1
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
2
|
Moll F, Bechtold-Peters K, Friess W. Evaluation of a novel silicone oil free primary packaging system with PTFE-based barrier stopper for biologics. Eur J Pharm Biopharm 2023; 190:206-219. [PMID: 37536577 DOI: 10.1016/j.ejpb.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
In order to overcome silicone oil related problems for biopharmaceuticals, novel container systems are of interest with a focus on the reduction, fixation or complete avoidance of silicone oil in the primary container. Ultimately, silicone oil free (SOF) container systems made from cyclic olefin (co-)polymer or glass combined with the respective silicone-oil free plungers were developed. In the following study we evaluated the potential of a SOF container system based on a glass barrel in combination with a fluoropolymer coated syringe plunger. In a long-term stability study, the system was compared to other alternative container systems in terms of functionality and particle formation when filled with placebo buffers. The system proved to be a valuable alternative to marketed siliconized container systems with acceptable and consistent break-loose gliding forces and it was clearly superior in terms of particle formation over storage time. Additionally, we evaluated the importance of the glass barrel surface for functionality. The interaction of the fill medium with the glass surface significantly impacted friction forces. Consequently, storage conditions and production processes like washing and sterilization, which can easily alter the surface properties, should be carefully evaluated, and controlled. The novel combination of non-lubricated glass barrel and fluoropolymer coated plunger provides a highly valuable SOF packaging alternative for biopharmaceuticals.
Collapse
Affiliation(s)
- Fabian Moll
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | | | - Wolfgang Friess
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
3
|
Canepa P, Canale C, Cavalleri O, Marletta G, Messina GML, Messori M, Novelli R, Mattioli SL, Apparente L, Detta N, Romeo T, Allegretti M. Adsorption of the rhNGF Protein on Polypropylene with Different Grades of Copolymerization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2076. [PMID: 36903190 PMCID: PMC10004483 DOI: 10.3390/ma16052076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The surface properties of drug containers should reduce the adsorption of the drug and avoid packaging surface/drug interactions, especially in the case of biologically-derived products. Here, we developed a multi-technique approach that combined Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM), Contact Angle (CA), Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), and X-ray Photoemission Spectroscopy (XPS) to investigate the interactions of rhNGF on different pharma grade polymeric materials. Polypropylene (PP)/polyethylene (PE) copolymers and PP homopolymers, both as spin-coated films and injected molded samples, were evaluated for their degree of crystallinity and adsorption of protein. Our analyses showed that copolymers are characterized by a lower degree of crystallinity and lower roughness compared to PP homopolymers. In line with this, PP/PE copolymers also show higher contact angle values, indicating a lower surface wettability for the rhNGF solution on copolymers than PP homopolymers. Thus, we demonstrated that the chemical composition of the polymeric material and, in turn, its surface roughness determine the interaction with the protein and identified that copolymers may offer an advantage in terms of protein interaction/adsorption. The combined QCM-D and XPS data indicated that protein adsorption is a self-limiting process that passivates the surface after the deposition of roughly one molecular layer, preventing any further protein adsorption in the long term.
Collapse
Affiliation(s)
- Paolo Canepa
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Claudio Canale
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Ornella Cavalleri
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giovanni Marletta
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Dipartimento di Scienze Chimiche, Università di Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Grazia M. L. Messina
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Dipartimento di Scienze Chimiche, Università di Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Massimo Messori
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Rubina Novelli
- Research & Early Development, Dompè Farmaceutici S.p.A., Via Santa Lucia 6, 20122 Milano, Italy
| | - Simone Luca Mattioli
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Lucia Apparente
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Nicola Detta
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Tiziana Romeo
- Research & Early Development, Dompè Farmaceutici S.p.A., Loc. Campo di Pile, 67100 L’Aquila, Italy
| | - Marcello Allegretti
- Research & Early Development, Dompè Farmaceutici S.p.A., Loc. Campo di Pile, 67100 L’Aquila, Italy
| |
Collapse
|
4
|
van Saet A, Tibboel D. The influence of cardiopulmonary bypass on pediatric pharmacokinetics. Expert Opin Drug Metab Toxicol 2023; 19:333-344. [PMID: 37334571 DOI: 10.1080/17425255.2023.2227556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
INTRODUCTION Every year thousands of children undergo surgery for congenital heart disease. Cardiac surgery requires the use of cardiopulmonary bypass, which can have unexpected consequences for pharmacokinetic parameters. AREAS COVERED We describe the pathophysiological properties of cardiopulmonary bypass that may influence pharmacokinetic parameters, with a focus on literature published in the last 10 years. We performed a PubMed database search with the keywords 'Cardiopulmonary bypass' AND 'Pediatric' AND 'Pharmacokinetics'. We searched related articles on PubMed and checked the references of articles for relevant studies. EXPERT OPINION Interest in the influence of cardiopulmonary bypass on pharmacokinetics has increased over the last 10 years, especially due to the use of population pharmacokinetic modeling. Unfortunately, study design usually limits the amount of information that can be obtained with sufficient power and the best way to model cardiopulmonary bypass is yet unknown. More information is needed on the pathophysiology of pediatric heart disease and cardiopulmonary bypass. Once adequately validated, PK models should be integrated in the patient electronic database integrating covariates and biomarkers influencing PK, making it possible to predict real-time drug concentrations and guide further clinical management for the individual patient at the bedside.
