1
|
Gasthuys E, Sandra L, Statelova M, Vertzoni M, Vermeulen A. The use of population pharmacokinetics to extrapolate food effects from human adults and beagle dogs to the pediatric population illustrated with ibuprofen as a case. Int J Pharm 2025; 669:125015. [PMID: 39617191 DOI: 10.1016/j.ijpharm.2024.125015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Oral drug administration is the most convenient route of administration in the pediatric population. However, children are often not fasted when drugs are orally administered, hence potential food-drug interactions might occur. Most of these interactions are extrapolated from studies performed in human adults where a recommended high-fat, high-calorie meal is administered prior to drug dosing. As the recommended protocols are based on studies in support of adult drug development, these studies do not mimic the meal composition administered to the pediatric population, especially the very young ones, which renders food-drug interactions in this population understudied. Therefore, it was evaluated to what extent population pharmacokinetics could reliably extrapolate food effects from human adults and beagle dogs to mimic the real-life situation in the pediatric population. Eight human adults and six beagle dogs received ibuprofen under different dosing conditions (fasted, reference meal fed condition, infant formula fed condition). Population pharmacokinetic analysis was performed to derive the pharmacokinetic parameters to be scaled to pediatric ages. For both species, a one-compartment model best described the data, where in human adults a dual-input function to capture the double absorption peak significantly improved the model fit. Simulations for a virtual pediatric population demonstrated that the predictive ability of human adults and beagle dogs to inform absorption effects under different dosing conditions using population pharmacokinetic modeling appeared to be reasonable. However, to be able to fully validate the predictability of both species for ibuprofen, additional studies in the pediatric population are required to generate more informative data.
Collapse
Affiliation(s)
- Elke Gasthuys
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Louis Sandra
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium; Clinical Pharmacology and Pharmacometrics, Janssen R&D, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Marina Statelova
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84, Zografou, Athens, Greece; Analytical Research and Development, Global Drug Development, Novartis Pharma AG, Fabrikstrasse 2, Basel 4056, Switzerland
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84, Zografou, Athens, Greece
| | - An Vermeulen
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium; Clinical Pharmacology and Pharmacometrics, Janssen R&D, Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| |
Collapse
|
2
|
Toulitsis E, Tsekouras AA, Macheras P. FDA and EMA Oversight of Disruptive Science on Application of Finite Absorption Time (F.A.T.) Concept in Oral Drug Absorption: Time for Scientific and Regulatory Changes. Pharmaceutics 2024; 16:1435. [PMID: 39598557 PMCID: PMC11597828 DOI: 10.3390/pharmaceutics16111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: It has been demonstrated that the concept of infinite absorption time, associated with the absorption rate constant, which drives a drug's gastrointestinal absorption rate, is not physiologically sound. The recent analysis of oral drug absorption data based on the finite absorption time (F.A.T.) concept and the relevant physiologically based finite-time pharmacokinetic (PBFTPK) models developed provided a better physiologically sound description of oral drug absorption. Methods: In this study, we re-analyzed, using PBFTPK models, seven data sets of ketoprofen, amplodipine, theophylline (three formulations), and two formulations (reference, test) from a levonorgestrel bioequivalence study. Equations for one-compartment-model drugs, for the estimation of fraction of dose absorbed or the bioavailable fraction exclusively from oral data, were developed. Results: In all cases, meaningful estimates for (i) the number of absorption stages, namely, one for ketoprofen and the levonorgestrel formulations, two for amlodipine, the immediate-release theophylline formulation, and the extended-release Theotrim formulation, and three for the extended-release Theodur formulation, (ii) the duration of each absorption stage and the corresponding drug input rate, and (iii) the total duration of drug absorption, which ranged from 0.75 h (ketoprofen) to 11.6 h for Theodur were derived. Estimates for the bioavailable fraction of ketoprofen and two theophylline formulations exhibiting one-compartment-model kinetics were derived. Conclusions: This study provides insights into the detailed characteristics of oral drug absorption. The use of PBFTPK models in drug absorption analysis can be leveraged as a computational framework to discontinue the perpetuation of the mathematical fallacy of classical pharmacokinetic analysis based on the absorption rate constant as well as in the physiologically based pharmacokinetic (PBPK) studies and pharmacometrics. The present study is an additional piece of evidence for the scientific and regulatory changes required to be implemented by the regulatory agencies in the not-too-distant future.
