations (LBFs) are used to improve the absorption of drugs with limited bioavailability. Nonetheless, LBFs face limitations such as low drug loading capacity and sub-par physical stability. A platform for transforming API-ILs into solid forms at high loadings via spray encapsulation with polymers has been developed and previously demonstrated for hydrophilic API-ILs. The current work demonstrates that this platform technology can be applied to a lipophilic API-IL of the BCS Class IV API, chlorpromazine, and to multi-component solutions comprising API-IL and a LBF. Furthermore, solidification of a type IIIB, liquid LBF was achieved via spray encapsulation with cellulose- and methacrylate- based polymers for the first time. The spray-encapsulated formulations had excellent physical handling properties, and successfully eluted the API-IL in aqueous media. The chlorpromazine release profiles from the API-IL, the API-IL containing LBF, and the solidified formulations, were evaluated in vitro using phosphate buffer (pH 6.8) and fasted state simulated intestinal fluid (FaSSIF). Spray-encapsulated formulations exhibited improved release profiles compared to the liquid formulations. Overall, these findings indicate that phase-separated, polymeric, solid formulations of liquid API forms represent a promising platform technology for developing oral solid dosage forms of poorly bioavailable drugs.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland.
| | - Anne Marie Healy
- EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; National Institute for Bioprocessing Research and Training, 24 Foster's Ave, Belfield, Blackrock, Co. Dublin A94 X099, Ireland.
| |
Collapse
|
2
|
Yao M, Liu J, Liu J, Qi X, Bai E, Yin J, Wu T. Fabrication and characterization of responsible approach for targeted intestinal releasing and enhancing the effectivity of kidney tea saponin upon porous starch /xanthan gum /sodium alginate-based hydrogel bead. Int J Biol Macromol 2024; 279:134974. [PMID: 39181374 DOI: 10.1016/j.ijbiomac.2024.134974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
To enhance the intestinal targeted release of kidney tea saponins, a simple delivery system was designed through the use of porous starch (PS), sodium alginate (ALG) and xanthan gum (XG). Porous starch was prepared by hydrolysis with a combination of α-amylase and amyloglucosidase and it was characterized by scanning electron microscopy, which revealed the formation of porous structures in the starch granules. The results of one-way optimisation illustrated that this unique delivery system achieved 79.00 ± 1.22 % of the optimal encapsulation rate. The carrier structure was subjected to analysis using Fourier transform infrared spectroscopy and X-ray diffraction. The α-glucosidase inhibition assay showed better inhibition of kidney tea saponin compared to the positive control acarbose. In addition, the effectiveness of this delivery design was confirmed via an in vitro simulated digestion method. It was showed that only a 15.57 ± 1.27 % release rate of kidney tea saponin was observed in the upper gastrointestinal tract, whereas release rates of 17.51 ± 1.29 % and 41.07 ± 0.76 % were observed for xanthan gum/sodium alginate/kidney tea saponin and sodium alginate/kidney tea saponin beads, respectively. It was concluded that the utilization of PS and a xanthan gum/sodium alginate coating represents an efficacious methodology for the development of an intestinal targeted delivery system.
Collapse
Affiliation(s)
- Muzi Yao
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiahui Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaming Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmiao Qi
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Erlu Bai
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinjin Yin
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Merchant J, Müllertz A, Rades T, Bannow J. Functionalized calcium carbonate (FCC) as a novel carrier to solidify supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). Eur J Pharm Biopharm 2023; 193:198-207. [PMID: 37926269 DOI: 10.1016/j.ejpb.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Functionalized calcium carbonate (FCC), a novel pharmaceutical excipient, has shown promising properties in the field of oral drug delivery. The current study aimed at evaluating the feasibility of FCC as a carrier for the solidification of self-nanoemulsifying drug delivery systems (SNEDDS) containing the poorly water-soluble model drug carvedilol (CRV). Conventional, subsaturated SNEDDS (80 %-SNEDDSliquid) and supersaturated SNEDDS (200 %-SNEDDSliquid) were loaded onto FCC via physical adsorption at three ratios; 2.5:1, 3.0:1 and 3.5:1 (w/w) of FCC:SNEDDSliquid, respectively, generating free-flowing powders (SNEDDSFCC) with drug loading ranging from 0.8 % to 2.6 % (w/w) CRV. The emulsification of SNEDDSFCC in a USP II dissolution setup (in purified water) was characterized using dynamic light scattering, resulting in similar droplet sizes and PDIs as observed for their liquid counterparts. The morphology and physical state of the obtained SNEDDSFCC were characterized using scanning electron microscopy and differential scanning calorimetry. The physical stability and drug release upon dispersion were assessed as a function of storage time. The 200 %-SNEDDSliquid were physically stable for 6 days, however, solidification using FCC stabilized the supersaturated concentrations of CRV for a test period of up to 10 weeks (solidification ratios 3.0:1 and 3.5:1 (FCC:SNEDDSliquid)). SNEDDSFCC achieved an improved rate and extent of drug release upon dispersion compared to the crystalline CRV in tap water (pH 7.5), however, to a lesser extent than their liquid counterparts. After 8 weeks of storage (25 °C at dry conditions), FCC was still able to rapidly release the SNEDDSliquid and demonstrated the same rate and extent of drug release as freshly prepared samples. The solidification of 200 %-SNEDDSliquid in presence of FCC greatly improved the drug loading and showed an enhanced drug release profile compared to the conventional systems. In conclusion, FCC showed potential as a carrier for solidification of SNEDDS and for the development of novel supersaturated solid SNEDDS for the oral delivery of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Jumana Merchant
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bannow
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Sirvi A, Debaje S, Guleria K, Sangamwar AT. Critical aspects involved in lipid dispersion and digestion: Emphasis on in vitro models and factors influencing lipolysis of oral lipid based formulations. Adv Colloid Interface Sci 2023; 321:103028. [PMID: 39491077 DOI: 10.1016/j.cis.2023.103028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Understanding the mechanisms underlying the dispersion and digestion process is vital in the development of oral lipid-based formulations (LBFs). In vitro lipolysis models mimic the digestion process in the stomach and intestine to explore the fundamental mechanism of supersaturation, solubilization, and precipitation of drugs within the LBFs. The lipid digestion is controlled by the in vitro experimental conditions, and constitution of the lipid formulations. Hence, there is a continuous upgradation in the digestion models to best extrapolate the in vivo conditions. This review covers the recent developments in digestion models with media compositions and lipid formulation components. Key findings from recent studies that thoroughly examined the relation between the digestion, solubilization, and permeation of oral LBFs in the presence of bile-lipid aggregates are presented. These developments are foremost to build the in vitro-in vivo correlation of the drugs for regulatory considerations.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
5
|
Mondal S, Sirvi A, Jadhav K, Sangamwar AT. Supersaturating lipid-based solid dispersion of atazanavir provides enhanced solubilization and supersaturation in the digestive aqueous phase. Int J Pharm 2023; 638:122919. [PMID: 37011828 DOI: 10.1016/j.ijpharm.2023.122919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Understanding and controlling the drug solubilization in digestive environment is of great importance in the design of lipid based solid dispersion (LBSD) for oral delivery of poorly aqueous soluble drugs. In the current study we determined the extent of drug solubilization and supersaturation of supersaturating lipid based solid dispersion which is governed by formulation variables like drug payload, lipid composition, solid carrier properties and lipid to solid carrier ratio. Initially, the impact of lipid chain length and drug payload on drug solubilization in lipid preconcentrate and dispersibility were evaluated to design liquid LbF of the model antiretroviral drug, atazanavir. The temperature induced supersaturation method enhanced the drug payload in medium chain triglyceride formulation at 60 °C. Further, the selected liquid supersaturated LbF was transformed into solid state LbF by employing different solid carriers including silica (Neusilin® US2 and Aerosil® 200), clay (Montmorillonite and Bentonite) and polymer (HPMC-AS and Kollidon® CL-M). The fabricated LBSDs were evaluated for solid state characterization to identify the physical nature of drug. In vitro digestion studies were conducted using pH-stat lipolysis method to assess the supersaturation propensity in aqueous digestive phase. Results revealed that LBSDs with silica and polymer carriers showed maximum drug solubilization throughout experiment compared to liquid LbF. The ionic interaction between drug-clay particles significantly reduced the ATZ partitioning from clay based LBSDs. LBSDs with dual purpose solid carrier like HPMC-AS and Neusilin® US2 offers the potential to improve drug solubilization of ATZ for physiologically relevant time. Lastly, we conclude that evaluation of formulation variables is crucial to achieve optimal performance of supersaturating LBSD.