Collapse
Affiliation(s)
- Annewil van Saet
- Department of Anesthesiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Intensive Care and Pediatric Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Ma GJ, Yoon BK, Sut TN, Yoo KY, Lee SH, Jeon W, Jackman JA, Ariga K, Cho N. Lipid coating technology: A potential solution to address the problem of sticky containers and vanishing drugs. VIEW 2022. [DOI: 10.1002/viw.20200078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Gamaliel Junren Ma
- School of Materials Science and Engineering Nanyang Technological University Nanyang Singapore
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea
| | - Tun Naw Sut
- School of Materials Science and Engineering Nanyang Technological University Nanyang Singapore
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea
| | - Ki Yeol Yoo
- LUCA Health and LUCA AICell, Inc. Anyang Republic of Korea
| | - Seung Hwa Lee
- LUCA Health and LUCA AICell, Inc. Anyang Republic of Korea
| | - Won‐Yong Jeon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea
| | - Katsuhiko Ariga
- WPI‐MANA National Institute for Materials Science (NIMS) Tsukuba Ibaraki Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences The University of Tokyo Kashiwa Chiba Japan
| | - Nam‐Joon Cho
- School of Materials Science and Engineering Nanyang Technological University Nanyang Singapore
| |
Collapse
|
6
|
Xia M, Wang Y, Sheng L, Cai Z, Zhou X. Positive response to surfactants on the interfacial behavior and aggregation stability of Fab fragments from yolk immunoglobulin. Int J Biol Macromol 2021; 193:1078-1085. [PMID: 34800518 DOI: 10.1016/j.ijbiomac.2021.11.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
The antigen binding fragment (Fab) is pepsin-digested product from egg yolk immunoglobulin (IgY), which shows lower immunogenicity and higher antibacterial activity. However, it limited the application of Fab due to the spontaneous adsorption and aggregation at the air-liquid interface. The present work is to investigate the effect of surfactants polysorbate 20 (PS20), poloxamer 188 (P188), and polyethylene glycol (PEG) on the aggregation stability of Fab of IgY. The results confirmed the positive role of surfactants in improving Fab stability. PS20 could effectively prevent the generation of Fab aggregates (DLS and light-obscuration analysis). It could also distinctly increase the internal hydrophobicity level, fortify the surface charge by altering the molecular conformational characteristics of Fab. The results of CLSM and surface tension demonstrated that P188 and PEG were co-adsorbed with Fab at the air-liquid interface and inhibited the formation of aggregation. PS20 competitively adsorbed in the gap between Fab molecules to inhibit the formation of aggregates. These findings would give an in-depth understanding of protein aggregation behavior influenced by surfactants and provide a theoretical basis for the development of functional food based on Fab active fragments.
