1
|
Li X, Jusko WJ. Exploring the Pharmacokinetic Mysteries of the Liver: Application of Series Compartment Models of Hepatic Elimination. Drug Metab Dispos 2023; 51:618-628. [PMID: 36732075 PMCID: PMC10158499 DOI: 10.1124/dmd.122.001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Among the basic hepatic clearance models, the dispersion model (DM) is the most physiologically sound compared with the well-stirred model and the parallel tube model. However, its application in physiologically-based pharmacokinetic (PBPK) modeling has been limited due to computational complexities. The series compartment models (SCM) of hepatic elimination that treats the liver as a cascade of well-stirred compartments connected by hepatic blood flow exhibits some mathematical similarities to the DM but is easier to operate. This work assesses the quantitative correlation between the SCM and DM and demonstrates the operation of the SCM in PBPK with the published single-dose blood and liver concentration-time data of six flow-limited compounds. The predicted liver concentrations and the estimated intrinsic clearance (CLint ) and PBPK-operative tissue-to-plasma partition coefficient (Kp ) values were shown to depend on the number of liver sub-compartments (n) and hepatic enzyme zonation in the SCM. The CLint and Kp decreased with increasing n, with more remarkable differences for drugs with higher hepatic extraction ratios. Given the same total CLint , the SCM yields a higher Kp when the liver perivenous region exhibits a lower CLint as compared with a high CLint at this region. Overall, the SCM nicely approximates the DM in characterizing hepatic elimination and offers an alternative flexible approach as well as providing some insights regarding sequential drug concentrations in the liver. SIGNIFICANCE STATEMENT: The SCM nicely approximates the DM when applied in PBPK for characterizing hepatic elimination. The number of liver sub-compartments and hepatic enzyme zonation are influencing factors for the SCM resulting in model-dependent predictions of total/internal liver concentrations and estimates of CLint and the PBPK-operative Kp . Such model-dependency may have an impact when the SCM is used for in vitro-to-in vivo extrapolation (IVIVE) and may also be relevant for PK/PD/toxicological effects when it is the driving force for such responses.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
2
|
Wang L, Zhu Z, Tran D, Seo SK, Pan X. Advancing Estimation of Hepatobiliary Clearances in Physiologically Based Pharmacokinetic Models of Rosuvastatin Using Human Hepatic Concentrations. Pharm Res 2021; 38:2035-2046. [PMID: 34862570 DOI: 10.1007/s11095-021-03138-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To estimate hepatobiliary clearances of rosuvastatin via simultaneously fitting to reported human positron emission tomography (PET) data in the liver and gallbladder. METHODS A hepatobiliary model incorporating five intrinsic hepatobiliary clearances (active uptake clearance at the sinusoidal membrane, efflux clearance by passive diffusion through the sinusoidal membrane, influx clearance by passive diffusion through sinusoidal membrane, clearance of biliary excretion at the canalicular membrane, and intercompartment clearance from the intrahepatic bile duct to the gallbladder) and three compartments (liver, intrahepatic bile duct, and gallbladder) was developed to simultaneously fit rosuvastatin liver and gallbladder data from a representative subject reported by Billington et al. (1). Two liver blood supply input functions, arterial input function and dual input function (using peripheral venous as an alternative to portal vein), were assessed. Additionally, the predictive performance between the established model and four reported models trained with only systemic exposure data, was evaluated by comparing simulated liver and gallbladder profiles with observations. RESULTS The established hepatobiliary model well captured the kinetic profiles of rosuvastatin in the liver and gallbladder during the PET scans. Application of dual input function led to a marked underestimation of liver concentrations at the initial stage after i.v. dosing which cannot be offset by altering model parameter values. The simulated hepatobiliary profiles from three of the reported models demonstrated substantial deviation from the observed data. CONCLUSIONS The present study highlights the necessity of using hepatobiliary data to verify and improve the predictive performance of hepatic disposition of rosuvastatin.
Collapse
Affiliation(s)
- Li Wang
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Zhiyao Zhu
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Doanh Tran
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Shirley K Seo
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Xiaolei Pan
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
3
|
Scotcher D, Melillo N, Tadimalla S, Darwich AS, Ziemian S, Ogungbenro K, Schütz G, Sourbron S, Galetin A. Physiologically Based Pharmacokinetic Modeling of Transporter-Mediated Hepatic Disposition of Imaging Biomarker Gadoxetate in Rats. Mol Pharm 2021; 18:2997-3009. [PMID: 34283621 PMCID: PMC8397403 DOI: 10.1021/acs.molpharmaceut.1c00206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Physiologically based
pharmacokinetic (PBPK) models are increasingly
used in drug development to simulate changes in both systemic and
tissue exposures that arise as a result of changes in enzyme and/or
transporter activity. Verification of these model-based simulations
of tissue exposure is challenging in the case of transporter-mediated
drug–drug interactions (tDDI), in particular as these may lead
to differential effects on substrate exposure in plasma and tissues/organs
of interest. Gadoxetate, a promising magnetic resonance imaging (MRI)
contrast agent, is a substrate of organic-anion-transporting polypeptide
1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2).