Collapse
|
6
|
Patel VD, Rathod V, Haware RV, Stagner WC. Optimized L-SNEDDS and spray-dried S-SNEDDS using a linked QbD-DM 3 rational design for model compound ketoprofen. Int J Pharm 2023; 631:122494. [PMID: 36528191 DOI: 10.1016/j.ijpharm.2022.122494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
A QbD-DM3 strategy was used to design ketoprofen (KTF) optimized liquid (L-SNEDDS) and solid self-nanoemulsifying drug delivery systems (S-SNEDDS). Principal component analysis was used to identify the optimized L-SNEDDS containing Capmul® MCM NF, 10 % w/w; Kolliphor® ELP, 60 % w/w; and propylene glycol, 30 % w/w. The S-SNEDDS was manufactured by spray-drying a feed dispersion prepared by dissolving the optimized KTF-loaded L-SNEDDS in an ethanol-Aerosil® 200 dispersion. A Box Behnken design was employed to evaluate the effect of drug concentration (DC), Aerosil® 200 concentration (AC) and feed rate (FR) on maximizing percent yield (PY) and loading efficiency (LE). The optimal levels of DC, AC, and FR were 19.9 % w/w, 30.0 % w/w, and 15.0 %, respectively. The optimized S-SNEDDS was amorphous, and its dissolution showed a 2.37-fold increase in drug release compared to KTF in 0.1 HCl. An optimized independent spray-dried S-SNEDDS verification batch showed that the predicted and observed PY and LE were 70.49 % and 92.49 %, and 70.02 % and 91.27 %, respectively. The optimized L-SNEDDS and S-SNEDDS also met their quality target product profile criteria for globule size <100 nm, polydispersity index < 0.400, emulsification time < 30 s, and KTF L-SNEDDS solubility 100-fold greater than its water solubility.
Collapse
Affiliation(s)
- Vivek D Patel
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY 11201, United States
| | - Vishal Rathod
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY 11201, United States
| | - Rahul V Haware
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, NY 11201, United States.
| | - William C Stagner
- Campbell University College of Pharmacy & Health Sciences, Buies Creek, NC 27506, United States.
| |
Collapse
|
7
|
Preparation and Characterization of Nifedipine-Loaded Dry Medium Internal-Phase Emulsions (Dry MIPEs) to Improve Cellular Permeability. Pharmaceutics 2022; 14:pharmaceutics14091849. [PMID: 36145596 PMCID: PMC9502710 DOI: 10.3390/pharmaceutics14091849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
A nifedipine (NP) dry emulsion was fabricated by the adsorption of medium internal-phase emulsions (MIPEs). Simple homogenizers were first used to mix conventional liquid MIPEs, and then a microfluidizer was used to reduce the resulting emulsions’ droplet sizes. The dry MIPEs (solid) were produced by adsorbing the emulsions onto solid carriers with a high surface area. The dry MIPEs were diluted in a simulated gastric fluid under gentle agitation to form emulsions. The diluted dry MIPEs were divided into three groups based on an NP content of 0.3%, 0.5%, and 0.7%, with sizes of 5026–5404 nm, 2583–3233 nm, and 1318–1618 nm in diameter, respectively. Powder X-ray diffraction (PXRD) measurements and differential scanning calorimetry (DSC) were used to characterize the physical properties of the dry MIPEs. The samples contained 0.5% or 0.7% drug, 2–4% surfactant, and 8–16% oil (5RH2/8, 7RH2/8, and 7RH4/16) and showed the characteristic peak for NP. No NP peak was observed in formulations with 0.3% NP and any oil-phase content (3RH2/8, 3RH4/16, and 3RH8/32). The formulations with 0.5% drug, 4–8% surfactant, 16–32% oil (5RH4/16 and 5RH8/32) and those with 0.7% drug, 8% surfactant, and 32% oil (7RH8/32) also did not show the peak for NP. These findings demonstrated that microfluidization improved the solubility of NP in the formulations. The subsequent drug dissolution results were consistent with the DSC thermogram and PXRD pattern results. 3RH2/8, 3RH4/16, 3RH8/32, 5RH4/16, 5RH8/32, and 7RH8/32 were completely dissolved and showed higher dissolved NP amounts than 5RH2/8, 7RH2/8, 7RH4/16, and NP powder. The lowest mean dissolution time was for 7RH8/32 (13.31 ± 0.87 min). Caco-2 cells were used to determine drug uptake, and 7RH8/32 showed the maximum intracellular uptake (10.89%). After storage under accelerated and normal conditions (3 and 6 months), the selected formulations remained stable. The developed formulations can be used to improve NP solubility and absorption.
Collapse
|
8
|
Almasri R, Schultz HB, Møller A, Bremmell KE, Garcia-Bennett A, Joyce P, Prestidge CA. Role of Silica Intrawall Microporosity on Abiraterone Acetate Solubilization and In Vivo Oral Absorption. Mol Pharm 2022; 19:1091-1103. [PMID: 35238208 DOI: 10.1021/acs.molpharmaceut.1c00781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SBA-15 mesoporous silica (MPS) has been widely used in oral drug delivery; however, it has not been utilized for solidifying lipid-based formulations, and the impact of their characteristic intrawall microporosity remains largely unexplored. Here, we derive the impact of the MPS microporosity on the in vitro solubilization and in vivo oral pharmacokinetics of the prostate cancer drug abiraterone acetate (AbA) when coencapsulated along with medium chain lipids into the pores. AbA in lipid (at 80% equilibrium solubility) was imbibed within a range of MPS particles (with comparable morphology and mesoporous structure but contrasting microporosity ranging from 0-247 m2/g), and their solid-state properties were characterized. Drug solubilization studies during in vitro lipolysis revealed that microporosity was the key factor in facilitating AbA solubilization by increasing the surface area available for drug-lipid diffusion. Interestingly, microporosity hindered hydrolysis of AbA to its active metabolite, abiraterone (Ab), under simulated intestinal conditions. This unique relationship between microporosity and AbA/Ab aqueous solubilization behavior was hypothesized to have significant implications on the subsequent bioavailability of the active metabolite. In vivo oral pharmacokinetics studies in male Sprague-Dawley rats revealed that MPS with moderate microporosity attained the highest relative bioavailability, while poor in vitro-in vivo correlations (IVIVC) existed between in vitro drug solubilization during lipolysis and in vivo AUC. Despite this, a reasonable IVIVC was established between the in vitro solubilization and in vivo Cmax, providing evidence for an association between silica microporosity and oral drug absorption.