Collapse
Affiliation(s)
- Elias Toulitsis
- Faculty of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Athanasios A. Tsekouras
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- PharmaInformatics Unit, ATHENA Research Center, 15125 Athens, Greece
| | - Panos Macheras
- Faculty of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- PharmaInformatics Unit, ATHENA Research Center, 15125 Athens, Greece
| |
Collapse
|
3
|
García MA, Paulos C, Ibarra Viñales M, Michelet R, Cabrera-Pérez MÁ, Aceituno A, Bone M, Ibacache M, Cortínez LI, Guzmán M. Modeling and Simulations in Latin-American Generic Markets: Perspectives from Chilean Local Industry, Regulatory Agency, and Academia. Mol Pharm 2024. [PMID: 39454202 DOI: 10.1021/acs.molpharmaceut.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
In the last 20 years, modeling and simulations (M&S) have gained increased attention in pharmaceutical sciences. International industry and world-reference agencies have used M&S to make cost-efficient decisions through the model-informed drug development (MIDD) framework. Modeling tools include biopredictive dissolution models, physiologically based pharmacokinetic models (PBPK), biopharmaceutic models (PBBM), and virtual bioequivalence, among many others. Regulatorily, health agencies are becoming more and more open to accept the use of M&S to support regulatory applications, including setting dissolution specifications, quality-by-design (QbD), postapproval changes (SUPAC), etc. Nonetheless, the potential of M&S has been only barely explored in Latin America (Latam) across different actors: industry, regulatory agencies, and even academia. In this manuscript, we discuss the challenges and opportunities for implementing M&S approaches in Latam. Perspectives of regional experts were shared in a workshop. Attendance (professionals from industry, regulator, academia, and clinicians) also shared their views via survey. The rational development of bioequivalent generics was considered the main opportunity for M&S in regional market, particularly the use of PBPK and PBBM. Nonetheless, a critical mass of modeling scientists is needed before Latin American industry and regulators can actually benefit from M&S. Collaborations (e.g., Academia-Industry and Academia-Regulatory) may be a path to develop applied research projects and train the future modelers. Reaching that critical mass, scientists from industry may apply modeling across generic drug development process and life cycle, while regulatory scientists may issue guidelines in local language to support regional industry. Only at that stage could the full potential of MIDD be reached in Latin American generic markets.
Collapse
Affiliation(s)
- Mauricio A García
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Claudio Paulos
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Manuel Ibarra Viñales
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo 11800, Uruguay
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstraße 31, Berlin 14195, Germany
- qPharmetra LLC, Berlin 14195, Germany
| | - Miguel Ángel Cabrera-Pérez
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Alexis Aceituno
- National Drug Agency Department, Institute of Public Health (ISP), Santiago 7780050, Chile
- University of Valparaíso, Faculty of Pharmacy, Valparaíso 2381850, Chile
| | - Michelle Bone
- National Drug Agency Department, Institute of Public Health (ISP), Santiago 7780050, Chile
| | - Mauricio Ibacache
- División Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
| | - Luis Ignacio Cortínez
- División Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
| | - Marcelo Guzmán
- Validations and Bioequivalence, Laboratorio Milab, Grupo FEMSA, Santiago 8380000, Chile
| |
Collapse
|
4
|
Yin X, Cicali B, Rodriguez-Vera L, Lukacova V, Cristofoletti R, Schmidt S. Applying Physiologically Based Pharmacokinetic Modeling to Interpret Carbamazepine's Nonlinear Pharmacokinetics and Its Induction Potential on Cytochrome P450 3A4 and Cytochrome P450 2C9 Enzymes. Pharmaceutics 2024; 16:737. [PMID: 38931859 PMCID: PMC11206836 DOI: 10.3390/pharmaceutics16060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Carbamazepine (CBZ) is commonly prescribed for epilepsy and frequently used in polypharmacy. However, concerns arise regarding its ability to induce the metabolism of other drugs, including itself, potentially leading to the undertreatment of co-administered drugs. Additionally, CBZ exhibits nonlinear pharmacokinetics (PK), but the root causes have not been fully studied. This study aims to investigate the mechanisms behind CBZ's nonlinear PK and its induction potential on CYP3A4 and CYP2C9 enzymes. To achieve this, we developed and validated a physiologically based pharmacokinetic (PBPK) parent-metabolite model of CBZ and its active metabolite Carbamazepine-10,11-epoxide in GastroPlus®. The model was utilized for Drug-Drug Interaction (DDI) prediction with CYP3A4 and CYP2C9 victim drugs and to further explore the underlying mechanisms behind CBZ's nonlinear PK. The model accurately recapitulated CBZ plasma PK. Good DDI performance was demonstrated by the prediction of CBZ DDIs with quinidine, dolutegravir, phenytoin, and tolbutamide; however, with midazolam, the predicted/observed DDI AUClast ratio was 0.49 (slightly outside of the two-fold range). CBZ's nonlinear PK can be attributed to its nonlinear metabolism caused by autoinduction, as well as nonlinear absorption due to poor solubility. In further applications, the model can help understand DDI potential when CBZ serves as a CYP3A4 and CYP2C9 inducer.
