1
|
Werth EG, Roos D, Philip ET. Immunocapture LC-MS methods for pharmacokinetics of large molecule drugs. Bioanalysis 2024; 16:165-177. [PMID: 38348660 DOI: 10.4155/bio-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Implementation of immunocapture LC-MS methods to characterize the pharmacokinetic profile of large molecule drugs has become a widely used technique over the past decade. As the pharmaceutical industry strives for speediness into clinical development without jeopardizing quality, robust assays with generic application across the pipeline are becoming instrumental in bioanalysis, especially in early-stage development. This review highlights the capabilities and challenges involved in hybrid immunocapture LC-MS techniques and its continued applications in nonclinical and clinical pharmacokinetic assay design. This includes a comparison of LC-MS-based approaches to conventional ligand-binding assays and the driving demands in large molecule drug portfolios including growing sensitivity requirements and the unique challenges of new modalities requiring innovation in the bioanalytical laboratory.
Collapse
Affiliation(s)
- Emily G Werth
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - David Roos
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Elsy T Philip
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| |
Collapse
|
2
|
Deng X, Hou Y, Yuan W, Yang H, Guo R, Liu T, Liu Y, Xu J, Liu H, Gong L, Qin Q. Eliminating drug target interference with specific antibody or its F(ab') 2 fragment in the bridging immunogenicity assay. Bioanalysis 2024; 16:135-148. [PMID: 38385901 DOI: 10.4155/bio-2023-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Background: DB-1003 is a humanized anti-IgE monoclonal antibody with higher affinity than omalizumab. In the affinity capture elution (ACE)-based bridging electrochemiluminescent immunoassay (ECLIA) for antibodies to DB-1003, monkey serum IgE caused false-positive results. Materials & methods: The target-specific antibody or its F(ab')2 fragment was used to mitigate drug target interference in an ACE-based bridging ECLIA for the detection of anti-DB-1003 antibodies. Results: The sensitivity of the developed assay was at least 100 ng/ml. When the anti-drug antibody concentration was 250 ng/ml, the assay tolerated at least 20.0 μg/ml of the monkey IgE. Conclusion: Incorporating the target-specific antibody or its F(ab')2 fragment can overcome the interference from monkey serum IgE in ACE-based bridging ECLIA for anti-DB-1003 antibody detection.
Collapse
Affiliation(s)
- Xiaojie Deng
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingying Hou
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenyi Yuan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hongzhou Yang
- Longbio Pharma (Suzhou) Co., Ltd, Suzhou, 215558, China
| | - Ruowen Guo
- Longbio Pharma (Suzhou) Co., Ltd, Suzhou, 215558, China
| | - Tingting Liu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongzhen Liu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Junjiu Xu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Heng Liu
- Longbio Pharma (Suzhou) Co., Ltd, Suzhou, 215558, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuping Qin
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
3
|
Huang W, Li J, Liao MZ, Liu SN, Yu J, Jing J, Kotani N, Kamen L, Guelman S, Miles DR. Clinical Pharmacology Perspectives for Adoptive Cell Therapies in Oncology. Clin Pharmacol Ther 2022; 112:968-981. [PMID: 34888856 PMCID: PMC9786613 DOI: 10.1002/cpt.2509] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022]
Abstract
Adoptive cell therapies (ACTs) have shown transformative efficacy in oncology with five US Food and Drug Administration (FDA) approvals for chimeric antigen receptor (CAR) T-cell therapies in hematological malignancies, and promising activity for T cell receptor T-cell therapies in both liquid and solid tumors. Clinical pharmacology can play a pivotal role in optimizing ACTs, aided by modeling and simulation toolboxes and deep understanding of the underlying biological and immunological processes. Close collaboration and multilevel data integration across functions, including chemistry, manufacturing, and control, biomarkers, bioanalytical, and clinical science and safety teams will be critical to ACT development. As ACT is comprised of alive, polyfunctional, and heterogeneous immune cells, its overall physicochemical and pharmacological property is vastly different from other platforms/modalities, such as small molecule and protein therapeutics. In this review, we first describe the unique kinetics of T cells and the appropriate bioanalytical strategies to characterize cellular kinetics. We then assess the distinct aspects of clinical pharmacology for ACTs in comparison to traditional small molecule and protein therapeutics. Additionally, we provide a review for the five FDA-approved CAR T-cell therapies and summarize their properties, cellular kinetic characteristics, dose-exposure-response relationship, and potential baseline factors/variables in product, patient, and regimen that may affect the safety and efficacy. Finally, we probe into existing empirical and mechanistic quantitative techniques to understand how various modeling and simulation approaches can support clinical pharmacology strategy and propose key considerations to be incorporated and explored in future models.