Collapse
Affiliation(s)
- Ruba Almasri
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Hayley B Schultz
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Amalie Møller
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kristen E Bremmell
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | | | - Paul Joyce
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
9
|
Delon L, Gibson R, Prestidge C, Thierry B. Mechanisms of uptake and transport of particulate formulations in the small intestine. J Control Release 2022; 343:584-599. [PMID: 35149142 DOI: 10.1016/j.jconrel.2022.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Micro- and nano-scale particulate formulations are widely investigated towards improving the oral bioavailability of both biologics and drugs with low solubility and/or low intestinal permeability. Particulate formulations harnessing physiological intestinal transport pathways have recently yielded remarkably high oral bioavailabilities, illustrating the need for better understanding the specific pathways underpinning particle small intestinal absorption and the relative role of intestinal cells. Mechanistic knowledge has been hampered by the well acknowledged limitations of current in vitro, in vivo and ex vivo models relevant to the human intestinal physiology and the lack of standardization in studies reporting absorption data. Here we review the relevant literature and critically discusses absorption pathways with a focus on the role of specific intestinal epithelial and immune cells. We conclude that while Microfold (M) cells are a valid target for oral vaccines, enterocytes play a greater role in the systemic bioavailability of orally administrated particulate formulations, particularly within the sub-micron size range. We also comment on less-reported mechanisms such as paracellular permeability of particles, persorption due to cell damage and uptake by migratory immune cells.
Collapse
Affiliation(s)
- Ludivine Delon
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Rachel Gibson
- Australia School of Allied Health Science and Practice, University of Adelaide, South Australia 5005, Australia
| | - Clive Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| |
Collapse
|
10
|
Kamble PR, Shaikh KS. Optimization and Evaluation of Self-nanoemulsifying Drug Delivery System for Enhanced Bioavailability of Plumbagin. PLANTA MEDICA 2022; 88:79-90. [PMID: 33450771 DOI: 10.1055/a-1332-2037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plumbagin, a potential bioactive lipophilic molecule, possesses limited solubility and low oral bioavailability. The purpose of the present study was to examine the potential of the self-nanoemulsifying drug delivery system for improving solubility and oral bioavailability of plumbagin. The self-nanoemulsifying drug delivery system was formulated from Capmul MCM (oil), Tween 20 (surfactant), and propylene glycol (cosurfactant). Central composite design was employed as statistical tool to optimize the formulation variables, X1 (oil) and X2 (surfactant: co-surfactant mixture ratio), of the self-nanoemulsifying drug delivery system. The responses studied were droplet size, self-emulsification time, % of drug release in 15 min, and equilibrium solubility. The optimized liquid self-nanoemulsifying drug delivery system was adsorbed on Neusilin US2 and characterized for flow properties, X-ray diffractometry, differential scanning calorimetry, in vitro dissolution, in vivo anti-inflammatory activity, and bioavailability study in Wistar rats, as well as ex vivo permeation study. The droplet size, polydispersity index, self-emulsification time, and equilibrium solubility of the optimized formulation were 58.500 ± 1.170 nm, 0.228 ± 0.012, 17.660 ± 1.520 s, and 34.180 ± 1.380 mg/mL, respectively. Its zeta potential, transmittance value, and cloud point were - 28.200 ± 1.200 mV, 99.200% ± 0.600, and 90 °C, respectively. Drug release was found to be 93.320% ± 1.090. In vivo anti-inflammatory study confirmed more enhanced activity from the self-nanoemulsifying drug delivery system than with pure plumbagin. Pharmacokinetic study in rats revealed that solid self-nanoemulsifying drug delivery system had 4.49-fold higher bioavailability than pure plumbagin. Ex vivo permeation study demonstrated 1.75-fold increased intestinal permeability of the self-nanoemulsifying drug delivery system than pure plumbagin. The developed self-nanoemulsifying drug delivery system is a useful solid platform for improving solubility and oral bioavailability of plumbagin.
Collapse
Affiliation(s)
- Pavan Ram Kamble
- Progressive Education Society's Modern College of Pharmacy, Yamunanagar, Nigdi, Pune, Maharashtra, India (Affiliated with Savitribai Phule Pune University)
| | - Karimunnisa Sameer Shaikh
- Progressive Education Society's Modern College of Pharmacy, Yamunanagar, Nigdi, Pune, Maharashtra, India (Affiliated with Savitribai Phule Pune University)
| |
Collapse
|
11
|
Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. J Control Release 2021; 337:646-660. [PMID: 34384795 DOI: 10.1016/j.jconrel.2021.08.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A significant proportion of recently approved drug molecules possess poor aqueous solubility which further restrains their desired bioavailability. Poor aqueous solubility of these drugs poses significant hurdles in development of novel drug delivery systems and achieving target response. Self-emulsifying drug delivery systems (SEDDS) emerged as an insightful approach for delivering highly hydrophobic entities to enhance their bioavailability. Conventional SEDDS were developed in a liquid form which owned numerous shortcomings like low stability and drug loading efficiency, fewer choices of dosage forms and irreversible precipitation of drug or excipients. To address these curbs solid-SEDDS (S-SEDDS) was introduced as an efficient strategy that combined advantages of solid dosage forms such as increased stability, portability and patient compliance along with substantial improvement in the bioavailability. S-SEDDS are isotropic mixtures of oil, surfactant, solvent and co-solvents generated by solidification of liquid or semisolid self-emulsifying ingredients onto powders. The present review highlights components of S-SEDDS, their peculiarities to be considered while designing solid dosage forms and various methods of fabrication. Lastly, key challenges faced during development, applications and future directions for the research in this area are thoroughly summarized.
Collapse
|
12
|
Thorn CR, Thomas N, Boyd BJ, Prestidge CA. Nano-fats for bugs: the benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv Transl Res 2021; 11:1598-1624. [PMID: 33675007 DOI: 10.1007/s13346-021-00921-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
Bacterial infections are an imminent global healthcare threat evolving from rapidly advancing bacterial defence mechanisms that antibiotics fail to overcome. Antibiotics have been designed for systemic administration to target planktonic bacteria, leading to difficulties in reaching the site of localized bacterial infection and an inability to overcome the biological, chemical and physical barriers of bacteria, including biofilms, intracellular infections and antimicrobial resistance. The amphiphilic, biomimetic and antimicrobial properties of lipids provide a promising toolbox to innovate and advance antimicrobial therapies, overcoming the barriers presented by bacteria in order to directly and effectively treat recalcitrant infections. Nanoparticulate lipid-based drug delivery systems can enhance antibiotic permeation through the chemical and physical barriers of bacterial infections, as well as fuse with bacterial cell membranes, release antibiotics in response to bacteria and act synergistically with loaded antibiotics to enhance the total antimicrobial efficacy. This review explores the barriers presented by bacterial infections that pose bio-pharmaceutical challenges to antibiotics and how different structural and functional mechanisms of lipids can enhance antimicrobial therapies. Different nanoparticulate lipid-based systems are presented as valuable drug delivery systems to advance the efficacy of antibiotics, including liposomes, liquid crystalline nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers and lipid nanocarriers. In summary, liquid crystalline nanoparticles are emerging with the greatest potential for clinical applications and commercial success as an "all-rounder" advanced lipid-based antimicrobial therapy that overcomes the multiple biological, chemical and physical barriers of bacteria.