Collapse
Affiliation(s)
- Xuefen Yin
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | - Brian Cicali
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | - Leyanis Rodriguez-Vera
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | | | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| |
Collapse
|
5
|
Maglalang PD, Wen J, Hornik CP, Gonzalez D. Sources of pharmacokinetic and pharmacodynamic variability and clinical pharmacology studies of antiseizure medications in the pediatric population. Clin Transl Sci 2024; 17:e13793. [PMID: 38618871 PMCID: PMC11017206 DOI: 10.1111/cts.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Multiple treatment options exist for children with epilepsy, including surgery, dietary therapies, neurostimulation, and antiseizure medications (ASMs). ASMs are the first line of therapy, and more than 30 ASMs have U.S. Food and Drug Administration (FDA) approval for the treatment of various epilepsy and seizure types in children. Given the extensive FDA approval of ASMs in children, it is crucial to consider how the physiological and developmental changes throughout childhood may impact drug disposition. Various sources of pharmacokinetic (PK) variability from different extrinsic and intrinsic factors such as patients' size, age, drug-drug interactions, and drug formulation could result in suboptimal dosing of ASMs. Barriers exist to conducting clinical pharmacological studies in neonates, infants, and children due to ethical and practical reasons, limiting available data to fully characterize these drugs' disposition and better elucidate sources of PK variability. Modeling and simulation offer ways to circumvent traditional and intensive clinical pharmacology methods to address gaps in epilepsy and seizure management in children. This review discusses various physiological and developmental changes that influence the PK and pharmacodynamic (PD) variability of ASMs in children, and several key ASMs will be discussed in detail. We will also review novel trial designs in younger pediatric populations, highlight the role of extrapolation of efficacy in epilepsy, and the use of physiologically based PK modeling as a tool to investigate sources of PK/PD variability in children. Finally, we will conclude with current challenges and future directions for optimizing the efficacy and safety of these drugs across the pediatric age spectrum.
Collapse
Affiliation(s)
- Patricia D. Maglalang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jiali Wen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Christoph P. Hornik
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Department of PediatricsDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Daniel Gonzalez
- Duke Clinical Research InstituteDurhamNorth CarolinaUSA
- Division of Clinical Pharmacology, Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
6
|
Chen Y, Ke M, Fang W, Jiang Y, Lin R, Wu W, Huang P, Lin C. Physiologically based pharmacokinetic modeling to predict maternal pharmacokinetics and fetal carbamazepine exposure during pregnancy. Eur J Pharm Sci 2024; 194:106707. [PMID: 38244810 DOI: 10.1016/j.ejps.2024.106707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Carbamazepine is an antiepileptic drug commonly used in pregnant women, during which the physiological changes may affect its efficacy. The aim of this study was to establish a physiologically based pharmacokinetic (PBPK) model of carbamazepine and its active metabolite carbamazepine-10,11-epoxide, and simulate maternal and fetal pharmacokinetic changes of carbamazepine and carbamazepine-10,11-epoxide in different trimesters and propose dose adjustment. We established pregnancy PBPK models for carbamazepine and carbamazepine-10,11-epoxide in PK-Sim® and Mobi® and validated the models with observed data from clinical reports. The placental transfer parameters obtained using different methods were also imported into the model and compared with the observed data to establish and validate fetal pharmacokinetic curves. The simulated results showed that mean steady-state trough plasma concentration of carbamazepine decreased by 27, 43.1, and 52 % during the first, second, and third trimesters, respectively. Therefore, to achieve an optimum therapeutic concentration, administering at least 1.4, 1.8, and 2.1 times the baseline dose of carbamazepine in the first, second, and third trimesters, respectively can be used as a dose reference. In conclusion, this study established and validated a pregnancy PBPK model of carbamazepine and carbamazepine-10,11-epoxide to assess exposure in pregnant women and fetuses, which provided a reference for the dosage adjustment of carbamazepine during pregnancy.
