1
|
de Weerd S, Ruiter EA, Calicchia E, Portale G, Schuringa JJ, Roos WH, Salvati A. Optimization of Cell Membrane Purification for the Preparation and Characterization of Cell Membrane Liposomes. SMALL METHODS 2024:e2400498. [PMID: 39431332 DOI: 10.1002/smtd.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Cell membrane nanoparticles have attracted increasing interest in nanomedicine because they allow to exploit the complexity of cell membrane interactions for drug delivery. Several methods are used to obtain plasma membrane to generate cell membrane nanoparticles. Here, an optimized method combining nitrogen cavitation in isotonic buffer and sucrose gradient fractionation is presented. The method allows to obtain cell membrane fractions of high purity from both suspension and adherent cells. Comparison with other common methods for membrane extraction, where mechanical lysis using cell homogenizers is performed in isotonic or hypotonic buffers, shows that the optimized procedure yields high purity membrane in a robust and reproducible way. Procedures to mix the purified membrane with synthetic lipids to obtain cell membrane liposomes (CMLs) are presented and indications on how to optimize these steps are provided. CMLs made using crude membrane isolates or the purified membrane fractions show different uptake by cells. The CMLs made with the optimized procedure and liposomes of the same composition but without cell membrane components are thoroughly characterized and compared for their size, zeta potential, bilayer and mechanical properties to confirm membrane protein inclusion in the CMLs. Cell uptake studies confirm that the inclusion of membrane components modifies liposome interactions with cells.
Collapse
Affiliation(s)
- Sander de Weerd
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Molecular Biophysics, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Emma A Ruiter
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Eleonora Calicchia
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Macromolecular Chemistry & New Polymer Materials, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Giuseppe Portale
- Macromolecular Chemistry & New Polymer Materials, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Anna Salvati
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
2
|
Wang C, Xu M, Fan Q, Li C, Zhou X. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci 2023; 18:100772. [PMID: 36896446 PMCID: PMC9989662 DOI: 10.1016/j.ajps.2022.100772] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
In the inflammatory microenvironment, there are numerous exosomes secreted by immune cells (Macrophages, neutrophils, dendritic cells), mesenchymal stem cells (MSCs) and platelets as intercellular communicators, which participate in the regulation of inflammation by modulating gene expression and releasing anti-inflammatory factors. Due to their good biocompatibility, accurate targeting, low toxicity and immunogenicity, these exosomes are able to selectively deliver therapeutic drugs to the site of inflammation through interactions between their surface-antibody or modified ligand with cell surface receptors. Therefore, the role of exosome-based biomimetic delivery strategies in inflammatory diseases has attracted increasing attention. Here we review current knowledge and techniques for exosome identification, isolation, modification and drug loading. More importantly, we highlight progress in using exosomes to treat chronic inflammatory diseases such as rheumatoid arthritis (RA), osteoarthritis (OA), atherosclerosis (AS), and inflammatory bowel disease (IBD). Finally, we also discuss their potential and challenges as anti-inflammatory drug carriers.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Liu C, Helsper S, Marzano M, Chen X, Muok L, Esmonde C, Zeng C, Sun L, Grant SC, Li Y. Human Forebrain Organoid-Derived Extracellular Vesicle Labeling with Iron Oxides for In Vitro Magnetic Resonance Imaging. Biomedicines 2022; 10:3060. [PMID: 36551816 PMCID: PMC9775717 DOI: 10.3390/biomedicines10123060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The significant roles of extracellular vesicles (EVs) as intracellular mediators, disease biomarkers, and therapeutic agents, make them a scientific hotspot. In particular, EVs secreted by human stem cells show significance in treating neurological disorders, such as Alzheimer’s disease and ischemic stroke. However, the clinical applications of EVs are limited due to their poor targeting capabilities and low therapeutic efficacies after intravenous administration. Superparamagnetic