Collapse
Affiliation(s)
- Chelsea R Thorn
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia.,The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia
| | - Nicky Thomas
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia.,The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia
| | - Ben J Boyd
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia.,Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia
| | - Clive A Prestidge
- Clinical and Health Science, University of South Australia, City East Campus, Adelaide, SA, 5000, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, SA, 5000, Adelaide, Australia.
| |
Collapse
|
13
|
Møller A, Schultz HB, Meola TR, Müllertz A, Prestidge CA. The Influence of Solidification on the in vitro Solubilisation of Blonanserin Loaded Supersaturated Lipid-Based Oral Formulations. Eur J Pharm Sci 2021; 157:105640. [PMID: 33189902 DOI: 10.1016/j.ejps.2020.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 11/07/2020] [Indexed: 11/30/2022]
Abstract
Supersaturated silica-lipid hybrids have previously demonstrated improved in vitro solubilisation and in vivo oral bioavailability of poorly water-soluble drugs, however were only fabricated using a single lipid (LFCS type I formulations) and were not compared to their liquid precursors. This study investigated the influence of lipid formulation classification (type I vs. type II vs. type IIIA/SNEDDS) and physical state (liquid LBF vs. solidified with silica) on the in vitro solubilisation of the poorly soluble, weak base, anti-psychotic drug, blonanserin (BLON), from a supersaturated lipid-based formulation (LBF). Stable liquid supersaturated LBF were fabricated using BLON (loaded at 150% of its equilibrium solubility), and solidified through encapsulation within porous silica microparticles at a 1:1 ratio. Their physicochemical properties and in vitro solubilisation during lipolysis were compared. Supersaturated BLON was encapsulated in the non-crystalline form. All supersaturated LBF improved the solubilisation of pure BLON during lipolysis regardless of their lipid formulation type or their physical state (1.7- to 13.4-fold). SNEDDS achieved greater solubilisation than the type II formulations (1.4- to 1.7-fold). Furthermore, the liquid precursors achieved greater solubilisation than the silica solidified formulations (4.5- to 5.7-fold). Additionally, in an attempt to increase BLON solubilisation, a spray-dried SNEDDS and dual-loaded solidified super-SNEDDS solidified with silica pre-loaded with BLON was developed, however did not significantly improve solubilisation. Liquid SNEDDS were identified as the optimal oral supersaturated LBF strategy for BLON based on in vitro lipolysis studies. Solidification of LBF using silica is a viable strategy for improving stability, however for drugs such as BLON, solidification may impede in vitro release and solubilisation.
Collapse
Affiliation(s)
- Amalie Møller
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; UniSA: Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Hayley B Schultz
- UniSA: Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia
| | - Tahlia R Meola
- UniSA: Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Clive A Prestidge
- UniSA: Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia.
| |
Collapse
|
14
|
Almasri R, Joyce P, Schultz HB, Thomas N, Bremmell KE, Prestidge CA. Porous Nanostructure, Lipid Composition, and Degree of Drug Supersaturation Modulate In Vitro Fenofibrate Solubilization in Silica-Lipid Hybrids. Pharmaceutics 2020; 12:pharmaceutics12070687. [PMID: 32708197 PMCID: PMC7408050 DOI: 10.3390/pharmaceutics12070687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
The unique nanostructured matrix obtained by silica-lipid hybrids (SLHs) is well known to improve the dissolution, absorption, and bioavailability of poorly water-soluble drugs (PWSDs). The aim of this study was to investigate the impact of: (i) drug load: 3–22.7% w/w, (ii) lipid type: medium-chain triglyceride (Captex 300) and mono and diester of caprylic acid (Capmul PG8), and (iii) silica nanostructure: spray dried fumed silica (FS) and mesoporous silica (MPS), on the in vitro dissolution, solubilization, and solid-state stability of the model drug fenofibrate (FEN). Greater FEN crystallinity was detected at higher drug loads and within the MPS formulations. Furthermore, an increased rate and extent of dissolution was achieved by FS formulations when compared to crystalline FEN (5–10-fold), a commercial product; APO-fenofibrate (2.4–4-fold) and corresponding MPS formulations (2–4-fold). Precipitation of FEN during in vitro lipolysis restricted data interpretation, however a synergistic effect between MPS and Captex 300 in enhancing FEN aqueous solubilization was attained. It was concluded that a balance between in vitro performance and drug loading is key, and the optimum drug load was determined to be between 7–16% w/w, which corresponds to (200–400% equilibrium solubility in lipid Seq). This study provides valuable insight into the impact of key characteristics of SLHs, in constructing optimized solid-state lipid-based formulations for the oral delivery of PWSDs.
Collapse
Affiliation(s)
- Ruba Almasri
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Hayley B. Schultz
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Nicky Thomas
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Kristen E. Bremmell
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Clive A. Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (R.A.); (P.J.); (H.B.S.); (N.T.); (K.E.B.)
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-8830-22438
| |
Collapse
|
15
|
Meola TR, Schultz HB, Peressin KF, Prestidge CA. Enhancing the oral bioavailability of simvastatin with silica-lipid hybrid particles: The effect of supersaturation and silica geometry. Eur J Pharm Sci 2020; 150:105357. [PMID: 32446169 DOI: 10.1016/j.ejps.2020.105357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
Silica-lipid hybrid (SLH) microparticles are a solidified lipid-based drug delivery system under investigation for their aptitude to enhance the oral bioavailability of poorly water-soluble drugs. The cholesterol-lowering agent, simvastatin (SIM), is poorly water-soluble and undergoes extensive first pass metabolism, resulting in a low oral bioavailability of approximately 5%. Hence, the current pre-clinical studies investigated the application of SLH technology to SIM with a supersaturation approach, aiming to enhance bioavailability and drug loading capacity. Additionally, the effect of silica was explored by evaluating the performance of SLH fabricated with silica of different particle geometries. SLH microparticles with supersaturated SIM loading levels ranging from 100% to 400% above the equilibrium solubility were successfully fabricated using either Aerosil® 300 or Syloid® 244 silica. All SLH formulations existed as white free-flowing powders, consisting of spherical porous microparticles for Aerosil® 300, and aggregated irregular microparticles for Syloid® 244. During in vitro dissolution in pH 7.0 media, the SLH formulations performed up to 4.4-fold greater than pure SIM powder. Furthermore, in vivo oral pharmacokinetics in male Sprague-Dawley rats revealed that the SLH formulations enhanced the oral bioavailability of SIM up to 6.1-fold and 2.9-fold, in comparison to pure SIM powder and a commercially available formulation (Simvastatin Sandoz®), respectively. The greatest in vivo performance enhancement was observed for the SLH formulation manufactured with Syloid® 244 silica with a supersaturation level of 200%. SLH technology demonstrated to be a successful formulation strategy to significantly improve the oral bioavailability of SIM in rodents and therefore, has a strong potential to also improve the oral bioavailability of SIM in humans.