In this study, we developed a gadoxetate PBPK model and explored the
use of liver-imaging data to achieve and refine in vitro–in
vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic
data. In addition, PBPK modeling was used to investigate gadoxetate
hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced
(DCE) MRI data of gadoxetate in rat blood, spleen, and liver were
used in this analysis. Gadoxetate in vitro uptake kinetic data were
generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte
uptake unbound Michaelis–Menten constant (Km,u) of gadoxetate was 106 μM (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total
uptake into hepatocytes. PBPK–IVIVE of these data (bottom-up
approach) captured reasonably systemic exposure, but underestimated
the in vivo gadoxetate DCE–MRI profiles and elimination from
the liver. Therefore, in vivo rat DCE–MRI liver data were subsequently
used to refine gadoxetate transporter kinetic parameters in the PBPK
model (top-down approach). Active uptake into the hepatocytes refined
by the liver-imaging data was one order of magnitude higher than the
one predicted by the IVIVE approach. Finally, the PBPK model was fitted
to the gadoxetate DCE–MRI data (blood, spleen, and liver) obtained
with and without coadministered rifampicin. Rifampicin was estimated
to inhibit active uptake transport of gadoxetate into the liver by
96%. The current analysis highlighted the importance of gadoxetate
liver data for PBPK model refinement, which was not feasible when
using the blood data alone, as is common in PBPK modeling applications.
The results of our study demonstrate the utility of organ-imaging
data in evaluating and refining PBPK transporter IVIVE to support
the subsequent model use for quantitative evaluation of hepatic tDDI.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Nicola Melillo
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Sirisha Tadimalla
- Division of Medical Physics, University of Leeds, Leeds LS2 9JT, U.K
| | - Adam S Darwich
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Sabina Ziemian
- MR & CT Contrast Media Research, Bayer AG, Berlin 13342, Germany
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Gunnar Schütz
- MR & CT Contrast Media Research, Bayer AG, Berlin 13342, Germany
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
4
|
Alluri RV, Li R, Varma MVS. Transporter–enzyme interplay and the hepatic drug clearance: what have we learned so far? Expert Opin Drug Metab Toxicol 2020; 16:387-401. [DOI: 10.1080/17425255.2020.1749595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ravindra V. Alluri
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rui Li
- Modeling and Simulations, Medicine Design, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Manthena V. S. Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
5
|
Li R, Mathialagan S, Novak JJ, Eng H, Riccardi K, Litchfield J. Estimation of the Effect of OAT2-Mediated Active Uptake on Meloxicam Exposure in the Human Liver. AAPS JOURNAL 2020; 22:20. [PMID: 31900711 DOI: 10.1208/s12248-019-0409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 11/30/2022]
Abstract
Active uptake mediated by organic anion transporter 2 (OAT2) has been previously hypothesized as a key player in hepatic disposition of its substrates. Previous studies have shown that another hepatic uptake transporter, organic anion transporting polypeptides (OATP) 1B1, significantly elevates liver concentrations of drugs transported by it. As tissue concentration typically governs pharmacodynamics, drug-drug interactions, and toxicity in the liver, it is important to understand if OAT2 functions similarly to OATP1B1 in raising liver exposure. Since this is a research problem that cannot be easily assessed in clinical studies at this time, here we estimated human liver exposure of an OAT2 substrate meloxicam using a deduction method based on physiologically based pharmacokinetic (PBPK) modeling of clinical systemic exposure data. Although in vitro data suggest that OAT2-mediated active uptake is involved in meloxicam disposition, the modeling result concludes that its unbound liver exposure is unlikely significantly different from its unbound systemic exposure. This conclusion is further supported by data and modeling from a terminal monkey study and in vitro hepatocyte studies with bovine serum albumin. Overall, based on currently available data, we do not expect that OAT2 has a strong impact on the liver exposure of meloxicam.