Collapse
Affiliation(s)
- Yuying Chen
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Meng Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Weipeng Fang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yaojie Jiang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Rongfang Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wanhong Wu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou 350005, People's Republic of China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
7
|
Zhang W, Zhang Q, Cao Z, Zheng L, Hu W. Physiologically Based Pharmacokinetic Modeling in Neonates: Current Status and Future Perspectives. Pharmaceutics 2023; 15:2765. [PMID: 38140105 PMCID: PMC10747965 DOI: 10.3390/pharmaceutics15122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Rational drug use in special populations is a clinical problem that doctors and pharma-cists must consider seriously. Neonates are the most physiologically immature and vulnerable to drug dosing. There is a pronounced difference in the anatomical and physiological profiles be-tween neonates and older people, affecting the absorption, distribution, metabolism, and excretion of drugs in vivo, ultimately leading to changes in drug concentration. Thus, dose adjustments in neonates are necessary to achieve adequate therapeutic concentrations and avoid drug toxicity. Over the past few decades, modeling and simulation techniques, especially physiologically based pharmacokinetic (PBPK) modeling, have been increasingly used in pediatric drug development and clinical therapy. This rigorously designed and verified model can effectively compensate for the deficiencies of clinical trials in neonates, provide a valuable reference for clinical research design, and even replace some clinical trials to predict drug plasma concentrations in newborns. This review introduces previous findings regarding age-dependent physiological changes and pathological factors affecting neonatal pharmacokinetics, along with their research means. The application of PBPK modeling in neonatal pharmacokinetic studies of various medications is also reviewed. Based on this, we propose future perspectives on neonatal PBPK modeling and hope for its broader application.
Collapse
Affiliation(s)
| | | | | | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (W.Z.); (Q.Z.); (Z.C.)
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (W.Z.); (Q.Z.); (Z.C.)
| |
Collapse
|
8
|
Dinh J, Johnson TN, Grimstein M, Lewis T. Physiologically Based Pharmacokinetics Modeling in the Neonatal Population-Current Advances, Challenges, and Opportunities. Pharmaceutics 2023; 15:2579. [PMID: 38004559 PMCID: PMC10675397 DOI: 10.3390/pharmaceutics15112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is an approach to predicting drug pharmacokinetics, using knowledge of the human physiology involved and drug physiochemical properties. This approach is useful when predicting drug pharmacokinetics in under-studied populations, such as pediatrics. PBPK modeling is a particularly important tool for dose optimization for the neonatal population, given that clinical trials rarely include this patient population. However, important knowledge gaps exist for neonates, resulting in uncertainty with the model predictions. This review aims to outline the sources of variability that should be considered with developing a neonatal PBPK model, the data that are currently available for the neonatal ontogeny, and lastly to highlight the data gaps where further research would be needed.