Collapse
Affiliation(s)
- Tahlia R Meola
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia
| | - Hayley B Schultz
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia
| | - Karl F Peressin
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
16
|
In Vitro Performance and Chemical Stability of Lipid-Based Formulations Encapsulated in a Mesoporous Magnesium Carbonate Carrier. Pharmaceutics 2020; 12:pharmaceutics12050426. [PMID: 32384752 PMCID: PMC7284621 DOI: 10.3390/pharmaceutics12050426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Lipid-based formulations can circumvent the low aqueous solubility of problematic drug compounds and increase their oral absorption. As these formulations are often physically unstable and costly to manufacture, solidification has been suggested as a way to minimize these issues. This study evaluated the physicochemical stability and in vitro performance of lipid-loaded mesoporous magnesium carbonate (MMC) particles with an average pore size of 20 nm. A medium chain lipid was loaded onto the MMC carrier via physical adsorption. A modified in vitro lipolysis setup was then used to study lipid release and digestion with 1H nuclear magnetic resonance spectroscopy. The lipid loading efficiency with different solidification techniques was also evaluated. The MMC, unlike more commonly used porous silicate carriers, dissolved during the lipolysis assay, providing a rapid release of encapsulated lipids into solution. The digestion of the dispersed lipid-loaded MMC therefore resembled that of a coarse dispersion of the lipid. The stability data demonstrated minor degradation of the lipid within the pores of the MMC particles, but storage for three months did not reveal extensive degradation. To conclude, lipids can be adsorbed onto MMC, creating a solid powder from which the lipid is readily released into the solution during in vitro digestion. The chemical stability of the formulation does however merit further attention.
Collapse
|
17
|
Pohlen M, Lavrič Z, Prestidge C, Dreu R. Preparation, Physicochemical Characterisation and DoE Optimisation of a Spray-Dried Dry Emulsion Platform for Delivery of a Poorly Soluble Drug, Simvastatin. AAPS PharmSciTech 2020; 21:119. [PMID: 32318974 DOI: 10.1208/s12249-020-01651-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
In the presented study, insight into the development and optimisation of the dry emulsion formulation and spray drying process is provided. The aim was to facilitate the dissolution of the poorly soluble, highly lipophilic drug, simvastatin, by forming spray-dried dry emulsion particles having adequate powder flow properties, while assuring sufficient drug content. Simvastatin and a mixture of caprylic, capric triglyceride and 1-oleoyl-rac-glycerol were employed as a model drug and solubilising oils, respectively. A matrix of the dry emulsions was composed at a fixed ratio mixture of mannitol and HPMC. Tween 20 was used in low amounts as the primary emulsion stabiliser. To facilitate process optimisation, a DoE surface response design was used to study the influence of formulation and process parameters on the particle size distribution, powder bulk properties, emulsion reconstitution ability, drug stability and process yield of spray-dried products. Two-fluid nozzle geometry was identified, studied and confirmed to be important for most product critical quality attributes. Models obtained after the study showed acceptable coefficients of determination and provided good insight in the relationship governing the process and product characteristics. Five model optimised products showed adequate process yield, suitable particle size distribution, good reconstitution ability and improved dissolution profile, when compared to a non-lipid-based tablet and the pure drug. However, the obtained dry emulsion powders exhibited poor flow character according to the Carr index. The optimised product was further analysed with NMR during lipolysis to gain insight into the species formed during digestion and the kinetics of their formation.
Collapse
|
18
|
Park H, Ha ES, Kim MS. Current Status of Supersaturable Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12040365. [PMID: 32316199 PMCID: PMC7238279 DOI: 10.3390/pharmaceutics12040365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are a vital strategy to enhance the bioavailability (BA) of formulations of poorly water-soluble compounds. However, these formulations have certain limitations, including in vivo drug precipitation, poor in vitro in vivo correlation due to a lack of predictive in vitro tests, issues in handling of liquid formulation, and physico-chemical instability of drug and/or vehicle components. To overcome these limitations, which restrict the potential usage of such systems, the supersaturable SEDDSs (su-SEDDSs) have gained attention based on the fact that the inclusion of precipitation inhibitors (PIs) within SEDDSs helps maintain drug supersaturation after dispersion and digestion in the gastrointestinal tract. This improves the BA of drugs and reduces the variability of exposure. In addition, the formulation of solid su-SEDDSs has helped to overcome disadvantages of liquid or capsule dosage form. This review article discusses, in detail, the current status of su-SEDDSs that overcome the limitations of conventional SEDDSs. It discusses the definition and range of su-SEDDSs, the principle mechanisms underlying precipitation inhibition and enhanced in vivo absorption, drug application cases, biorelevance in vitro digestion models, and the development of liquid su-SEDDSs to solid dosage forms. This review also describes the effects of various physiological factors and the potential interactions between PIs and lipid, lipase or lipid digested products on the in vivo performance of su-SEDDSs. In particular, several considerations relating to the properties of PIs are discussed from various perspectives.
Collapse
|
19
|
Preparation, characterization, physicochemical property and potential application of porous starch: A review. Int J Biol Macromol 2020; 148:1169-1181. [DOI: 10.1016/j.ijbiomac.2020.02.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Accepted: 02/06/2020] [Indexed: 11/20/2022]
|
20
|
Na YG, Byeon JJ, Wang M, Huh HW, Kim MK, Bang KH, Han MG, Lee HK, Cho CW. Statistical approach for solidifying ticagrelor loaded self-microemulsifying drug delivery system with enhanced dissolution and oral bioavailability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109980. [DOI: 10.1016/j.msec.2019.109980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022]
|
21
|
Formulation and characterization of novel lipid-based drug delivery systems containing polymethacrylate polymers as solid carriers for sustained release of simvastatin. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Yi T, Zhang J. Effects of Hydrophilic Carriers on Structural Transitions and In Vitro Properties of Solid Self-Microemulsifying Drug Delivery Systems. Pharmaceutics 2019; 11:E267. [PMID: 31181811 PMCID: PMC6631422 DOI: 10.3390/pharmaceutics11060267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 02/03/2023] Open
Abstract
Self-microemulsifying drug delivery systems (SMEDDS) offer potential for improving the oral bioavailability of poorly water-soluble drugs. However, their susceptibilities during long term storage and in vivo precipitation issues limit their successful commercial application. To overcome these limitations, SMEDDS can be solidified with solid carriers, thus producing solid self-microemulsifying drug delivery systems (S-SMEDDS). In this study, effects of various hydrophilic carriers on structural transitions and in vitro properties of S-SMEDDS were investigated in order to set up in vitro methods for screening out appropriate carriers for S-SMEDDS. Liquid SMEDDS was prepared and characterized using nimodipine as a model drug. The effects of various hydrophilic carriers on internal microstructure and solubilization of SMEDDS were investigated by conductivity measurement and in vitro dispersion test. The results showed that hydrophilic carriers including dextran 40, maltodextrin and PVP K30 seemed to delay the percolation transition of SMEDDS, allowing it to maintain a microstructure that was more conducive to drug dissolution, thus significantly increasing the solubilization of nimodipine in the self-microemulsifying system and decreasing drug precipitation when dispersed in simulated gastric fluid. S-SMEDDS of nimodipine were prepared by using spray drying with hydrophilic carriers. The effects of various hydrophilic carriers on in vitro properties of S-SMEDDS were investigated by using SEM, DSC, PXRD and in vitro dissolution. The results showed that properties of hydrophilic carriers, especially relative molecular mass of carriers, had obvious influences on surface morphologies of S-SMEDDS, reconstitution of microemulsion and physical state of nimodipine in S-SMEDDS. Considering that in vitro properties of S-SMEDDS are closely related to their pharmacokinetic properties in vivo, the simple and economical in vitro evaluation methods established in this paper can be used to screen solid carriers of S-SMEDDS well.
