1
|
Yehia RM, Lamie C, Attia DA. Microsponges-mediated targeted topical delivery of rosemary oil for hair growth promotion: optimization and in-vivo studies. Pharm Dev Technol 2024; 29:604-617. [PMID: 38958230 DOI: 10.1080/10837450.2024.2372572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Individuals experiencing hair loss, irrespective of gender, confront significant psychological challenges. This study explores the untapped potential of rosemary oil (ROS) to stimulate hair growth, addressing its limited permeability. The focus is on innovating ROS-loaded microsponges (MS) for enhanced topical application. Utilizing Box-Behnken design (33), the study optimizes ROS-MS compositions by varying solvent volume, polymer mix, and drug concentration. The optimized ROS-MS formulation exhibits noteworthy attributes: a 94% ± 0.04 production yield, 99.6% ± 0.5 encapsulation efficiency, and 96.4% ± 1.6 cumulative ROS release within 24 h. These microsponges exhibit uniformity with a particle size of 14.1 µm ± 4.5. The OPT-ROSMS-gel showcases favorable characteristics in appearance, spreadability, pH, drug content, and extrudability. Ex-vivo skin deposition tests highlight heightened permeability of OPT-ROSMS-gel compared to pure ROS-gel, resulting in three-fold increased follicular retention. In-vivo studies underscore the superior efficacy of OPT-ROSMS-gel, revealing enhanced hair development in length, thickness, and bulb diameter, surpassing ROS-gel and minoxidil by approximately 1.2 and 1.5 times, respectively, along with nearly two-fold increase in β-catenin levels. In conclusion, microsponges emerge as a promising ROS delivery method, effectively addressing hair loss. This research advances hair loss treatments and underscores the significance of this innovative paradigm in fostering hair growth.
Collapse
Affiliation(s)
- Rania M Yehia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Caroline Lamie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
2
|
Xu W, Jia Y, Wei J, Ning Y, Sun H, Jiang L, Chai L, Luo D, Cao S, Shah BR. Characterization and antibacterial behavior of an edible konjac glucomannan/soluble black tea powder hybrid film with ultraviolet absorption. RSC Adv 2022; 12:32061-32069. [PMID: 36415559 PMCID: PMC9644209 DOI: 10.1039/d2ra05030g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
In this study, a KGM/SBTP film was prepared by a blending method using KGM and a soluble black tea film (SBTP) as substrates, and its hygroscopicity, thermal properties, light barrier properties, microstructure, and bacteriostatic properties were evaluated. The results confirmed that compared with the control group, with the increase in the SBTP content, the transmittance of the film in the ultraviolet region significantly reduced, and the water barrier property and thermal stability were improved. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) results indicated that the tea polyphenols interacted with the film substrate. SEM also showed that the structure of the KGM/SBTP films was smooth and flat, and all samples showed no fracture. In addition, the KGM/SBTP mixed membrane had obvious concentration-dependent antibacterial activity. When the concentration of SBTP was 0.9%, the inhibition zones against Staphylococcus aureus and Escherichia coli were 12.30 ± 0.20 mm and 12.05 ± 0.47 mm, respectively.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Yin Jia
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Jingjing Wei
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Yuli Ning
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| | - Lanxi Jiang
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Liwen Chai
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| | - Shiwan Cao
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Bakht Ramin Shah
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters Na Sádkách, 1780 České Budějovice 37005 Czech Republic
| |
Collapse
|
3
|
Saoji SD, Rarokar NR, Dhore PW, Dube S, Gurav NS, Gurav SS, Raut NA. Phospholipid Based Colloidal Nanocarriers for Enhanced Solubility and Therapeutic Efficacy of Withanolides. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
The Optimization of a Dimenhydrinate Transdermal Patch Formulation Based on the Quantitative Analysis of In Vitro Release Data by DDSolver through Skin Penetration Studies. Sci Pharm 2021. [DOI: 10.3390/scipharm89030033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dimenhydrinate is an over-the-counter medication that is used to relieve nausea, vomiting, and vertigo caused by motion sickness. It has a short elimination half-life, possibly due to its first-pass metabolism. The current study aimed to prepare and evaluate new transdermal formulations of dimenhydrinate to prolong the drug’s release and improve its cutaneous permeation. First, the patches were fabricated and evaluated to determine their properties. The results were statistically investigated and considered significant at the p < 0.05 level. Additionally, the quantitative analysis of the drug-release data and kinetic modeling was performed by using the DDSolver software to decide the candidate formula dependably. The effect of the penetration enhancers on the permeability of dimenhydrinate from the selected patch was then studied ex vivo compared to the control sample, and the patch’s safety was evaluated in rabbits, using the skin-irritation test.