Collapse
Affiliation(s)
- Rui Li
- Translational Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, MA, USA.
| | - Sumathy Mathialagan
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, CT, USA
| | - Jonathan J Novak
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, CT, USA
| | - Heather Eng
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, CT, USA
| | - Keith Riccardi
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, CT, USA
| | - John Litchfield
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Cambridge, MA, USA
| |
Collapse
|
6
|
Battista C, Yang K, Stahl SH, Mettetal JT, Watkins PB, Siler SQ, Howell BA. Using Quantitative Systems Toxicology to Investigate Observed Species Differences in CKA-Mediated Hepatotoxicity. Toxicol Sci 2019; 166:123-130. [PMID: 30060248 PMCID: PMC6204762 DOI: 10.1093/toxsci/kfy191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CKA, a chemokine receptor antagonist intended for treating inflammatory conditions, produced dose-dependent hepatotoxicity in rats but advanced into the clinic where single doses of CKA up to 600 mg appeared safe in humans. Because existing toxicological platforms used during drug development are not perfectly predictive, a quantitative systems toxicology model investigated the hepatotoxic potential of CKA in humans and rats through in vitro assessments of CKA on mitochondrial respiration, oxidative stress, and bile acid transporters. DILIsym predicted that single doses of CKA caused serum ALT >3xULN in a subset of the simulated rat population, while single doses in a simulated human population did not produce serum ALT elevations. Species differences were largely attributed to differences in liver exposure, but increased sensitivity to inhibition of mitochondrial respiration in the rat also contributed. We conclude that mechanistic modeling can elucidate species differences in the hepatotoxic potential of drug candidates.
Collapse
Affiliation(s)
- Christina Battista
- DILIsym Services, Inc., Research Triangle Park, North Carolina.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kyunghee Yang
- DILIsym Services, Inc., Research Triangle Park, North Carolina
| | - Simone H Stahl
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, Astra Zeneca R&D, Cambridge CB4 0WG, UK
| | - Jerome T Mettetal
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, Astra Zeneca R&D, Waltham, Massachusetts
| | - Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott Q Siler
- DILIsym Services, Inc., Research Triangle Park, North Carolina
| | - Brett A Howell
- DILIsym Services, Inc., Research Triangle Park, North Carolina.,DILIsym Services, Inc., Six Davis Drive, PO BOX 12317, Research Triangle Park, NC 27709
| |
Collapse
|
7
|
Li R, Niosi M, Johnson N, Tess DA, Kimoto E, Lin J, Yang X, Riccardi KA, Ryu S, El-Kattan AF, Maurer TS, Tremaine LM, Di L. A Study on Pharmacokinetics of Bosentan with Systems Modeling, Part 1: Translating Systemic Plasma Concentration to Liver Exposure in Healthy Subjects. Drug Metab Dispos 2018; 46:346-356. [DOI: 10.1124/dmd.117.078790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/08/2018] [Indexed: 02/04/2023] Open
|
8
|
Toshimoto K, Tomoda Y, Chiba K, Sugiyama Y. Analysis of the Change in the Blood Concentration-Time Profile Caused by Complex Drug-Drug Interactions in the Liver Considering the Enterohepatic Circulation: Examining Whether the Inhibition Constants for Uptake, Metabolism, and Biliary Excretion Can be Recovered by the Analyses Using Physiologically Based Pharmacokinetic Modeling. J Pharm Sci 2017; 106:2727-2738. [PMID: 28479365 DOI: 10.1016/j.xphs.2017.04.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 01/10/2023]
Abstract
Hypothetical substrates undergoing transporter-mediated hepatic uptake, metabolism, and enterohepatic circulation with different rate-determining processes with a combination of inhibition constants (Ki) for hepatic uptake, metabolism, and biliary excretion processes were generated with a constant Ki for uptake and incorporated into a physiologically based pharmacokinetic model. Analyses of the kinetic model suggested that the fraction of substrates excreted in the bile to the total elimination by the liver (fbile) can be estimated under certain conditions from kinetic analyses of their blood concentration-time profiles. Using the generated time profiles of substrates with and without coadministration of inhibitors, various pharmacokinetic parameters involving fbile and Ki for the hepatic uptake, metabolism, and biliary excretion of drugs were back-calculated by fitting. Comparing parameters obtained with the original parameter sets by fitting, the Ki were found to be well estimated under the following conditions: the initial estimates for inhibition constants were relatively good, which corresponds to the case for obtaining reliable in vitro inhibition constants. In conclusion, the integration of top-down analyses with bottom-up estimates (experimental determination) of inhibition constants can be used to estimate in vivo inhibition constants and fbile reliably.
Collapse
Affiliation(s)
- Kota Toshimoto
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan.