iron oxide (SPIO) nanoparticles are biocompatible and have been shown to improve the targeting ability of EVs. In particular, ultrasmall SPIO (USPIO, <50 nm) are more suitable for labeling nanoscale EVs due to their small size. In this study, induced forebrain neural progenitor cortical organoids (iNPCo) were differentiated from human induced pluripotent stem cells (iPSCs), and the iNPCo expressed FOXG1, Nkx2.1, α-catenin, as well as β-tubulin III. EVs were isolated from iNPCo media, then loaded with USPIOs by sonication. Size and concentration of EV particles were measured by nanoparticle tracking analysis, and no significant changes were observed in size distribution before and after sonication, but the concentration decreased after labeling. miR-21 and miR-133b decreased after sonication. Magnetic resonance imaging (MRI) demonstrated contrast visualized for the USPIO labeled EVs embedded in agarose gel phantoms. Upon calculation, USPIO labeled EVs exhibited considerably shorter relaxation times, quantified as T2 and T2* values, reducing the signal intensity and generating higher MRI contrast compared to unlabeled EVs and gel only. Our study demonstrated that USPIO labeling was a feasible approach for in vitro tracking of brain organoid-derived EVs, which paves the way for further in vivo examination.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Shannon Helsper
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Changchun Zeng
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32310, USA
| | - Samuel C. Grant
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
4
|
Gao J, Su Y, Wang Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Adv Drug Deliv Rev 2022; 186:114340. [PMID: 35569561 PMCID: PMC9899072 DOI: 10.1016/j.addr.2022.114340] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023]
Abstract
Research on bacterial membrane vesicles (BMVs) is an emerging topic, and the goal is to address whether BMVs can bring translational tools to improve current therapies. In this review, we provided the updated studies on BMVs including their production, their types, and therapeutic regimens for treating infectious diseases and cancers. We described several platforms of BMVs, such as outer membrane vesicles (OMVs), inner membrane vesicles (IMVs) and double membrane vesicles (DMVs), and those structures were produced from Gram-negative or Gram-positive bacteria. We also discussed how to engineer and formulate new and novel BMVs using chemical, physical, and genetic methods. For therapies, we analyzed current methods for loading drugs in BMVs and discussed their limitations. Finally, we reviewed several therapeutic platforms of BMVs that have been exploited in improving the treatments of infectious diseases and cancers. Although BMVs offer the promising biomedical applications, it is needed to develop rigorous approaches and methods to generate reproducible and scalable drug delivery systems for translation.
Collapse
Affiliation(s)
| | | | - Zhenjia Wang
- Corresponding author at: 205 East Spokane Falls BLVD, Spokane, WA 99202, United States of America. (Z. Wang)
| |
Collapse
|
5
|
Zoulikha M, Huang F, Wu Z, He W. COVID-19 inflammation and implications in drug delivery. J Control Release 2022; 346:260-274. [PMID: 35469984 PMCID: PMC9045711 DOI: 10.1016/j.jconrel.2022.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
Growing evidence indicates that hyperinflammatory syndrome and cytokine storm observed in COVID-19 severe cases are narrowly associated with the disease's poor prognosis. Therefore, targeting the inflammatory pathways seems to be a rational therapeutic strategy against COVID-19. Many anti-inflammatory agents have been proposed; however, most of them suffer from poor bioavailability, instability, short half-life, and undesirable biodistribution resulting in off-target effects. From a pharmaceutical standpoint, the implication of COVID-19 inflammation can be exploited as a therapeutic target and/or a targeting strategy against the pandemic. First, the drug delivery systems can be harnessed to improve the properties of anti-inflammatory agents and deliver them safely and efficiently to their therapeutic targets. Second, the drug carriers can be tailored to develop smart delivery systems able to respond to the microenvironmental stimuli to release the anti-COVID-19 therapeutics in a selective and specific manner. More interestingly, some biosystems can simultaneously repress the hyperinflammation due to their inherent anti-inflammatory potency and endow their drug cargo with a selective delivery to the injured sites.
