1
|
Gupta J, Sharma G. Nanogel: A versatile drug delivery system for the treatment of various diseases and their future perspective. Drug Deliv Transl Res 2024:10.1007/s13346-024-01684-w. [PMID: 39103593 DOI: 10.1007/s13346-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Nanogel (NG) drug delivery systems have emerged as promising tools for targeted and controlled drug release, revolutionizing treatment approaches across various diseases. Their unique physicochemical properties, such as nano size, high surface area, biocompatibility, stability, and tunable drug release, make them ideal carriers for a wide range of therapeutic agents. Nanogels (NGs), characterized by their 3D network of crosslinked polymers, offer unique edges like high drug loading capacity, controlled release, and targeted delivery. Additionally, the diverse applications of NGs in medical therapeutics highlight their versatility and potential impact on improving patient outcomes. Their application spans cancer treatment, infectious diseases, and chronic conditions, allowing for precise drug delivery to specific tissues or cells, minimizing side effects, and enhancing therapeutic efficacy. Despite their potential, challenges such as scalability, manufacturing reproducibility, and regulatory hurdles must be addressed. Achieving clinical translation requires overcoming these obstacles to ensure therapeutic payloads' safe and efficient delivery. Strategies such as surface modification and incorporating stimuli-responsive elements enhanced NG performance and addressed specific therapeutic challenges. Advances in nanotechnology, biomaterials, and targeted drug design offer opportunities to improve the performance of NGs and address current limitations. Tailoring NGs for exploring combination therapies and integrating diagnostics for real-time monitoring represent promising avenues for future research. In conclusion, NG drug delivery systems have demonstrated tremendous potential in diverse disease applications. Overcoming challenges and leveraging emerging technologies will pave the way for their widespread clinical implementation, ushering in a new era of precision medicine and improved patient care.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Gaurang Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
2
|
Ho HMK, Day RM, Craig DQM. An Investigation into the Effects of Processing Factors on the Properties and Scaling-Up Potential of Propranolol-Loaded Chitosan Nanogels. Pharmaceutics 2024; 16:662. [PMID: 38794324 PMCID: PMC11125439 DOI: 10.3390/pharmaceutics16050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan-triphosphate (TPP) nanogels are widely studied drug delivery carrier systems, typically prepared via a simple mixing process. However, the effects of the processing factors on nanogel production have not been extensively explored, despite the importance of understanding and standardising such factors to allow upscaling and commercial usage. This study aims to systematically evaluate the effects of various fabrication and processing factors on the properties of nanogels using a Design of Experiment approach. Hydrodynamic size, polydispersity index (PDI), zeta potential, and encapsulation efficiency were determined as the dependent factors. The temperature, stirring rate, chitosan grade, crosslinker choice, and the interaction term between temperature and chitosan grade were found to have a significant effect on the particle size, whereas the effect of temperature and the addition rate of crosslinker on the PDI was also noteworthy. Moreover, the addition rate of the crosslinker and the volume of the reaction vessel were found to impact the encapsulation efficiency. The zeta potential of the nanogels was found to be governed by the chitosan grade. The optimal fabrication conditions for the development of medium molecular weight chitosan and TPP nanogels included the following: the addition rate for TPP solution was set at 2 mL/min, while the solution was then stirred at a temperature of 50 °C and a stirring speed of 600 rpm. The volume of the glass vial used was 28 mL, while the stirrer size was 20 mm. The second aim of the study was to evaluate the potential for scaling up the nanogels. Size and PDI were found to increase from 128 nm to 151 nm and from 0.232 to 0.267, respectively, when the volume of the reaction mixture was increased from 4 to 20 mL and other processing factors were kept unchanged. These results indicate that caution is required when scaling up as the nanogel properties may be significantly altered with an increasing production scale.