Collapse
Affiliation(s)
- Minquan Xia
- National Research and Development Centre for Egg Processing, Hubei Hongshan Laboratory, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanru Wang
- National Research and Development Centre for Egg Processing, Hubei Hongshan Laboratory, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Sheng
- National Research and Development Centre for Egg Processing, Hubei Hongshan Laboratory, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhaoxia Cai
- National Research and Development Centre for Egg Processing, Hubei Hongshan Laboratory, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xin Zhou
- National Research and Development Centre for Egg Processing, Hubei Hongshan Laboratory, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Secondary Packages cannot Protect Liquid Biopharmaceutical Formulations from Dropping-Induced Degradation. Pharm Res 2021; 38:1397-1404. [PMID: 34282500 DOI: 10.1007/s11095-021-03073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
PURPOSES Liquid protein-based biopharmaceutical formulations have been reported to form aggregation and protein sub-visible particles (SbVPs) during dropping (Randolph et al., J Pharm Sci 2015, 104, 602). However, effects of secondary package on liquid biopharmaceutical formulation stability during dropping are overlooked and have not been reported so far. This study reports the first real-world evaluation on effects of secondary package on liquid biopharmaceutical formulation stability during dropping, using two monoclonal antibodies (mAb-1 and mAb-2) and one fusion protein (FP-1) as model biopharmaceuticals. METHODS The potential protective effects of secondary package and formulation composition on liquid biopharmaceutical formulations during dropping were evaluated with micro-flow imaging (MFI) and dynamic light scattering (DLS). RESULTS The dropping-induced degradation could be detected with the two sensitive particle analyzing techniques MFI and DLS. Formulation compositions have dramatic impact on biopharmaceutical stability during dropping. Surprisingly, unlike the primary packages that have been reported to impact liquid biopharmaceutical stability, the secondary packaging system as described in our current preliminary design has little or no protective effect during dropping. CONCLUSIONS Our study is the first real-world data showing that the secondary package system has little to no effect on the liquid biopharmaceutical formulation quality during dropping. On the contrary, the stability of liquid biopharmaceutical formulations during dropping is more relevant to formulation compositions and primary packages.
Collapse
|
8
|
Sun X, Zheng X, Tang Y, Debrah AA, Du Z. Supercritical Fluid Extraction Combined with Ultrahigh Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry for Determination of Extractables to Evaluate Compatibility of Drugs with Rubber Closures. AAPS PharmSciTech 2021; 22:50. [PMID: 33458791 DOI: 10.1208/s12249-020-01907-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/18/2020] [Indexed: 01/22/2023] Open
Abstract
Biological activity and pharmacological efficacy of protein drugs may be affected by the compatibility between drug and packaging materials. The compatibility of rubber closures seal cap has become the focus of many studies due to its complicated formulation. Despite of the significance of the issue, currently, there is little available data about organic leachables in drugs which is also not comprehensive. Since the concentration of migrants in drug is usually low and the matrix is complicated, the establishment of overall profile of extractables is crucial for the characterization of leachables. Herein, the supercritical fluid extraction (SFE) method was used because of its great extraction capacity and efficiency for low to medium polar extractables in rubber stoppers. The SFE conditions were optimized by response surface methodology (RSM). Experimental results of the extract yield were close to the predicted values (R2 = 0.95). Then the extractables were qualitatively and quantitatively analyzed with ultrahigh performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Finally, risk assessment was made by comparing predicted exposure with injection permitted daily exposure (pPDE) limit or threshold recommended by threshold of toxicological concern (TTC). The results showed that there are many extractables such as glyceride, fatty acids and derivatives, antioxidants, and degradation products. Among them degradation products were in the majority and content of 17 substances exceeded corresponding limits. Considering their unknown toxicology, more experiments are therefore needed to provide information on their toxicology and risk assessment. The study provides a reference for the compatibility of drugs, and quality supervision of pharmaceuticals packaging.
Collapse
|
9
|
Plasma Polymerized HMDSO Coatings For Syringes To Minimize Protein Adsorption. J Pharm Sci 2020; 110:1710-1717. [PMID: 33157079 DOI: 10.1016/j.xphs.2020.10.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 11/23/2022]
Abstract
Current parenteral containers used for the storage and delivery of protein-based drugs, contain silicone oil which may seep into the protein solution and can result in adsorption, aggregation and denaturation of the protein. Tightly adherent surface coatings prepared by radio frequency glow-discharge (RFGD) plasma polymerization are described in this paper. Using this robust technique, methacrylic acid (MA) (hydrophilic), hexamethyldisiloxane (HMDSO) (hydrophobic), tetraglyme (TG) (hydrophilic) were plasma polymerized onto glass. In addition, HMDSO and MA were copolymerized to create a plasma polymerized HMDSO-MA (hydrophobic) surface. Untreated glass and glass dip-coated in PDMS were used as controls. TG and MA plasma coatings adsorbed the least amount of protein in all pH conditions. Interestingly HMDSO-MA retained significantly lesser protein compared to HMDSO and dip-coated PDMS samples. In the presence of Polysorbate 80 (PS80) all plasma polymerized coatings adsorbed and retained negligible amounts of protein, compared to controls. Furthermore, the peak glide force of plasma coated syringes did not significantly increase compared to syringes without plasma coating. Due to the versatility of RFGD plasma, this process is scalable and could potentially be used for the treatment of hypodermic syringes used for the storage and delivery of protein-based therapeutics.
Collapse
|
10
|
Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical Stability of Monoclonal Antibodies: A Review. J Pharm Sci 2020; 109:169-190. [DOI: 10.1016/j.xphs.2019.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|