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
6
|
Kaur P, Gao J, Wang Z. Liposomal Formulations Enhance the Anti-Inflammatory Effect of Eicosapentaenoic Acid in HL60 Cells. Pharmaceutics 2022; 14:pharmaceutics14030520. [PMID: 35335896 PMCID: PMC8950785 DOI: 10.3390/pharmaceutics14030520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary omega 3 polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been reported to be beneficial for cardiovascular diseases and cancer. Such diseases share a common pathophysiological feature of inflammation responses, such as unbalanced oxidative stress and increased cytokine release. PUFAs show anti-inflammatory effects, and thus, they are potential therapeutics to treat inflammatory disorders. Here, we proposed a novel liposomal formulation of EPA (EPA-liposomes), and the liposome was PEGylated to increase their stability. In the study, we measured the physicochemical characteristics of EPA-liposomes and their anti-inflammatory effects in neutrophil-like cells (HL 60 cells). The results showed that EPA-liposomes dramatically decreased the production of NO, ROS, and cytokines compared to EPA alone, and the molecular mechanism is associated with biosynthesis of RvE1 from EPA, and RvE1 binds to GPCRs to mediate the anti-inflammatory effects.
Collapse
|
7
|
Engineering and loading therapeutic extracellular vesicles for clinical translation: A data reporting frame for comparability. Adv Drug Deliv Rev 2021; 178:113972. [PMID: 34509573 DOI: 10.1016/j.addr.2021.113972] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) have emerged as new drug delivery systems as well as a regenerative cell-free effectors going beyond academic research to reach industrial research and development (R&D). Many proof-of-concept studies are now published describing the delivery of drugs, nanoparticles or biologics among which nucleic acids, proteins, viruses, etc. Their main interests rely on their intrinsic biocompatibility, targeting capabilities and biological activities. The possibility of loading EVs with exogenous therapeutic drug/nanoparticles or imaging tracers opens up the perspectives to extend EV therapeutic properties and enable EV tracking. Clinical translation is still hampered by the difficulty to produce and load EVs with large scale, efficient and cGMP methods. In this review, we critically discuss important notions related to EV engineering and the methods available with a particular focus on technologies fitted for clinical translation. Besides, we provide a tentative data reporting frame in order to support comparability and standardization in the field.
Collapse
|
8
|
Yang N, Zhao Y, Wu X, Zhang N, Song H, Wei W, Liu ML. Recent advances in Extracellular Vesicles and their involvements in vasculitis. Free Radic Biol Med 2021; 171:203-218. [PMID: 33951487 PMCID: PMC9107955 DOI: 10.1016/j.freeradbiomed.2021.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023]
Abstract
Systemic vasculitis is a heterogeneous group of multisystem autoimmune disorders characterized by inflammation of blood vessels. Although many progresses in diagnosis and immunotherapies have been achieved over the past decades, there are still many unanswered questions about vasculitis from pathological understanding to more advanced therapies. Extracellular vesicles (EVs) are double-layer phospholipid membrane vesicles harboring various cargoes. EVs can be classified into exosomes, microvesicles (MVs), and apoptotic bodies depending on their size and origin of cellular compartment. EVs can be released by almost all cell types and may be involved in physical and pathological processes including inflammation and autoimmune responses. In systemic vasculitis, EVs may have pathogenic involvement in inflammation, autoimmune responses, thrombosis, endothelium injury, angiogenesis and intimal hyperplasia. EV-associated redox reaction may also be involved in vasculitis pathogenesis by inducing inflammation, endothelial injury and thrombosis. Additionally, EVs may serve as specific biomarkers for diagnosis or monitoring of disease activity and therapeutic efficacy, i.e. AAV-associated renal involvement. In this review, we have discussed the recent advances of EVs, especially their roles in pathogenesis and clinical involvements in vasculitis.
Collapse
Affiliation(s)
- Nan Yang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Yin Zhao
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Xiuhua Wu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Na Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Haoming Song
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China.
