1
|
Chougule M, Kollipara S, Mondal S, Ahmed T. A critical review on approaches to generate and validate virtual population for physiologically based pharmacokinetic models: Methodologies, case studies and way forward. Eur J Clin Pharmacol 2024; 80:1903-1922. [PMID: 39377787 DOI: 10.1007/s00228-024-03763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE In silico modeling and simulation techniques such as physiologically based pharmacokinetic (PBPK) and physiologically based biopharmaceutics modeling (PBBM) have demonstrated various applications in drug discovery and development. Virtual bioequivalence leverages these computation tools to predict bioequivalence between reference and test formulations thereby demonstrating possibilities to reduce human studies. A pre-requisite for virtual bioequivalence is development of validated virtual population that depicts the same variability as that of observed in clinic. This development, validation and optimization of virtual population is a key attribute of virtual bioequivalence based on which conclusion of bioequivalence is made. METHODS Various strategies for optimization of virtual population based on appropriate considerations of physicochemical, physiological and disposition aspects are demonstrated with the help of six diverse case studies of immediate and modified release formulations. Once the virtual population is optimized to match in vivo variability, it can be used for various applications such as biowaivers, dissolution specification justification, f2 mismatch, establishing dissolution safe space, etc. In this review article, we attempted to describe various methodologies and approaches for optimization of virtual population using Gastroplus. RESULTS Strategies based on optimization of virtual population with emphasis on specific and sensitive parameters were portrayed. We have further elucidated considerations related to study design, in vivo variability, sample size for optimization of virtual population from Gastroplus perspective. CONCLUSION We believe that this review article provides a step-by-step process for virtual population optimization for interest of biopharmaceutics modeling scientists in order to ensure reliable and credible physiological models.
Collapse
Affiliation(s)
- Mahendra Chougule
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Smritilekha Mondal
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, 500 090, Telangana, India.
| |
Collapse
|
2
|
Wu F, Cristofoletti R, Zhao L, Rostami‐Hodjegan A. Scientific considerations to move towards biowaiver for biopharmaceutical classification system class III drugs: How modeling and simulation can help. Biopharm Drug Dispos 2021; 42:118-127. [DOI: 10.1002/bdd.2274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Fang Wu
- Division of Quantitative Methods and Modeling Office of Research and Standards Office of Generic Drugs Center for Drug Evaluation and Research U.S. Food and Drug Administration Silver Spring Maryland USA
| | - Rodrigo Cristofoletti
- Department of Pharmaceutics Center for Pharmacometrics and Systems Pharmacology College of Pharmacy University of Florida Orlando Florida USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling Office of Research and Standards Office of Generic Drugs Center for Drug Evaluation and Research U.S. Food and Drug Administration Silver Spring Maryland USA
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic Research University of Manchester Manchester UK
- Certara UK Limited Sheffield UK
| |
Collapse
|
3
|
Wu F, Shah H, Li M, Duan P, Zhao P, Suarez S, Raines K, Zhao Y, Wang M, Lin HP, Duan J, Yu L, Seo P. Biopharmaceutics Applications of Physiologically Based Pharmacokinetic Absorption Modeling and Simulation in Regulatory Submissions to the U.S. Food and Drug Administration for New Drugs. AAPS JOURNAL 2021; 23:31. [DOI: 10.1208/s12248-021-00564-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
|
4
|
Jamei M, Abrahamsson B, Brown J, Bevernage J, Bolger MB, Heimbach T, Karlsson E, Kotzagiorgis E, Lindahl A, McAllister M, Mullin JM, Pepin X, Tistaert C, Turner DB, Kesisoglou F. Current status and future opportunities for incorporation of dissolution data in PBPK modeling for pharmaceutical development and regulatory applications: OrBiTo consortium commentary. Eur J Pharm Biopharm 2020; 155:55-68. [DOI: 10.1016/j.ejpb.2020.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/03/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
|
5
|
Cristofoletti R, Hens B, Patel N, Esteban VV, Schmidt S, Dressman J. Integrating Drug- and Formulation-Related Properties With Gastrointestinal Tract Variability Using a Product-Specific Particle Size Approach: Case Example Ibuprofen. J Pharm Sci 2019; 108:3842-3847. [PMID: 31539541 DOI: 10.1016/j.xphs.2019.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022]
Abstract
In the present study, an in vitro-in vivo extrapolation of dissolution integrated to a physiologically based pharmacokinetics modeling approach, considering a product-specific particle size distribution and a self-buffering effect of the drug, is introduced and appears to be a promising translational modeling strategy to support drug product development, manufacturing changes and setting clinically relevant specifications for immediate release formulations containing ibuprofen and other weak acids with similar properties.