Collapse
|
5
|
PLGA based film forming systems for superficial fungal infections treatment. Eur J Pharm Sci 2021; 163:105855. [PMID: 33872699 DOI: 10.1016/j.ejps.2021.105855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
As proven in clinical trials, superficial fungal infections can be effectively treated by single topical application of terbinafine hydrochloride (Ter-HCl) in a film forming system (FFS). Poly(lactic-co-glycolic acid) (PLGA) derivatives, originally synthesized with intention to get carriers with optimized properties for drug delivery, and multifunctional plasticizers - ethyl pyruvate, methyl salicylate, or triacetin - were used for formulation of Ter-HCl loaded FFSs. After spraying, a biodegradable, transparent, adhesive, and occlusive thin layer is formed on the skin, representing drug depot. In situ formed films were characterized by thermal, structural, viscoelastic, and antifungal properties as well as drug release and skin penetration. DSC and SEM showed fully amorphous films with Ter-HCl dissolved in PLGA in high concentration (up to 15%). FFSs are viscoelastic fluids with viscosity which can be easily adjusted by the type of plasticizer used and its concentration. The formulations showed excellent bioadhesion properties, thus ensuring persistence on the skin. In situ film based on branched PLGA/A plasticized with 10% of ethyl pyruvate allowed prolonged release of Ter-HCl by linear kinetics for the first 6 days with a total time of almost 14 days. During ex vivo human skin penetration experiment, Ter-HCl was found to be located only in its target layer, the epidermis. According to our results, plasticized branched PLGA derivatives loaded by Ter-HCl are suitable for the development of FFSs for superficial fungal infections treatment.
Collapse
|
6
|
Joshi R, Garud N. Development, optimization and characterization of flurbiprofen matrix transdermal drug delivery system using Box–Behnken statistical design. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00199-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Present investigation for research was to develop matrix-type transdermal drug delivery system of flurbiprofen (FBP) with the various ratio of matrix polymers (hydrophilic and hydrophobic), the concentration of plasticizer and natural penetration enhancer by Box–Behnken statistical design to investigate the combined outcome of selected independent variables for effective management of rheumatoid arthritis.
The influence of a binary mixture of polymers, plasticizer and penetration enhancer on physicochemical considerations including thickness, tensile strength, percent elongation, weight variation, percent moisture content, percent moisture uptake, water vapour transmission rate, folding endurance, drug content, in vitro drug dissolution study and then ex vivo drug permeation study was evaluated.
Results
The study demonstrated that the tensile strength of films improved by matrix polymer ratio and to a slighter gradation in the rise of plasticizer and natural penetration enhancer. Ex vivo drug permeation study was accompanied via excised porcine skin as a permeation barrier in Franz diffusion cell. Ex vivo drug permeation study indicated that matrix polymer ratio (HPMC K15M:ERL100) at 3:1 and natural penetration enhancer (d-limonene) at highest concentration 7.5% w/w containing formulation FBPT7 delivered maximum flux and supplementary improved the permeation of drug. The result of the skin irritation test revealed that the developed formulation is free from any type of skin irritation effects like erythema and oedema.
Conclusion
Based on the findings of this research, it can be established that a well-controlled release and very effective skin penetration of the drug was accomplished by the film FBPT7 in the existence of permeation enhancers for prolonged periods.
Collapse
|
7
|
|
8
|
Transdermal patches: Design and current approaches to painless drug delivery. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:197-215. [PMID: 31259729 DOI: 10.2478/acph-2019-0016] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 01/19/2023]
Abstract
Use of transdermal patches can evade many issues associated with oral drug delivery, such as first-pass hepatic metabolism, enzymatic digestion attack, drug hydrolysis and degradation in acidic media, drug fluctuations, and gastrointestinal irritation. This article reviews various transdermal patches available in the market, types, structural components, polymer role, and the required assessment tools. Although transdermal patches have medical applications for smoking cessation, pain relief, osteoporosis, contraception, motion sickness, angina pectoris, and cardiac disorders, advances in formulation development are ongoing to make transdermal patches capable of delivering more challenging drugs. Transdermal patches can be tailored and developed according to the physicochemical properties of active and inactive components, and applicability for long-term use. Therefore, a number of chemical approaches and physical techniques for transdermal patch development are under investigation.