Collapse
Affiliation(s)
- Jean Dinh
- Certara UK Limited, Sheffield S1 2BJ, UK; (J.D.); (T.N.J.)
| | | | - Manuela Grimstein
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Tamorah Lewis
- Pediatric Clinical Pharmacology & Toxicology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
9
|
Pawar G, Wu F, Zhao L, Fang L, Burckart GJ, Feng K, Mousa YM, Al Shoyaib A, Jones MC, Batchelor HK. Integration of Biorelevant Pediatric Dissolution Methodology into PBPK Modeling to Predict In Vivo Performance and Bioequivalence of Generic Drugs in Pediatric Populations: a Carbamazepine Case Study. AAPS J 2023; 25:67. [PMID: 37386339 DOI: 10.1208/s12248-023-00826-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
This study investigated the impact of gastro-intestinal fluid volume and bile salt (BS) concentration on the dissolution of carbamazepine (CBZ) immediate release (IR) 100 mg tablets and to integrate these in vitro biorelevant dissolution profiles into physiologically based pharmacokinetic modelling (PBPK) in pediatric and adult populations to determine the biopredictive dissolution profile. Dissolution profiles of CBZ IR tablets (100 mg) were generated in 50-900 mL biorelevant adult fasted state simulated gastric and intestinal fluid (Ad-FaSSGF and Ad-FaSSIF), also in three alternative compositions of biorelevant pediatric FaSSGF and FaSSIF medias at 200 mL. This study found that CBZ dissolution was poorly sensitive to changes in the composition of the biorelevant media, where dissimilar dissolution (F2 = 46.2) was only observed when the BS concentration was changed from 3000 to 89 μM (Ad-FaSSIF vs Ped-FaSSIF 50% 14 BS). PBPK modeling demonstrated the most predictive dissolution volume and media composition to forecast the PK was 500 mL of Ad-FaSSGF/Ad-FaSSIF media for adults and 200 mL Ped-FaSSGF/FaSSIF media for pediatrics. A virtual bioequivalence simulation was conducted by using Ad-FaSSGF and/or Ad-FaSSIF 500 mL or Ped-FaSSGF and/or Ped-FaSSIF 200 mL dissolution data for CBZ 100 mg (reference and generic test) IR product. The CBZ PBPK models showed bioequivalence of the product. This study demonstrates that the integration of biorelevant dissolution data can predict the PK profile of a poorly soluble drug in both populations. Further work using more pediatric drug products is needed to verify biorelevant dissolution data to predict the in vivo performance in pediatrics.
Collapse
Affiliation(s)
- Gopal Pawar
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Fang Wu
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Liang Zhao
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lanyan Fang
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Kairui Feng
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Youssef M Mousa
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Abdullah Al Shoyaib
- Division of Quantitative Methods and Modelling, Office of Research and Standard, Office of Generic Drug Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Marie-Christine Jones
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah K Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
10
|
Caccavo D, Iannone M, Barba AA, Lamberti G. Impact of drug release in USP II and in-vitro stomach on pharmacokinetic: The case study of immediate-release carbamazepine tablets. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Wang K, Jiang K, Wei X, Li Y, Wang T, Song Y. Physiologically Based Pharmacokinetic Models Are Effective Support for Pediatric Drug Development. AAPS PharmSciTech 2021; 22:208. [PMID: 34312742 PMCID: PMC8312709 DOI: 10.1208/s12249-021-02076-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022] Open
Abstract
Pediatric drug development faces many difficulties. Traditionally, pediatric drug doses are simply calculated linearly based on the body weight, age, and body surface area of adults. Due to the ontogeny of children, this simple linear scaling may lead to drug overdose in pediatric patients. The physiologically based pharmacokinetic (PBPK) model, as a mathematical model, contributes to the research and development of pediatric drugs. An example of a PBPK model guiding drug dose selection in pediatrics has emerged and has been approved by the relevant regulatory agencies. In this review, we discuss the principle of the PBPK model, emphasize the necessity of establishing a pediatric PBPK model, introduce the absorption, distribution, metabolism, and excretion of the pediatric PBPK model, and understand the various applications and related prospects of the pediatric PBPK model.