Collapse
Affiliation(s)
- Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827.
| | - Bart Hens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Nikunjkumar Patel
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, Sheffield, UK
| | - Valvanera Vozmediano Esteban
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Radivojev S, Pinto JT, Fröhlich E, Paudel A. Insights into DPI sensitivity to humidity: An integrated in-vitro-in-silico risk-assessment. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Tomic I, Mueller-Zsigmondy M, Vidis-Millward A, Cardot JM. In vivo release of peptide-loaded PLGA microspheres assessed through deconvolution coupled with mechanistic approach. Eur J Pharm Biopharm 2017; 125:21-27. [PMID: 29277580 DOI: 10.1016/j.ejpb.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/23/2017] [Accepted: 12/15/2017] [Indexed: 01/11/2023]
Abstract
In this study, a reevaluation of the in vivo release phases from long-release PLGA-based microspheres is presented, leading to a better characterization of the plasma concentrations/time profile. Microspheres were designed for intramuscular injection releasing a cyclic somatostatin analog over 70 days. Clinical study was performed in 64 healthy subjects receiving a subcutaneous dose of an immediate release solution as reference formulation and an intramuscular injection of microspheres as test formulation. The in vivo input curve was obtained by numerical deconvolution. Results showed that double Weibull function could not fit correctly the tri-phasic (burst, lag, and erosion) in vivo input profile typical for PLGA-based formulations, due to a change in the drug release trend in the terminal phase. Triple Weibull showed a significant improvement in the curve fitting, each term being assigned to one of the following phases: initial (burst/lag), erosion, and terminal phase of drug release. The existence of the additional terminal phase was confirmed by a mechanistic approach as well, which denoted that this phase was, most probably, a consequence of the release mechanism change from erosion to diffusion controlled. The same model demonstrated that the burst release was as well influenced by the polymer swelling, while currently existing theories state that the burst phase is mainly determined by the dissolution of immediately available drug substance and diffusion through surface related pores.
Collapse
Affiliation(s)
- Ivana Tomic
- Novartis Pharma AG, Technical Research and Development, CH-4002 Basel, Switzerland; University of Auvergne, Department of Biopharmacy, EA 4678, 63001 Clermont-Ferrand, France.
| | | | - Ana Vidis-Millward
- Novartis Pharma AG, Technical Research and Development, CH-4002 Basel, Switzerland
| | - Jean-Michel Cardot
- University of Auvergne, Department of Biopharmacy, EA 4678, 63001 Clermont-Ferrand, France
| |
Collapse
|
8
|
Virtual bioequivalence for achlorhydric subjects: The use of PBPK modelling to assess the formulation-dependent effect of achlorhydria. Eur J Pharm Sci 2017; 109:111-120. [DOI: 10.1016/j.ejps.2017.07.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/31/2017] [Accepted: 07/30/2017] [Indexed: 01/27/2023]
|
9
|
Pathak SM, Ruff A, Kostewicz ES, Patel N, Turner DB, Jamei M. Model-Based Analysis of Biopharmaceutic Experiments To Improve Mechanistic Oral Absorption Modeling: An Integrated in Vitro in Vivo Extrapolation Perspective Using Ketoconazole as a Model Drug. Mol Pharm 2017; 14:4305-4320. [DOI: 10.1021/acs.molpharmaceut.7b00406] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shriram M. Pathak
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, United Kingdom
| | - Aaron Ruff
- Department
of Pharmaceutical Technology, Johann Wolfgang Goethe University, Max-von-Laue-Strasse
9, Frankfurt am Main 60438, Germany
| | - Edmund S. Kostewicz
- Department
of Pharmaceutical Technology, Johann Wolfgang Goethe University, Max-von-Laue-Strasse
9, Frankfurt am Main 60438, Germany
| | - Nikunjkumar Patel
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, United Kingdom
| | - David B. Turner
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, United Kingdom
| | - Masoud Jamei
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, United Kingdom
| |
Collapse
|
10
|
A survey on IVIVC/IVIVR development in the pharmaceutical industry – Past experience and current perspectives. Eur J Pharm Sci 2017; 102:1-13. [DOI: 10.1016/j.ejps.2017.02.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 11/21/2022]
|
11
|
Andreas CJ, Pepin X, Markopoulos C, Vertzoni M, Reppas C, Dressman JB. Mechanistic investigation of the negative food effect of modified release zolpidem. Eur J Pharm Sci 2017; 102:284-298. [DOI: 10.1016/j.ejps.2017.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022]
|
12
|
Kim TH, Shin S, Bulitta JB, Youn YS, Yoo SD, Shin BS. Development of a Physiologically Relevant Population Pharmacokinetic in Vitro–in Vivo Correlation Approach for Designing Extended-Release Oral Dosage Formulation. Mol Pharm 2016; 14:53-65. [DOI: 10.1021/acs.molpharmaceut.6b00677] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tae Hwan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Soyoung Shin
- Department of Pharmacy,
College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Korea
| | - Jürgen B. Bulitta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827, United States
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Sun Dong Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Beom Soo Shin
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk 38430, Korea
| |
Collapse
|