Collapse
Affiliation(s)
- Tao Yi
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, China.
| | - Jifen Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
23
|
Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv Drug Deliv Rev 2019; 142:102-117. [PMID: 30529138 DOI: 10.1016/j.addr.2018.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
Abstract
Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a solubilised state during gastrointestinal transit. However, the promising biopharmaceutical benefits of liquid lipid formulations has not translated into widespread commercial success, due to their susceptibility to long term storage and in vivo precipitation issues. One strategy that has emerged to overcome such limitations, is to combine the solubilisation and dissolution enhancing properties of lipids with the stabilising effects of solid carrier materials. The development of intelligent hybrid drug formulations has presented new opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for lipophilic therapeutics. Specific emphasis of this review is placed on the impact of solidification approaches and excipients on the biopharmaceutical performance of self-emulsifying lipids, with findings highlighting the key design considerations that should be implemented when developing hybrid lipid-based formulations.
Collapse
|
24
|
Vithani K, Jannin V, Pouton CW, Boyd BJ. Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs. Adv Drug Deliv Rev 2019; 142:16-34. [PMID: 30677448 DOI: 10.1016/j.addr.2019.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 01/15/2023]
Abstract
Self-dispersing lipid-based formulations, particularly self-microemulsifying drug delivery systems (SMEDDS) have gained an increased interest in recent times as a means to enhance the oral bioavailability of poorly water-soluble lipophilic drugs. Upon dilution, SMEDDS self-emulsify in an aqueous fluid and usually form a kinetically stable oil-in-water emulsion or in some rare cases a true thermodynamically stable microemulsion. The digestion of the formulation leads to the production of amphiphilic digestion products that interact with endogenous amphiphilic components and form self-assembled colloidal phases in the aqueous environment of the intestine. The formed colloidal phases play a pivotal role in maintaining the lipophilic drug in the solubilised state during gastrointestinal transit prior to absorption. Thus, this review describes the structural characterisation techniques employed for SMEDDS and the recent literature studies that elucidated the colloidal aspects during dispersion and digestion of SMEDDS and solid SMEDDS. Possible future studies are proposed to gain better understanding on the colloidal aspects of SMEDDS and solid SMEDDS.
Collapse
|
25
|
Schultz HB, Kovalainen M, Peressin KF, Thomas N, Prestidge CA. Supersaturated Silica-Lipid Hybrid Oral Drug Delivery Systems: Balancing Drug Loading and In Vivo Performance. J Pharmacol Exp Ther 2018; 370:742-750. [DOI: 10.1124/jpet.118.254466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
|
26
|
Patel V, Lalani R, Bardoliwala D, Ghosh S, Misra A. Lipid-Based Oral Formulation Strategies for Lipophilic Drugs. AAPS PharmSciTech 2018; 19:3609-3630. [PMID: 30255474 DOI: 10.1208/s12249-018-1188-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/14/2018] [Indexed: 01/22/2023] Open
Abstract
Partition coefficient (log P) is a key physicochemical characteristic of lipophilic drugs which plays a significant role in formulation development for oral administration. Lipid-based formulation strategies can increase lymphatic transport of these drugs and can enhance bioavailability many folds. The number of lipophilic drugs in pharmacopoeias and under discovery are continuously increasing and making the job of the formulation scientist difficult to develop suitable formulation of these drugs due to potent nature and water insolubility of these drugs. Recently, many natural and synthetic lipids are appearing in the market which are helpful in the development of lipid-based formulations of these types of drugs having enhanced solubility and bioavailability. One such reason for this enhanced bioavailability is the accessibility of the lymphatic transport as well as avoidance of first-pass effect. This review discusses the impact of lipophilicity in enhancing the intestinal lymphatic drug transport thereby reducing first-pass metabolism. The most appropriate strategy for developing a lipid-based formulation depending upon the degree of lipophilicity has been critically discussed and provides information on how to develop optimum formulation. Various formulation strategies are discussed in-depth by classifying lipid-based oral drug delivery systems with case studies of few marketed formulations with challenges and opportunities for the future of the formulations.
Collapse
|
27
|
Fahmy UA, Aljaeid BM. Tadalafil Transdermal Delivery with Alpha-lipoic Acid Self Nanoemulsion for Treatment of Erectile Dysfunction by Diabetes Mellitus. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.945.951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Xu H, Liu L, Li X, Ma J, Liu R, Wang S. Extended tacrolimus release via the combination of lipid-based solid dispersion and HPMC hydrogel matrix tablets. Asian J Pharm Sci 2018; 14:445-454. [PMID: 32104473 PMCID: PMC7032121 DOI: 10.1016/j.ajps.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/06/2018] [Accepted: 08/10/2018] [Indexed: 11/18/2022] Open
Abstract
The objective of this study is to evaluate the feasibility of obtaining extended release of tacrolimus by a novel combination of lipid-based solid dispersion and matrix-type extended release tablet techniques. Tacrolimus solid dispersion was prepared using glycerylbehenate (Compritol® ATO888) and Pluronic F127 as the carrier materials with hot-melt method, which was then blended with hydrogel matrix materials, such as HPMC and lactose, the powders were directly compressed into tablets. In vitro drug release tests were carried out to evaluate the performance of the solid dispersions and the tablets. The dissolution rate of tacrolimus was significantly improved by the lipid-based solid dispersion, and the incorporation of HPC into the solid dispersion obviously improved its stability after storage. Extended release tablets loaded with tacrolimus solid dispersion showed prolonged drug release patterns over 24 h, the release patterns of the tablets can be tailored by the compositions of the matrix materials, including the types and content of HPMCs. A modified processing method that directly mixed the melted solid dispersion with HPMC powders improved the uniformity of the solid dispersion inside the tablet matrix and release profile. The release data of the extended release tablet fitted well to the Korsmeyer–Peppas model with n value of 0.85, which suggested diffusion- and erosion-controlled release mechanism. The combination of lipid-based solid dispersion and HPMC hydrogel matrix may find wide applications in the extended release dosage forms of high potent, water-insoluble drugs.