Collapse
Affiliation(s)
- Hei Ming Kenneth Ho
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Richard M. Day
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Duncan Q. M. Craig
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Faculty of Science, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
3
|
Mushtaq F, Ashfaq M, Anwar F, Ayesha BT, Latif HS, Khalil S, Sarwar HS, Khan MI, Sohail MF, Maqsood I. Injectable Chitosan-Methoxy Polyethylene Glycol Hybrid Hydrogel Untangling the Wound Healing Behavior: In Vitro and In Vivo Evaluation. ACS OMEGA 2024; 9:2145-2160. [PMID: 38250419 PMCID: PMC10795122 DOI: 10.1021/acsomega.3c04346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/22/2023] [Indexed: 01/23/2024]
Abstract
Wound healing, particularly for difficult-to-treat wounds, presents a serious threat and may lead to complications. Currently available dressings lack mucoadhesion, safety, efficacy, and, most importantly, patient compliance. Herein, we developed a unique, simple, and inexpensive injectable chitosan-methoxy polyethylene glycol (chitosan-mPEG) hybrid hydrogel with tunable physicochemical and mechanical properties for wound healing. The detailed physicochemical and rheological characterization of the chitosan-mPEG hydrogel has revealed chemical interaction between available -NH2 groups of chitosan and -COOH groups of mPEG acid, which, to our perspective, enhanced the mechanical and wound healing properties of hybrid chitosan and mPEG hydrogel compared to solo chitosan or PEG hydrogel. By introducing mPEG, the wound healing ability of hydrogel is synergistically improved due to its antibacterial feature, together with chitosan's innate role in hemostasis and wound closure. The detailed hemostasis and wound closure potential of the chitosan-mPEG hydrogel were investigated in a rat model, which confirmed a significant acceleration in wound healing and ultimately wound closure. In conclusion, the developed chitosan-mPEG hydrogel met all the required specifications and could be developed as a promising material for hemostasis, especially wound management, and as an excellent candidate for wound healing application.
Collapse
Affiliation(s)
- Fizza Mushtaq
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | - Madeeha Ashfaq
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | - Fareeha Anwar
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | - Badarqa Tul Ayesha
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | | | - Sadia Khalil
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | | | - Muhammad Imran Khan
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | - Muhammad Farhan Sohail
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
| | - Iram Maqsood
- Riphah
International University (R.I.U.), Riphah
Institute of Pharmaceutical Sciences (RIPS), Lahore, Punjab 54000, Pakistan
- Department
of Pharmaceutics, School of Pharmacy, University
of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
Narayanan KB, Bhaskar R, Han SS. Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics 2022; 14:2832. [PMID: 36559325 PMCID: PMC9782855 DOI: 10.3390/pharmaceutics14122832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol-ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Dissolvable zinc oxide nanoparticle-loaded wound dressing with preferential exudate absorption and hemostatic features. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Ahmad A, Ahmad M, Minhas MU, Sarfraz M, Sohail M, Khan KU, Tanveer S, Ijaz S. Synthesis and Evaluation of Finasteride-Loaded HPMC-Based Nanogels for Transdermal Delivery: A Versatile Nanoscopic Platform. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2426960. [PMID: 35909483 PMCID: PMC9325624 DOI: 10.1155/2022/2426960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Herein, we report nanogels comprising diverse feed ratio of polymer hydroxypropyl methylcellulose (HPMC), monomer acrylic acid (AA), and cross-linker methylene bisacrylamide (MBA) fabricated for transdermal delivery of finasteride (FIN). Free radical solution polymerization method with subsequent condensation was employed for the synthesis using ammonium per sulfate (APS) and sodium hydrogen sulfite (SHS) as initiators. Carbopol-940 gel (CG) was formulated as assisting platform to deliver FIN nanogels transdermally. Developed formulations were evaluated by several in vitro, ex vivo, and in vivo parameters such as particle size and charge distribution analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffractogram (XRD), rheological testing, in vitro swelling and drug release, and ex vivo skin permeation, irritation, and toxicity assessment. The results endorsed the nanogel formation (117.3 ± 29.113 nm), and the impact of synthesizing method was signified by high yield of nanogels (≈91%). Efficient response for in vitro swelling and FIN release was revealed at pH 5.5 and 7.4. Skin irritation and toxicity assessment ensured the biocompatibility of prepared nanocomposites. On the basis of the results obtained, it can be concluded that the developed nanogels were stable with excellent drug permeation profile across skin.