Collapse
|
12
|
Fuhr LM, Marok FZ, Hanke N, Selzer D, Lehr T. Pharmacokinetics of the CYP3A4 and CYP2B6 Inducer Carbamazepine and Its Drug-Drug Interaction Potential: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics 2021; 13:270. [PMID: 33671323 PMCID: PMC7922031 DOI: 10.3390/pharmaceutics13020270] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
The anticonvulsant carbamazepine is frequently used in the long-term therapy of epilepsy and is a known substrate and inducer of cytochrome P450 (CYP) 3A4 and CYP2B6. Carbamazepine induces the metabolism of various drugs (including its own); on the other hand, its metabolism can be affected by various CYP inhibitors and inducers. The aim of this work was to develop a physiologically based pharmacokinetic (PBPK) parent-metabolite model of carbamazepine and its metabolite carbamazepine-10,11-epoxide, including carbamazepine autoinduction, to be applied for drug-drug interaction (DDI) prediction. The model was developed in PK-Sim, using a total of 92 plasma concentration-time profiles (dosing range 50-800 mg), as well as fractions excreted unchanged in urine measurements. The carbamazepine model applies metabolism by CYP3A4 and CYP2C8 to produce carbamazepine-10,11-epoxide, metabolism by CYP2B6 and UDP-glucuronosyltransferase (UGT) 2B7 and glomerular filtration. The carbamazepine-10,11-epoxide model applies metabolism by epoxide hydroxylase 1 (EPHX1) and glomerular filtration. Good DDI performance was demonstrated by the prediction of carbamazepine DDIs with alprazolam, bupropion, erythromycin, efavirenz and simvastatin, where 14/15 DDI AUClast ratios and 11/15 DDI Cmax ratios were within the prediction success limits proposed by Guest et al. The thoroughly evaluated model will be freely available in the Open Systems Pharmacology model repository.
Collapse
Affiliation(s)
| | | | | | | | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.M.F.); (F.Z.M.); (N.H.); (D.S.)
| |
Collapse
|
13
|
Statelova M, Holm R, Fotaki N, Reppas C, Vertzoni M. Factors Affecting Successful Extrapolation of Ibuprofen Exposure from Adults to Pediatric Populations After Oral Administration of a Pediatric Aqueous Suspension. AAPS JOURNAL 2020; 22:146. [DOI: 10.1208/s12248-020-00522-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
|
14
|
Statelova M, Holm R, Fotaki N, Reppas C, Vertzoni M. Successful Extrapolation of Paracetamol Exposure from Adults to Infants After Oral Administration of a Pediatric Aqueous Suspension Is Highly Dependent on the Study Dosing Conditions. AAPS JOURNAL 2020; 22:126. [DOI: 10.1208/s12248-020-00504-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023]
|
15
|
Welzel T, Ziesenitz VC, Weber P, Datta AN, van den Anker JN, Gotta V. Drug-drug and drug-food interactions in an infant with early-onset SCN2A epilepsy treated with carbamazepine, phenytoin and a ketogenic diet. Br J Clin Pharmacol 2020; 87:1568-1573. [PMID: 32737897 DOI: 10.1111/bcp.14503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022] Open
Abstract
Sodium channel 2 subunit α (SCN2A) mutations cause difficult-to-treat early-onset epilepsy. Effective treatment includes high-dose phenytoin or carbamazepine ± ketogenic diet (KD). We describe an infant with early-onset SCN2A-epilepsy with subtherapeutic carbamazepine concentration during transition from phenytoin treatment to avoid long-term neurotoxicity. The transition from high-dose phenytoin (20 mg kg-1 d-1 , concentration: ≥20 mg/L) with KD, to carbamazepine (50-75 mg kg-1 d-1 , concentration: 9-12 mg/L) lasted 85 days, which we suspected was due to significant drug-drug and/or drug-food interactions. Model-based analysis of carbamazepine pharmacokinetics quantified significant time- and dose-dependent phenytoin-mediated CYP3A4 induction and carbamazepine concentration-dependent auto-induction (apparent clearance increased up to 2.5/3-fold). Lower carbamazepine concentrations under KD were modelled as decreased relative bioavailability (44%), potentially related to decreased fraction absorbed (unexpected for this lipophilic drug), increased intestinal/hepatic metabolism and/or decreased protein-binding with KD. This suggests importance of carbamazepine-concentration monitoring during KD-introduction/removal and necessity of high carbamazepine doses to achieve therapeutic concentrations, especially in infants treated with high-dose phenytoin.