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Corporal Michael J. Crescenz VA Medical Center (Philadelphia), Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
10
|
Kim JK, Youn YJ, Lee YB, Kim SH, Song DK, Shin M, Jin HK, Bae JS, Shrestha S, Hong CW. Extracellular vesicles from dHL-60 cells as delivery vehicles for diverse therapeutics. Sci Rep 2021; 11:8289. [PMID: 33859336 PMCID: PMC8050327 DOI: 10.1038/s41598-021-87891-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/22/2021] [Indexed: 01/15/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-derived heterogeneous vesicles that mediate intercellular communications. They have recently been considered as ideal vehicles for drug-delivery systems, and immune cells are suggested as a potential source for drug-loaded EVs. In this study, we investigated the possibility of neutrophils as a source for drug-loaded EVs. Neutrophil-like differentiated human promyelocytic leukemia cells (dHL-60) produced massive amounts of EVs within 1 h. The dHL-60 cells are also easily loaded with various cargoes such as antibiotics (penicillin), anticancer drug (paclitaxel), chemoattractant (MCP-1), miRNA, and Cas9. The EVs derived from the dHL-60 cells showed efficient incorporation of these cargoes and significant effector functions, such as bactericidal activity, monocyte chemotaxis, and macrophage polarization. Our results suggest that neutrophils or neutrophil-like promyelocytic cells could be an attractive source for drug-delivery EVs.
Collapse
Affiliation(s)
- Jun-Kyu Kim
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Young-Jin Youn
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Yu-Bin Lee
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Sun-Hwa Kim
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.,KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.,KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sanjeeb Shrestha
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.
| |
Collapse
|
11
|
Gao J, Dong X, Su Y, Wang Z. Human neutrophil membrane-derived nanovesicles as a drug delivery platform for improved therapy of infectious diseases. Acta Biomater 2021; 123:354-363. [PMID: 33476827 DOI: 10.1016/j.actbio.2021.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Resolvins are a group of specialized proresolving lipid mediators (SPMs) enzymatically produced from omega-3 fatty acids during acute inflammation response to infections or tissue injury. Resolvin D1 (RvD1) is one of resolvins and is well studied in resolution of inflammation to treat inflammatory diseases. Resolution of inflammation includes the inhibition of polymorphonuclear leukocyte recruitment and reduced cytokine production. However, effective delivery of RvD1 to inflammatory tissues is challenging because of its lack of tissue targeting and poor physicochemical properties. Here, we proposed nanovesicles made from human neutrophil membrane which can specifically target inflamed tissues, and we loaded RvD1 on the surface of nanovesicles and antibiotic (ceftazidime, CEF) inside nanovesicles for improved treatment of bacterial infections. In a mouse model of bacterium-induced peritonitis, we demonstrated that human neutrophil cell membrane-formed vesicles (NMVs) enhanced inflammation resolution and bacterial killing after co-delivery of RvD1 and CEF. Our studies reveal that neutrophil nanovesicles may be critical for enhanced therapy to infectious diseases.
Collapse
|
12
|
Gao J, Wang S, Dong X, Wang Z. RGD-expressed bacterial membrane-derived nanovesicles enhance cancer therapy via multiple tumorous targeting. Theranostics 2021; 11:3301-3316. [PMID: 33537088 PMCID: PMC7847689 DOI: 10.7150/thno.51988] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background: A tumor microenvironment is a complicated multicellular system comprised of tumor cells, immune cells and blood vessels. Blood vessels are the barriers for drug tissue penetration. Effectively treating a cancer requires drug delivery systems to overcome biological barriers present in tumor microenvironments (TMEs). Methods: We designed a drug delivery system made of bacterial (Escherichia coli) double layer membrane-derived nanovesicles (DMVs) with the expression of RGD peptides and endogenous targeting ligands of bacteria. The physical and biological characteristics of DMVs were assessed by cryogenic transmission electron microscopy, western blotting, flow cytometry and confocal microscopy. Doxorubicin (DOX) was loaded in DMVs via a pH gradient driven drug loading method. Therapeutical effects of DOX-loaded DMVs were studied in a melanoma xenograft mouse model. Results:In vitro and in vivo experiments showed that DMVs can target neutrophils and monocytes that mediated the transport of DMVs across blood vessel barriers and they can also directly target tumor vasculature and tumor cells, resulting in enhanced delivery of therapeutics to TMEs. Furthermore, we developed a remote drug loading approach to efficiently encapsulate DOX inside DMVs, and the drug loading was 12% (w/w). In the B16-F10 melanoma mouse model, we showed that DOX-RGD-DMVs significantly inhibited the tumor growth compared to several controls. Conclusion: Our studies reveal that DMVs are a powerful tool to simultaneously target multiple cells in TMEs, thus increasing drug delivery for improved cancer therapies.