Collapse
Affiliation(s)
- Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Li Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Xuehui Li
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Junyuan Ma
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Rui Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Shaoning Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| |
Collapse
|
29
|
Dening TJ, Thomas N, Rao S, van Looveren C, Cuyckens F, Holm R, Prestidge CA. Montmorillonite and Laponite Clay Materials for the Solidification of Lipid-Based Formulations for the Basic Drug Blonanserin: In Vitro and in Vivo Investigations. Mol Pharm 2018; 15:4148-4160. [PMID: 30067372 DOI: 10.1021/acs.molpharmaceut.8b00555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Solid-state lipid-based formulations offer great potential for the improved oral delivery of poorly water-soluble drugs. This study investigates the use of the high-surface-area clay materials, montmorillonite and laponite, as solid carriers for lipid-based formulations. The unique cation-exchange properties of clay platelets were exploited to preload the ionizable hydrophobic compound, blonanserin, prior to encapsulating a drug-loaded lipid solution. Thus, solid-state lipid-based formulations with dual-loading capabilities were developed and studied. These formulations were compared with simple clay-based lipid formulations, where blonanserin was loaded in the lipid phase only. The drug release behavior of all clay-based formulations was assessed during in vitro dissolution studies under simulated gastric conditions and in vitro fasting intestinal lipolysis studies. Montmorillonite- and laponite-based lipid formulations significantly reduced blonanserin solubilization relative to a control lipid solution and silica-lipid hybrid particles, owing to incomplete drug release from the clay cation-exchange sites. This phenomenon was replicated during in vivo pharmacokinetic studies, whereby the bioavailability of simple clay-based lipid formulations was decreased relative to controls. Importantly, the solid-state dual-loaded montmorillonite-based lipid formulation provided an optimal pharmacokinetic performance, achieving the same degree of bioavailability enhancement as the control lipid solution. These findings indicate the potential of solid-state dual-loaded clay-based lipid formulations for increasing drug loading levels and enhancing the oral absorption of poorly soluble weak base compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - René Holm
- Department of Science and Environment , Roskilde University , 4000 Roskilde , Denmark
| | | |
Collapse
|
30
|
Baldi A, Chaudhary M, Sethi S, Abhiav, Chandra R, Madan J. Armamentarium of nanoscaled lipid drug delivery systems customized for oral administration: In silico docking patronage, absorption phenomenon, preclinical status, clinical status and future prospects. Colloids Surf B Biointerfaces 2018; 170:637-647. [PMID: 29986259 DOI: 10.1016/j.colsurfb.2018.06.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 02/08/2023]
Abstract
Poor drug solubility and bioavailability remain a significant and frequently encountered concern for pharmaceutical scientists. Nanoscaled lipid drug delivery systems (NSLDDS) have exhibited great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successful clinical products. In the past few years, we have find out that optimized composition of drug in lipid, surfactant, or mixture of lipid and surfactant omits the solubility, permeability and bioavailability issues, which are potential limitations for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect on biopharmaceutical aspects of drug absorption and distribution both in vitro and in vivo. Therefore, in current critical review, a comprehensive overview of the different lipid based nanostructured drug delivery systems intended for oral administration has been presented. In addition, implication of in silico docking in designing of NSLDDS as well as mechanism of absorption of different lipid based nanoformulations through intestinal absorption window has also been offered. Moreover, attention has also been paid to NSLDDS that are currently undergoing preclinical or clinical analysis.
Collapse
Affiliation(s)
- Ashish Baldi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Monika Chaudhary
- Department of Medicinal Chemistry, Hindu College of Pharmacy, Sonepat, Haryana, India
| | - Sheshank Sethi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Abhiav
- Division of Informatics, Systems and Research Management, Indian Council of Medical Research, New Delhi, India
| | - Ramesh Chandra
- Dr B.R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India; Department of Chemistry, University of Delhi, Delhi, India
| | - Jitender Madan
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India.
| |
Collapse
|
31
|
Synergistic effect of PLGA nanoparticles and submicron triglyceride droplets in enhancing the intestinal solubilisation of a lipophilic weak base. Eur J Pharm Sci 2018; 118:40-48. [DOI: 10.1016/j.ejps.2018.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
|
32
|
Khlestkin VK, Peltek SE, Kolchanov NA. Review of direct chemical and biochemical transformations of starch. Carbohydr Polym 2018; 181:460-476. [DOI: 10.1016/j.carbpol.2017.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 01/19/2023]
|
33
|
Schultz HB, Thomas N, Rao S, Prestidge CA. Supersaturated silica-lipid hybrids (super-SLH): An improved solid-state lipid-based oral drug delivery system with enhanced drug loading. Eur J Pharm Biopharm 2017; 125:13-20. [PMID: 29277724 DOI: 10.1016/j.ejpb.2017.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023]
Abstract
The method of supersaturation for achieving high drug loads in lipid-based formulations is under exploited and relatively unexplored, especially in the case of solid-state lipid-based formulations. Silica-lipid hybrids are solid-state lipid-based formulations designed for improving the oral delivery of poorly water-soluble drugs. However, their application to compounds of low potency and requiring large doses is limited by their low drug loading capacity. Here, an innovative technique to fabricate supersaturated silica-lipid hybrid formulations (super-SLH) has been established and the relationship between drug load and performance investigated. Using the model poorly water-soluble drug, ibuprofen, super-SLH was fabricated possessing drug loads ranging from 8 to 44% w/w, i.e. greater than the previously developed standard ibuprofen silica-lipid hybrids (5.6% w/w). Drug crystallinity of the encapsulated ibuprofen ranged from non-crystalline to part-crystalline with an increase in drug load. Super-SLH achieved improved rates and extents of dissolution when compared to pure ibuprofen, regardless of the drug load. The percentage increase in dissolution extent at 60 min varied from 200 to 600%. The results of the current study indicate that supersaturation greatly improves drug loading and that 16-25% w/w is the optimum loading level which retains optimal dissolution behaviour for the oral delivery of ibuprofen, which has the potential to be translated to other poorly water-soluble drugs.
Collapse
Affiliation(s)
- Hayley B Schultz
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Australia.
| |
Collapse
|
34
|
Kim KS, Yang ES, Kim DS, Kim DW, Yoo HH, Yong CS, Youn YS, Oh KT, Jee JP, Kim JO, Jin SG, Choi HG. A novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for improved stability and oral bioavailability of an oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol. Drug Deliv 2017; 24:1018-1025. [PMID: 28675315 PMCID: PMC8240999 DOI: 10.1080/10717544.2017.1344335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023] Open
Abstract
To develop a novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for a water-insoluble oily drug, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) with improved stability and oral bioavailability, numerous S-SNEDDS were prepared with surfactant, hydrophilic polymer, antioxidant, and calcium silicate (porous carrier) using the spray-drying method. Their physicochemical properties were evaluated using emulsion droplet size analysis, SEM and PXRD. Moreover, the solubility, dissolution, stability, and pharmacokinetics of the selected S-SNEDDS were assessed compared with the drug and a commercial soft capsule. Sodium lauryl sulfate (SLS) and hydroxypropyl methylcellulose (HPMC) with the highest drug solubility were selected as surfactant and hydrophilic polymer, respectively. Among the antioxidants tested, only butylated hydroxyanisole (BHA) could completely protect the drug from oxidative degradation. The S-SNEDDS composed of PLAG/SLS/HPMC/BHA/calcium silicate at a weight ratio of 1: 0.25: 0.1: 0.0002: 0.5 provided an emulsion droplet size of less than 300 nm. In this S-SNEDDS, the drug and other ingredients might exist in the pores of carrier and attach onto its surface. It considerably improved the drug stability (about 100 vs. 70%, 60 °C for 5 d) and dissolution (about 80 vs. 20% in 60 min) compared to the commercial soft capsule. Moreover, the S-SNEDDS gave higher AUC, Cmax, and Tmax values than the commercial soft capsule; in particular, the former improved the oral bioavailability of PLAG by about 3-fold. Our results suggested that this S-SNEDDS provided excellent stability and oral bioavailability of PLAG. Thus, this S-SNEDDS would be recommended as a powerful oral drug delivery system for an oily drug, PLAG.