Collapse
Affiliation(s)
- Weize Huang
- Genentech Inc.South San FranciscoCaliforniaUSA
| | - Junyi Li
- Genentech Inc.South San FranciscoCaliforniaUSA
| | | | | | - Jiajie Yu
- Genentech Inc.South San FranciscoCaliforniaUSA
| | - Jing Jing
- Genentech Inc.South San FranciscoCaliforniaUSA
| | - Naoki Kotani
- Genentech Inc.South San FranciscoCaliforniaUSA,Chugai Pharmaceutical Co., Ltd.TokyoJapan
| | - Lynn Kamen
- Genentech Inc.South San FranciscoCaliforniaUSA
| | | | | |
Collapse
|
4
|
Nedorezova DD, Dubovichenko MV, Belyaeva EP, Grigorieva ED, Peresadina AV, Kolpashchikov DM. Specificity of oligonucleotide gene therapy (OGT) agents. Theranostics 2022; 12:7132-7157. [PMID: 36276652 PMCID: PMC9576606 DOI: 10.7150/thno.77830] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotide gene therapy (OGT) agents (e. g. antisense, deoxyribozymes, siRNA and CRISPR/Cas) are promising therapeutic tools. Despite extensive efforts, only few OGT drugs have been approved for clinical use. Besides the problem of efficient delivery to targeted cells, hybridization specificity is a potential limitation of OGT agents. To ensure tight binding, a typical OGT agent hybridizes to the stretch of 15-25 nucleotides of a unique targeted sequence. However, hybrids of such lengths tolerate one or more mismatches under physiological conditions, the problem known as the affinity/specificity dilemma. Here, we assess the scale of this problem by analyzing OGT hybridization-dependent off-target effects (HD OTE) in vitro, in animal models and clinical studies. All OGT agents except deoxyribozymes exhibit HD OTE in vitro, with most thorough evidence of poor specificity reported for siRNA and CRISPR/Cas9. Notably, siRNA suppress non-targeted genes due to (1) the partial complementarity to mRNA 3'-untranslated regions (3'-UTR), and (2) the antisense activity of the sense strand. CRISPR/Cas9 system can cause hundreds of non-intended dsDNA breaks due to low specificity of the guide RNA, which can limit therapeutic applications of CRISPR/Cas9 by ex-vivo formats. Contribution of this effects to the observed in vivo toxicity of OGT agents is unclear and requires further investigation. Locked or peptide nucleic acids improve OGT nuclease resistance but not specificity. Approaches that use RNA marker dependent (conditional) activation of OGT agents may improve specificity but require additional validation in cell culture and in vivo.
Collapse
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Mikhail V. Dubovichenko
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina P. Belyaeva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina D. Grigorieva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Arina V. Peresadina
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
5
|
Critical reagent inventory management system and web portal specifically optimized for supporting external clients. Bioanalysis 2022; 14:869-879. [PMID: 35904158 DOI: 10.4155/bio-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High-quality critical reagents are essential for the establishment of robust ligand binding assays to support regulated bioanalysis. To ensure consistency in assay performance over the lifetime of a project, a well-defined set of processes is needed for critical reagent life cycle management. Moreover, contract research organizations must support reagent life cycle management for diverse global clients. To address these needs, the authors designed and implemented a customized inventory management system, known as LCM+. This software solution provides external clients with efficient, secure access via a web portal to their critical reagent information, pertinent documentation and inventory tracking. Hence, the authors believe that LCM+ can serve as a useful prototype to aid the design of future inventory management systems for optimal management of critical reagents.
Collapse
|