Collapse
|
13
|
The Functional Heterogeneity of Neutrophil-Derived Extracellular Vesicles Reflects the Status of the Parent Cell. Cells 2020; 9:cells9122718. [PMID: 33353087 PMCID: PMC7766779 DOI: 10.3390/cells9122718] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Similar to other cell types, neutrophilic granulocytes also release extracellular vesicles (EVs), mainly medium-sized microvesicles/microparticles. According to published data, authors have reached a consensus on the physical parameters (size, density) and chemical composition (surface proteins, proteomics) of neutrophil-derived EVs. In contrast, there is large diversity and even controversy in the reported functional properties. Part of the discrepancy may be ascribed to differences in the viability of the starting cells, in eliciting factors, in separation techniques and in storage conditions. However, the most recent data from our laboratory prove that the same population of neutrophils is able to generate EVs with different functional properties, transmitting pro-inflammatory or anti-inflammatory effects on neighboring cells. Previously we have shown that Mac-1 integrin is a key factor that switches anti-inflammatory EV generation into pro-inflammatory and antibacterial EV production. This paper reviews current knowledge on the functional alterations initiated by neutrophil-derived EVs, listing their effects according to the triggering agents and target cells. We summarize the presence of neutrophil-derived EVs in pathological processes and their perspectives in diagnostics and therapy. Finally, the functional heterogeneity of differently triggered EVs indicates that neutrophils are capable of producing a broad spectrum of EVs, depending on the environmental conditions prevailing at the time of EV genesis.
Collapse
|
14
|
Yang G, Wu P, Yu C, Zhang J, Song J. Facile Engineering of Anti‐Inflammatory Nanotherapies by Host‐Guest Self‐Assembly. ChemistrySelect 2020. [DOI: 10.1002/slct.202001590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guoyu Yang
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| | - Peng Wu
- Department of Pharmaceutics College of PharmacyThird Military Medical University (Army Medical University) 30 Gaotanyan Main Street Chongqing 400038 China
| | - Cong Yu
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| | - Jianxiang Zhang
- Department of Pharmaceutics College of PharmacyThird Military Medical University (Army Medical University) 30 Gaotanyan Main Street Chongqing 400038 China
| | - Jinlin Song
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| |
Collapse
|
15
|
Jeevan BGC, Szlenk CT, Gao J, Dong X, Wang Z, Natesan S. Molecular Dynamics Simulations Provide Insight into the Loading Efficiency of Proresolving Lipid Mediators Resolvin D1 and D2 in Cell Membrane-Derived Nanovesicles. Mol Pharm 2020; 17:2155-2164. [PMID: 32374613 PMCID: PMC7313724 DOI: 10.1021/acs.molpharmaceut.0c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Resolvins D1 and D2 (RvDs) are structural isomers and metabolites of docosahexaenoic acid, an omega-3 fatty acid, enzymatically produced in our body in response to acute inflammation or microbial invasion. Resolvins have been shown to play an essential role in the resolution of inflammation, tissue repair, and return to homeostasis and thus are actively pursued as potential therapeutics in treating inflammatory disorders and infectious diseases. However, effective in vivo delivery of RvDs continues to be a challenging task. Recent studies demonstrated that RvD1 or RvD2 loaded in cell membrane-derived nanovesicles significantly increased therapeutic efficacy in treating murine peritonitis and ischemic stroke, respectively. The mechanistic details of how the subtle structural difference between RvD1 and RvD2 alters their molecular interactions with the membrane lipids of the nanovesicles and thus affects the loading efficiency remain unknown. Here, we report the encapsulation profiles of the neutral and ionized species of both RvD1 and RvD2 determined with the cell membrane-derived nanovesicles at pH values 5.4 and 7.4, respectively. Also, we performed microsecond time-scale all-atom molecular dynamics (MD) simulations