Collapse
|
9
|
Telange DR, Nirgulkar SB, Umekar MJ, Patil AT, Pethe AM, Bali NR. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: Formulation development, physico-chemical and functional characterization. Eur J Pharm Sci 2019; 131:23-38. [DOI: 10.1016/j.ejps.2019.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 10/27/2022]
|
10
|
Albarahmieh E, Albarahmieh M, Alkhalidi BA. Fabrication of Hierarchical Polymeric Thin Films by Spin Coating Toward Production of Amorphous Solid Dispersion for Buccal Drug Delivery System: Preparation, Characterization, and In Vitro Release Investigations. J Pharm Sci 2018; 107:3112-3122. [PMID: 30176251 DOI: 10.1016/j.xphs.2018.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 11/25/2022]
Abstract
The landscape of thin films is continuously evolving as an attractive self-administration mean to drive patient compliance. This work reports incorporation of drugs into various polymeric compositions using spin coating technology to screen amorphous solid dispersion film formation for buccal applications. Polarized light microscopy and differential scanning calorimetry were used for characterization. Physical stability was assessed after films storage at 0% RH/25°C for 6 months. Chlorpheniramine maleate, theophylline, and famotidine were used as model drugs and mixed with Opadry amb II® or Kollicoat IR®. Acryl-EZE II® or Zein was also used as surface (design I) or surface and base polymers (design II). Of all the drug-Opadry combinations, only chlorpheniramine was amorphously dispersed up to 25% (w/w). In contrast, Kollicoat IR® resulted in amorphous dispersions of all the tested drugs, suggesting that it has a better solubilization capacity. Drugs prepared in design II achieved higher in vitro release compared to respective design I, indicating that lower content of Acryl-EZE II® or Zein can decrease drug release over 3 h. It has been also revealed that Zein could improve physical stability of the aged theophylline solid-dispersed films. Release kinetics of model drugs were satisfactory when described by first-order kinetics, facilitated through anomalous transport of both diffusion and polymer swelling.
Collapse
Affiliation(s)
- Esra'a Albarahmieh
- Pharmaceutical Chemical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan.
| | - Muthaffer Albarahmieh
- Pharmaceutical Chemical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman 11180, Jordan
| | - Bashar A Alkhalidi
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| |
Collapse
|
11
|
Korhonen K, Poikolainen M, Korhonen O, Ketolainen J, Laitinen R. Systematic evaluation of a spraying method for preparing thin Eudragit-drug films by Design of Experiments. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Saoji SD, Dave VS, Dhore PW, Bobde YS, Mack C, Gupta D, Raut NA. The role of phospholipid as a solubility- and permeability-enhancing excipient for the improved delivery of the bioactive phytoconstituents of Bacopa monnieri. Eur J Pharm Sci 2016; 108:23-35. [PMID: 27590125 DOI: 10.1016/j.ejps.2016.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
In an attempt to improve the solubility and permeability of Standardized Bacopa Extract (SBE), a complexation approach based on phospholipid was employed. A solvent evaporation method was used to prepare the SBE-phospholipid complex (Bacopa Naturosome, BN). The formulation and process variables were optimized using a central-composite design. The formation of BN was confirmed by photomicroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction (PXRD). The saturation solubility, the in-vitro dissolution, and the ex-vivo permeability studies were used for the functional evaluation of the prepared complex. BN exhibited a significantly higher aqueous solubility compared to the pure SBE (20-fold), or the physical mixture of SBE and the phospholipid (13-fold). Similarly, the in-vitro dissolution revealed a significantly higher efficiency of the prepared complex (BN) in releasing the SBE (>97%) in comparison to the pure SCE (~42%), or the physical mixture (~47%). The ex-vivo permeation studies showed that the prepared BN significantly improved the permeation of SBE (>90%), compared to the pure SBE (~21%), or the physical mixture (~24%). Drug-phospholipid complexation may thus be a promising strategy for solubility enhancement of bioactive phytoconstituents.
Collapse
Affiliation(s)
- Suprit D Saoji
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, India
| | - Vivek S Dave
- St. John Fisher College, Wegmans School of Pharmacy, Rochester, NY, USA
| | - Pradip W Dhore
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, India
| | - Yamini S Bobde
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, India
| | - Connor Mack
- St. John Fisher College, Wegmans School of Pharmacy, Rochester, NY, USA
| | - Deepak Gupta
- Lake Erie College of Osteopathic Medicine, School of Pharmacy, Bradenton, FL, USA
| | - Nishikant A Raut
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, India.