Collapse
Affiliation(s)
- Tatjana Welzel
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Victoria C Ziesenitz
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland.,Pediatric Cardiology, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Weber
- Division of Pediatric Neurology and Developmental Medicine, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandre N Datta
- Division of Pediatric Neurology and Developmental Medicine, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Johannes N van den Anker
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland.,Divison of Clinical Pharmacology, Children's National Hospital, Washington, D. C, USA
| | - Verena Gotta
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Physiologically-based pharmacokinetic models for children: Starting to reach maturation? Pharmacol Ther 2020; 211:107541. [DOI: 10.1016/j.pharmthera.2020.107541] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
|
17
|
Stillhart C, Vučićević K, Augustijns P, Basit AW, Batchelor H, Flanagan TR, Gesquiere I, Greupink R, Keszthelyi D, Koskinen M, Madla CM, Matthys C, Miljuš G, Mooij MG, Parrott N, Ungell AL, de Wildt SN, Orlu M, Klein S, Müllertz A. Impact of gastrointestinal physiology on drug absorption in special populations––An UNGAP review. Eur J Pharm Sci 2020; 147:105280. [PMID: 32109493 DOI: 10.1016/j.ejps.2020.105280] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
|
18
|
Tavasolizadeh M, Hasanpour K, Nazarzadeh M, Mahdian D, Gholami O. The effect of acidic beverage versus mineral water on the change in serum phenobarbital concentrations: a randomized clinical trial on children with seizure. Int J Neurosci 2020; 131:478-481. [PMID: 32216594 DOI: 10.1080/00207454.2020.1748619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To assess the effect of an acidic beverage (Orange juice) on the change in serum Phenobarbital concentrations in children with seizure who take Phenobarbital as the main treatment. METHODS We did a parallel design and placebo controlled randomized clinical trial. Patients attending Heshmatiyeh Hospital (Iran) were recruited from October 2016 to December 2017. Forty patients randomly assigned to either experimental group or control group. Firstly, 5 mL blood sample was taken from both groups to measure serum Phenobarbital concentration before experiment. Then, one oral dose of Phenobarbital (2.5 mg/kg) with 100 mL of corporate Orange juice (pH = 3.5) (experiment group) or 100 mL of mineral water (neutral pH) (control group) was given to each group, respectively. After 2 h of administration, another blood sample was taken. The high-performance liquid chromatographic system was used for measurement of serum Phenobarbital concentration. RESULTS There was significant increase in serum Phenobarbital concentrations after taking Phenobarbital in experiment group in comparison to control group. Statistical analysis revealed a significant increase in change of serum Phenobarbital concentrations in experiment group versus control group. CONCLUSION The results of the current trial indicate that the level of serum Phenobarbital in the experiment group was higher than that of control group.
Collapse
Affiliation(s)
| | - Kazem Hasanpour
- Department of Pediatrics, Heshmatiyeh Hospital, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Milad Nazarzadeh
- The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Davood Mahdian
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
19
|
Conceição J, Adeoye O, Cabral-Marques H, Concheiro A, Alvarez-Lorenzo C, Sousa Lobo JM. Orodispersible Carbamazepine/Hydroxypropyl-β-Cyclodextrin Tablets Obtained by Direct Compression with Five-in-One Co-processed Excipients. AAPS PharmSciTech 2020; 21:39. [PMID: 31897724 DOI: 10.1208/s12249-019-1579-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022] Open
Abstract
The development of orodispersible tablets (ODTs) for poorly soluble and poorly flowable drugs via direct compression is still a challenge. This work aimed to develop ODTs of poorly soluble drugs by combining cyclodextrins that form inclusion complexes to improve wetting and release properties, and directly compressible co-processed excipients able to promote rapid disintegration and solve the poor flowability typical of inclusion complexes. Carbamazepine (CBZ) and hydroxypropyl-β-cyclodextrin (HPβCD) were used, respectively, as a model of a poorly soluble drug with poor flowability and as a solubilizing agent. Specifically, CBZ-an antiepileptic and anticonvulsant drug-may benefit from the studied formulation approach, since some patients have swallowing difficulties or fear of choking and are non-cooperative. Prosolv® ODT G2 and F-Melt® type C were the studied five-in-one co-processed excipients. The complex was prepared by kneading. Flow properties of all materials and main properties of the tablets were characterized. The obtained results showed that ODTs containing CBZ/HPβCD complex can be prepared by direct compression through the addition of co-processed excipients. The simultaneous use of co-processing and cyclodextrin technologies rendered ODTs with an in vitro disintegration time in accordance with the European Pharmacopoeia requirement and with a fast and complete drug dissolution. In conclusion, the combination of five-in-one co-processed excipients and hydrophilic cyclodextrins may help addressing the ODT formulation of poorly soluble drugs with poor flowability, by direct compression and with desired release properties.