Collapse
Affiliation(s)
- Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Mahmood Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road Sargodha City, Punjab, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy Al Ain University, Al Ain Campus, Al Ain, UAE
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060 KPK, Pakistan
| | | | - Sana Tanveer
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
7
|
Ay Şenyiğit Z, Coşkunmeriç N, Çağlar EŞ, Öztürk İ, Atlıhan Gündoğdu E, Siafaka PI, Üstündağ Okur N. Chitosan-bovine serum albumin-Carbopol 940 nanogels for mupirocin dermal delivery: ex-vivo permeation and evaluation of cellular binding capacity via radiolabeling. Pharm Dev Technol 2021; 26:852-866. [PMID: 34193003 DOI: 10.1080/10837450.2021.1948570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The goal of this study was to develop and examine the nanogel-based topical delivery system of mupirocin. Nanogels were prepared with chitosan and bovine serum albumin by ionic gelation and Carbopol 940 was added to improve the gelling/adhesive properties. Detailed characterization studies were performed and the cellular binding capacity of radiolabeled nanogels was investigated on CCD-1070Sk cell lines. Results indicate the successful formation of nanogels with particle size and zeta potential ranged between 341.920-603.320 nm and 13.120-24.300 mV, respectively. The mechanical and rheological studies proved pseudoplastic and strong elastic gel behavior (G' > G''). Mupirocin was successfully entrapped into nanogels with a ratio of more than 95% and the loaded drug was slowly released up to 93.89 ± 3.07% within 24 h. The ex vivo penetration and permeation percentages of mupirocin were very low (1.172 ± 0.202% and 0.161 ± 0.136%) indicating the suitability of nanogels for dermal use against superficial skin infections. The microbiological studies pointed out the effectiveness of nanogels against Staphylococcus aureus strains. Nanogels did not show toxicity signs and the cell binding capacity of radiolabeled formulations was found to be higher than [99mTc]NaTcO4 to CCD-1070Sk cell line. Overall, mupirocin nanogels might be considered as a potential and safe topical treatment option for bacterial skin infections.
Collapse
Affiliation(s)
- Zeynep Ay Şenyiğit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Nesrin Coşkunmeriç
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - İsmail Öztürk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Panoraia I Siafaka
- Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,KES College, Nicosia, Cyprus
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
8
|
Pinelli F, Ortolà ÓF, Makvandi P, Perale G, Rossi F. In vivo drug delivery applications of nanogels: a review. Nanomedicine (Lond) 2020; 15:2707-2727. [PMID: 33103960 DOI: 10.2217/nnm-2020-0274] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, nanogels have emerged as promising drug delivery vehicles; their ability in holding active molecules, macromolecules and drugs, together with the capability to respond to external stimuli, makes them a suitable tool for a wide range of applications. These features allow nanogels to be exploited against many challenges of nanomedicine associated with different kinds of pathologies which require the use of specific drug delivery systems. In this review our aim is to give the reader an overview of the diseases that can be treated with nanogels as drug delivery systems, such as cancer, CNS disorders, cardiovascular diseases, wound healing and other diseases of human body. For all of these pathologies, biological in vivo assays can be found in the literature and in this work. We focus on the peculiarities of these nanogels, highlighting their features and their advantages in respect to conventional treatments.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| | - Óscar Fullana Ortolà
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| | - Pooyan Makvandi
- Institute for Polymers, Composites & Biomaterials, National Research Council, Via Campi Flegrei, 34 - 80078 Pozzuoli (NA), Italy.,Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via Buffi 13, 6900 Lugano, Switzerland
| | - Filippo Rossi
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
9
|
Nanogels for regenerative medicine. J Control Release 2019; 313:148-160. [PMID: 31629040 DOI: 10.1016/j.jconrel.2019.09.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/04/2023]
Abstract
Nanogels have been widely explored for drug delivery, but their applications in the tissue engineering field are still quite recent. Regenerative medicine also demands controlled delivery of growth factors and other active substances able to promote cell adhesion and guide cell differentiation and tissue formation. Moreover, nanogels could be added to tissue scaffolds for modifying their inner architecture, texture and mechanical properties, which are critical for regulating cell behavior. This review aims to provide an insight into the different roles that nanogels may play for improving tissue regeneration. Last decade literature has been carefully analyzed with a focus on in vivo outcomes. After an introductory section to nanogels, relevant examples of their performance for skin and bone tissue regeneration applications are discussed. Healing of chronic wounds and critical size bone fractures may significantly improve thanks to the use of nanogels solely or in combination with scaffolds. Nanogel roles in regenerating vessels, cardiac tissue, urothelium and urethral muscle tissue are also presented. Overall, the information gathered in the review clearly highlights the relevance of multidisciplinary approaches to design nanogels that can face up to the needs of the regenerative medicine. Nanogels may help bring together researchers working in active ingredient formulation, controlled release, nanomechanics, tissue engineering and scaffolding with the common purpose of developing clinically relevant tools for the complete regeneration of complex tissues.