| |
Collapse
|
13
|
The Study of the Influence of Formulation and Process Variables on the Functional Attributes of Simvastatin–Phospholipid Complex. J Pharm Innov 2016. [DOI: 10.1007/s12247-016-9256-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Dhore PW, Dave VS, Saoji SD, Bobde YS, Mack C, Raut NA. Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions. Pharm Dev Technol 2016; 22:90-102. [PMID: 27291246 DOI: 10.1080/10837450.2016.1193193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the present study, a lyophilized milk-based solid dispersion (SD) of ritonavir (RTV) was developed with the goal of improving its aqueous solubility. The SD was prepared by lyophilization, and characterized for its physicochemical and functional properties. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), photomicroscopy and powder X-ray diffraction (PXRD) were used to confirm the formation and robustness of the SD formulation. The prepared SD formulations were functionally evaluated by saturation solubility, in vitro drug release and ex vivo permeation studies. The optimized SD formulation exhibited a significantly higher (30-fold) aqueous solubility (11.36 ± 0.06 μg/mL), compared to the pure RTV (0.37 ± 0.03 μg/mL). The in vitro dissolution studies revealed a significantly higher (∼10-fold) efficiency of the optimized SD formulation in releasing the RTV, compared to the pure RTV. The ex vivo permeation studies with the everted intestine method showed that prepared SD formulation significantly improved the permeation of RTV (75.6 ± 3.09, % w/w), compared to pure RTV (20.45 ± 1.68, % w/w). Thus, SD formulation utilizing lyophilized milk as a carrier appears to be a promising alternative strategy to improve the aqueous solubility of poorly water soluble drugs.
Collapse
Affiliation(s)
- Pradip W Dhore
- a Department of Pharmaceutical Sciences , R.T.M. Nagpur University , Nagpur , India
| | - Vivek S Dave
- b Wegmans School of Pharmacy, St. John Fisher College , Rochester , NY , USA
| | - Suprit D Saoji
- a Department of Pharmaceutical Sciences , R.T.M. Nagpur University , Nagpur , India
| | - Yamini S Bobde
- a Department of Pharmaceutical Sciences , R.T.M. Nagpur University , Nagpur , India
| | - Connor Mack
- b Wegmans School of Pharmacy, St. John Fisher College , Rochester , NY , USA
| | - Nishikant A Raut
- a Department of Pharmaceutical Sciences , R.T.M. Nagpur University , Nagpur , India
| |
Collapse
|
15
|
Saoji SD, Raut NA, Dhore PW, Borkar CD, Popielarczyk M, Dave VS. Preparation and Evaluation of Phospholipid-Based Complex of Standardized Centella Extract (SCE) for the Enhanced Delivery of Phytoconstituents. AAPS J 2016; 18:102-14. [PMID: 26563253 PMCID: PMC7583548 DOI: 10.1208/s12248-015-9837-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/17/2015] [Indexed: 11/30/2022] Open
Abstract
In the present study, a phospholipid-based complex of standardized Centella extract (SCE) was developed with a goal of improving the bioavailability of its phytoconstituents. The SCE-phospholipid complex was prepared by solvent evaporation method and characterized for its physicochemical and functional properties. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), photomicroscopy, and powder x-ray diffraction (PXRD) were used to confirm the formation of Centella naturosome (CN). The prepared complex was functionally evaluated by apparent solubility, in vitro drug release, ex vivo permeation, and in vivo efficacy studies. The prepared CN exhibited a significantly higher (12-fold) aqueous solubility (98.0 ± 1.4 μg/mL), compared to the pure SCE (8.12 ± 0.44 μg/mL), or the physical mixture of SCE and the phospholipid (13.6 ± 0.4 μg/mL). The in vitro dissolution studies revealed a significantly higher efficiency of CN in releasing the SCE (99.2 ± 4.7, % w/w) in comparison to the pure SCE (39.2 ± 2.3, % w/w), or the physical mixture (42.8 ± 2.09, % w/w). The ex vivo permeation studies with the everted intestine method showed that the prepared CN significantly improved the permeation of SCE (82.8 ± 3.7, % w/w), compared to the pure SCE (26.8 ± 2.4, % w/w), or the physical mixture (33.0 ± 2.7, % w/w). The in vivo efficacy studies using the Morris Water Maze test indicated a significant improvement of the spatial learning and memory in aged mice treated with CN. Thus, drug-phospholipid complexation appears to be a promising strategy to improve the aqueous solubility and bioavailability of bioactive phytoconstituents.
Collapse
Affiliation(s)
- Suprit D Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Nishikant A Raut
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Pradip W Dhore
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Chandrashekhar D Borkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Michael Popielarczyk
- Wegmans School of Pharmacy, St. John Fisher College, Rochester, New York, 14534, USA
| | - Vivek S Dave
- Wegmans School of Pharmacy, St. John Fisher College, Rochester, New York, 14534, USA.
| |
Collapse
|