Collapse
Affiliation(s)
- Kyeong Soo Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| | - Eun Su Yang
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| | - Dong Shik Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| | - Dong Wuk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| | - Hye Hyun Yoo
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Sung Giu Jin
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| | - Han Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea
| |
Collapse
|
35
|
Joyce P, Yasmin R, Bhatt A, Boyd BJ, Pham A, Prestidge CA. Comparison across Three Hybrid Lipid-Based Drug Delivery Systems for Improving the Oral Absorption of the Poorly Water-Soluble Weak Base Cinnarizine. Mol Pharm 2017; 14:4008-4018. [DOI: 10.1021/acs.molpharmaceut.7b00676] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul Joyce
- School
of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide 5000, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson
Lakes 5095, Australia
| | - Rokhsana Yasmin
- School
of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide 5000, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson
Lakes 5095, Australia
| | - Achal Bhatt
- School
of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide 5000, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson
Lakes 5095, Australia
| | - Ben J. Boyd
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Anna Pham
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Clive A. Prestidge
- School
of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide 5000, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson
Lakes 5095, Australia
| |
Collapse
|
36
|
Montmorillonite-lipid hybrid carriers for ionizable and neutral poorly water-soluble drugs: Formulation, characterization and in vitro lipolysis studies. Int J Pharm 2017; 526:95-105. [PMID: 28456653 DOI: 10.1016/j.ijpharm.2017.04.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 11/21/2022]
Abstract
Lipid-based formulations (LBFs) are a popular strategy for enhancing the gastrointestinal solubilization and absorption of poorly water-soluble drugs. In light of this, montmorillonite-lipid hybrid (MLH) particles, composed of medium-chain triglycerides, lecithin and montmorillonite clay platelets, have been developed as a novel solid-state LBF. Owing to the unique charge properties of montmorillonite, whereby the clay platelet surfaces carry a permanent negative charge and the platelet edges carry a pH-dependent charge, three model poorly water-soluble drugs with different charge properties; blonanserin (weak base, pKa 7.7), ibuprofen (weak acid, pKa 4.5) and fenofibrate (neutral), were formulated as MLH particles and their performance during biorelevant in vitro lipolysis at pH 7.5 was investigated. For blonanserin, drug solubilization during in vitro lipolysis was significantly reduced 3.4-fold and 3.2-fold for MLH particles in comparison to a control lipid solution and silica-lipid hybrid (SLH) particles, respectively. It was hypothesized that strong electrostatic interactions between the anionic montmorillonite platelet surfaces and cationic blonanserin molecules were responsible for the inferior performance of MLH particles. In contrast, no significant influence on drug solubilization was observed for ibuprofen- and fenofibrate-loaded MLH particles. The results of the current study indicate that whilst MLH particles are a promising novel formulation strategy for poorly water-soluble drugs, drug ionization tendency and the potential for drug-clay interactions must be taken into consideration to ensure an appropriate performance.
Collapse
|
37
|
Dening TJ, Joyce P, Rao S, Thomas N, Prestidge CA. Nanostructured Montmorillonite Clay for Controlling the Lipase-Mediated Digestion of Medium Chain Triglycerides. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32732-32742. [PMID: 27934188 DOI: 10.1021/acsami.6b13599] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Biocompatible lipid hybrid particles composed of montmorillonite and medium chain triglycerides were engineered for the first time by spray drying oil-in-water emulsions stabilized by montmorillonite platelets to form montmorillonite-lipid hybrid (MLH) microparticles containing up to 75% w/w lipid. In vitro lipolysis studies under simulated intestinal conditions indicated that the specific porous nanoarchitecture and surface chemistry of MLH particles significantly increased the rate (>10-fold) and extent of lipase-mediated digestion compared to that of coarse and homogenized submicrometer triglyceride emulsions. Proton nuclear magnetic resonance studies verified the rapid and enhanced production of fatty acids for MLH particles; these are electrostatically repelled by the negatively charged montmorillonite platelet faces and avoid the "interfacial poisoning" caused by incomplete digestion that retards lipid droplet digestion. MLH particles are a novel biomaterial and encapsulation system that optimize lipase enzyme efficiency and have excellent potential as a smart delivery system for lipophilic biomolecules owing to their exceptional physicochemical and biologically active properties. These particles can be readily fabricated with varying lipid loads and thus may be tailored to optimize the solubilization of specific bioactive molecules requiring reformulation.
Collapse
Affiliation(s)
- Tahnee J Dening
- School of Pharmacy and Medical Sciences, University of South Australia , City East Campus, Adelaide, South Australia 5001, Australia
| | - Paul Joyce
- Future Industries Institute, University of South Australia , Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia , City East Campus, Adelaide, South Australia 5001, Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia , City East Campus, Adelaide, South Australia 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia , City East Campus, Adelaide, South Australia 5001, Australia
| |
Collapse
|
38
|
Liu L, Li J, Zhao MH, Xu H, Li LS, Wang SN. Loading of tacrolimus containing lipid based drug delivery systems into mesoporous silica for extended release. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Djebbi MA, Bouaziz Z, Elabed A, Sadiki M, Elabed S, Namour P, Jaffrezic-Renault N, Amara ABH. Preparation and optimization of a drug delivery system based on berberine chloride-immobilized MgAl hydrotalcite. Int J Pharm 2016; 506:438-48. [DOI: 10.1016/j.ijpharm.2016.04.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 12/31/2022]
|
40
|
Silica encapsulated lipid-based drug delivery systems for reducing the fed/fasted variations of ziprasidone in vitro. Eur J Pharm Biopharm 2016; 101:33-42. [DOI: 10.1016/j.ejpb.2016.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/23/2022]
|
41
|
Rao S, Prestidge CA. Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opin Drug Deliv 2016; 13:691-707. [PMID: 26866382 DOI: 10.1517/17425247.2016.1151872] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION A number of biobarriers limit efficient oral drug absorption; both polymer-based and lipid-based nanocarriers have demonstrated properties and delivery mechanisms to overcome these biobarriers in preclinical settings. Moreover, in order to address the multifaceted oral drug delivery challenges, polymer-lipid hybrid systems are now being designed to merge the beneficial features of both polymeric and lipid-based nanocarriers. AREAS COVERED Recent advances in the development of polymer-lipid hybrids with a specific focus on their viability in oral delivery are reviewed. Three classes of polymer-lipid hybrids have been identified, i.e. lipid-core polymer-shell systems, polymer-core lipid-shell systems, and matrix-type polymer-lipid hybrids. We focus on their application to overcome the various biological barriers to oral drug absorption, as exemplified by selected preclinical studies. EXPERT OPINION Numerous studies have demonstrated the superiority of polymer-lipid hybrid systems to their non-hybrid counterparts in providing improved drug encapsulation, modulated drug release, and improved cellular uptake. These features have encouraged their applications in the delivery of chemotherapeutics, proteins, peptides, and vaccines. With further research expected to optimize the manufacturing and scaling up processes and in-depth pre-clinical pharmacological and toxicological assessments, these multifaceted drug delivery systems will have significant clinical impact on the oral delivery of pharmaceuticals and biopharmaceuticals.
Collapse
Affiliation(s)
- Shasha Rao
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , SA , Australia
| | - Clive A Prestidge
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , SA , Australia
| |
Collapse
|