Collapse
|
20
|
Zhou F, Zhou J, Zhang H, Tong HH, Nie J, Li L, Zhang Y, Du J, Ma A, Yang X, Zhou Z. Structure determination and in vitro/vivo study on carbamazepine-naringenin (1:1) cocrystal. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Classification of WHO Essential Oral Medicines for Children Applying a Provisional Pediatric Biopharmaceutics Classification System. Pharmaceutics 2019; 11:pharmaceutics11110567. [PMID: 31683740 PMCID: PMC6920833 DOI: 10.3390/pharmaceutics11110567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Abstract
The objective was using the Essential Medicines List for children by the World Health Organization (WHO) to create a pediatric biopharmaceutics classification system (pBCS) of the oral drugs included in the Essential Medicines List by the World Health Organization and to compare our results with the BCS for adults (aBCS). Several methods to estimate the oral drug dose in different pediatric groups were used to calculate dose number (Do) and solubility (high/low). The estimation of the gastrointestinal water volume was adapted to each pediatric group. Provisional permeability classification was done by comparison of each drug lipophilicity versus metoprolol as the model drug of high permeability. As a result, 24.5% of the included drugs moved from the favorable to unfavorable class (i.e., from high to low solubility). Observed changes point out potential differences in product performance in pediatrics compared to adults, due to changes in the limiting factors for absorption. BCS Class Changes 1 to 2 or 3 to 4 are indicative of drugs that could be more sensitive to the choice of appropriate excipient in the development process. Validating a pBCS for each age group would provide a valuable tool to apply in specific pediatric formulation design by reducing time and costs and avoiding unnecessary pediatric experiments restricted due to ethical reasons. Additionally, pBCS could minimize the associated risks to the use of adult medicines or pharmaceutical compound formulations.
Collapse
|
22
|
Lin W, Yan JH, Heimbach T, He H. Pediatric Physiologically Based Pharmacokinetic Model Development: Current Status and Challenges. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40495-018-0162-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Guimarães M, Statelova M, Holm R, Reppas C, Symilllides M, Vertzoni M, Fotaki N. Biopharmaceutical considerations in paediatrics with a view to the evaluation of orally administered drug products - a PEARRL review. ACTA ACUST UNITED AC 2018; 71:603-642. [PMID: 29971768 DOI: 10.1111/jphp.12955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES In this review, the current biopharmaceutical approaches for evaluation of oral formulation performance in paediatrics are discussed. KEY FINDINGS The paediatric gastrointestinal (GI) tract undergoes numerous morphological and physiological changes throughout its development and growth. Some physiological parameters are yet to be investigated, limiting the use of the existing in vitro biopharmaceutical tools to predict the in vivo performance of paediatric formulations. Meals and frequencies of their administration evolve during childhood and affect oral drug absorption. Furthermore, the establishment of a paediatric Biopharmaceutics Classification System (pBCS), based on the adult Biopharmaceutics Classification System (BCS), requires criteria adjustments. The usefulness of computational simulation and modeling for extrapolation of adult data to paediatrics has been confirmed as a tool for predicting drug formulation performance. Despite the great number of successful physiologically based pharmacokinetic models to simulate drug disposition, the simulation of drug absorption from the GI tract is a complicating issue in paediatric populations. SUMMARY The biopharmaceutics tools for investigation of oral drug absorption in paediatrics need further development, refinement and validation. A combination of in vitro and in silico methods could compensate for the uncertainties accompanying each method on its own.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Marina Statelova
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Moira Symilllides
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| |
Collapse
|
24
|
Johnson T, Bonner J, Tucker G, Turner D, Jamei M. Development and applications of a physiologically-based model of paediatric oral drug absorption. Eur J Pharm Sci 2018; 115:57-67. [DOI: 10.1016/j.ejps.2018.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 11/30/2022]
|