| | - Yukana Tomoda
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan; Clinical Pharmacology Research Laboratory, Yokohama University of Pharmacy, Yokohama, Japan
| | - Koji Chiba
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan; Clinical Pharmacology Research Laboratory, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| |
Collapse
|
9
|
Li R, Bi YA, Vildhede A, Scialis RJ, Mathialagan S, Yang X, Marroquin LD, Lin J, Varma MVS. Transporter-Mediated Disposition, Clinical Pharmacokinetics and Cholestatic Potential of Glyburide and Its Primary Active Metabolites. Drug Metab Dispos 2017; 45:737-747. [PMID: 28438781 DOI: 10.1124/dmd.116.074815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Glyburide is widely used for the treatment of type 2 diabetes. We studied the mechanisms involved in the disposition of glyburide and its pharmacologically active hydroxy metabolites M1 and M2b and evaluated their clinical pharmacokinetics and the potential role in glyburide-induced cholestasis employing physiologically based pharmacokinetic (PBPK) modeling. Transport studies of parent and metabolites in human hepatocytes and transfected cell systems imply hepatic uptake mediated by organic anion-transporting polypeptides. Metabolites are also subjected to basolateral and biliary efflux by P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated proteins, and are substrates to renal organic anion transporter 3. A PBPK model in combination with a Bayesian approach was developed considering the identified disposition mechanisms. The model reasonably described plasma concentration time profiles and urinary recoveries of glyburide and the metabolites, implying the role of multiple transport processes in their pharmacokinetics. Predicted free liver concentrations of the parent (∼30-fold) and metabolites (∼4-fold) were higher than their free plasma concentrations. Finally, all three compounds showed bile salt export pump inhibition in vitro; however, significant in vivo inhibition was not apparent for any compound on the basis of a predicted unbound liver exposure-response effect model using measured in vitro IC50 values. In conclusion, this study demonstrates the important role of multiple drug transporters in the disposition of glyburide and its active metabolites, suggesting that variability in the function of these processes may lead to pharmacokinetic variability in the parent and the metabolites, potentially translating to pharmacodynamic variability.
Collapse
Affiliation(s)
- Rui Li
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (Y.B., A.V., R.J.S., S.M., X.Y., L.D.M., J.L., M.V.S.V.)
| | - Yi-An Bi
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (Y.B., A.V., R.J.S., S.M., X.Y., L.D.M., J.L., M.V.S.V.)
| | - Anna Vildhede
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (Y.B., A.V., R.J.S., S.M., X.Y., L.D.M., J.L., M.V.S.V.)
| | - Renato J Scialis
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (Y.B., A.V., R.J.S., S.M., X.Y., L.D.M., J.L., M.V.S.V.)
| | - Sumathy Mathialagan
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (Y.B., A.V., R.J.S., S.M., X.Y., L.D.M., J.L., M.V.S.V.)
| | - Xin Yang
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (Y.B., A.V., R.J.S., S.M., X.Y., L.D.M., J.L., M.V.S.V.)
| | - Lisa D Marroquin
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (Y.B., A.V., R.J.S., S.M., X.Y., L.D.M., J.L., M.V.S.V.)
| | - Jian Lin
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (Y.B., A.V., R.J.S., S.M., X.Y., L.D.M., J.L., M.V.S.V.)
| | - Manthena V S Varma
- Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (R.L.); and Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (Y.B., A.V., R.J.S., S.M., X.Y., L.D.M., J.L., M.V.S.V.)
| |
Collapse
|
10
|
Yang K, Battista C, Woodhead JL, Stahl SH, Mettetal JT, Watkins PB, Siler SQ, Howell BA. Systems pharmacology modeling of drug-induced hyperbilirubinemia: Differentiating hepatotoxicity and inhibition of enzymes/transporters. Clin Pharmacol Ther 2017; 101:501-509. [PMID: 28074467 PMCID: PMC5367379 DOI: 10.1002/cpt.619] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/31/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Elevations in serum bilirubin during drug treatment may indicate global liver dysfunction and a high risk of liver failure. However, drugs also can increase serum bilirubin in the absence of hepatic injury by inhibiting specific enzymes/transporters. We constructed a mechanistic model of bilirubin disposition based on known functional polymorphisms in bilirubin metabolism/transport. Using physiologically based pharmacokinetic (PBPK) model-predicted drug exposure and enzyme/transporter inhibition constants determined in vitro, our model correctly predicted indinavir-mediated hyperbilirubinemia in humans and rats. Nelfinavir was predicted not to cause hyperbilirubinemia, consistent with clinical observations. We next examined a new drug candidate that caused both elevations in serum bilirubin and biochemical evidence of liver injury in rats. Simulations suggest that bilirubin elevation primarily resulted from inhibition of transporters rather than global liver dysfunction. We conclude that mechanistic modeling of bilirubin can help elucidate underlying mechanisms of drug-induced hyperbilirubinemia, and thereby distinguish benign from clinically important elevations in serum bilirubin.
Collapse
Affiliation(s)
- K Yang
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| | - C Battista
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA.,University of North Carolina Institute for Drug Safety Sciences, The Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J L Woodhead
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| | - S H Stahl
- ADME Transporters, Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - J T Mettetal
- Drug Safety and Metabolism, AstraZeneca R&D, Waltham, Massachusetts, USA
| | - P B Watkins
- University of North Carolina Institute for Drug Safety Sciences, The Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - S Q Siler
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| | - B A Howell
- DILIsym Services Inc, Research Triangle Park, North Carolina, USA
| |
Collapse
|