Collapse
|
10
|
Joorabloo A, Khorasani MT, Adeli H, Mansoori-Moghadam Z, Moghaddam A. Fabrication of heparinized nano ZnO/poly(vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol 2018; 120:385-393. [DOI: 10.1016/j.ijbiomac.2018.08.057] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
|
12
|
Bozuyuk U, Dogan NO, Kizilel S. Deep Insight into PEGylation of Bioadhesive Chitosan Nanoparticles: Sensitivity Study for the Key Parameters Through Artificial Neural Network Model. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33945-33955. [PMID: 30212622 DOI: 10.1021/acsami.8b11178] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ionically cross-linked chitosan nanoparticles have great potential in nanomedicine due to their tunable properties and cationic nature. However, low solubility of chitosan severely limits their potential clinical translation. PEGylation is a well-known method to increase solubility of chitosan and chitosan nanoparticles in neutral media; however, effect of PEG chain length and chitosan/PEG ratio on particle size and zeta potential of nanoparticles are not known. This study presents a systematic analysis of the effect of PEG chain length and chitosan/PEG ratio on size and zeta potential of nanoparticles. We prepared PEGylated chitosan chains prior to the nanoparticle synthesis with different PEG chain lengths and chitosan/PEG ratios. To precisely estimate the influence of critical parameters on size and zeta potential of nanoparticles, we both developed an artificial neural network (ANN) model and performed experimental characterization using the three independent input variables: (i) PEG chain length, (ii) chitosan/PEG ratio, and (iii) pH of solution. We studied the influence of PEG chain lengths of 2, 5, and 10 kDa and three different chitosan/PEG ratios (25 mg chitosan to 4, 12, and 20 μmoles of PEG) for the synthesis of chitosan nanoparticles within the pH range of 6.0-7.4. Artificial neural networks is a modeling tool used in nanomedicine to optimize and estimate inherent properties of the system. Inherent properties of a nanoparticle system such as size and zeta potential can be estimated based on previous experiment results, thus, nanoparticles with desired properties can be obtained using an ANN. With the ANN model, we were able to predict the size and zeta potential of nanoparticles under different experimental conditions and further confirmed the cell-nanoparticle adhesion behavior through experiments. Nanoparticle groups that had higher zeta potentials promoted adhesion of HEK293-T cells to nanoparticle-coated surfaces in cell culture medium, which was predicted through ANN model prior to experiments. Overall, this study comprehensively presents the PEGylation of chitosan, synthesis of PEGylated chitosan nanoparticles, utilizes ANN model as a tool to predict important properties such as size and zeta potential, and further captures the adhesion behavior of cells on surfaces prepared with these engineered nanoparticles.
Collapse
Affiliation(s)
- Ugur Bozuyuk
- Chemical and Biological Engineering , Koç University , Sariyer , Istanbul 34450 , Turkey
| | - Nihal Olcay Dogan
- Chemical and Biological Engineering , Koç University , Sariyer , Istanbul 34450 , Turkey
| | - Seda Kizilel
- Chemical and Biological Engineering , Koç University , Sariyer , Istanbul 34450 , Turkey
| |
Collapse
|
13
|
Salomon C, Goycoolea FM, Moerschbacher B. Recent Trends in the Development of Chitosan-Based Drug Delivery Systems. AAPS PharmSciTech 2017; 18:933-935. [PMID: 28353173 DOI: 10.1208/s12249-017-0764-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023] Open
|