in explicit water to elucidate the molecular interactions of both neutral and ionized species of RvD1 and RvD2 with the lipid bilayer using a model membrane system, containing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol. We found that the differences in the position and chirality of hydroxyl groups in RvD1 and RvD2 affected their location, orientation, and conformations within the bilayer. Surprisingly, the deprotonation of their carboxyl group caused their orientation and conformation to change from a fully extended one that is oriented in parallel to the membrane plane to a J-shaped bent conformation that is oriented perpendicular to the bilayer plane. Our studies offer valuable insight into the molecular interactions of RvD1/D2 with the lipid bilayer in atomistic details and provide a mechanistic explanation for the observed differences in the encapsulation profiles of RvD1 and RvD2, which may facilitate the rational design of nanovesicle-based therapeutics for treating inflammatory diseases.
Collapse
Affiliation(s)
- B. GC Jeevan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Christopher T. Szlenk
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
16
|
Gao J, Dong X, Wang Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods 2020; 177:114-125. [PMID: 31790730 PMCID: PMC7198327 DOI: 10.1016/j.ymeth.2019.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs), derived from cell membranes, demonstrate the potential to be excellent therapeutics and drug carriers. Although EVs are promising, the process to develop high-quality and scalable EVs for their translation is demanding. Within this research, we analyzed the production of EVs, their purification and their post-bioengineering, and we also discussed the biomedical applications of EVs. We focus on the developments of methods in producing EVs including biological, physical, and chemical approaches. Furthermore, we discuss the challenges and the opportunities that arose when we translated EVs in clinic. With the advancements in nanotechnology and immunology, genetically engineering EVs is a new frontier in developing new therapeutics in order to tailor to individuals and different disease stages in treatments of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
17
|
Dong X, Gao J, Zhang CY, Hayworth C, Frank M, Wang Z. Neutrophil Membrane-Derived Nanovesicles Alleviate Inflammation To Protect Mouse Brain Injury from Ischemic Stroke. ACS NANO 2019; 13:1272-1283. [PMID: 30673266 PMCID: PMC6424134 DOI: 10.1021/acsnano.8b06572] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ischemic stroke is an acute and severe neurological disease, resulting in disability and death. Reperfusion to an ischemic brain is a means to reverse brain damage after stroke; however, this causes secondary tissue damage induced by inflammation responses, called ischemia/reperfusion (I/R) injury. Adhesion of neutrophils to endothelial cells underlies the initiation of inflammation in I/R. Inspired by this interaction, we report a drug delivery system comprised of neutrophil membrane-derived nanovesicles loaded with Resolvin D2 (RvD2) that can enhance resolution of inflammation, thus protecting brain damage during ischemic stroke. In the study, the middle cerebral artery occlusion (MCAO) mouse model was developed to mimic ischemic stroke. Using intravital microscopy of a live mouse brain, we visualized the binding of nanovesicles to inflamed brain vasculature for delivery of therapeutics to ischemic stroke lesions in real-time. We also observed that RvD2-loaded nanovesicles dramatically decreased inflammation in ischemic stroke and improved mouse neurological functions. Our study provides a strategy to inhibit neuroinflammation using neutrophil-derived nanovesicles for ischemic stroke therapy.
Collapse
Affiliation(s)
- Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, USA
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, USA
| | - Can Yang Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, USA
| | - Christopher Hayworth
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202, USA
| | - Marcos Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, USA
- Corresponding Author:
| |
Collapse
|