1
|
Steiner D, Meyer A, Immohr LI, Pein-Hackelbusch M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics 2024; 16:658. [PMID: 38794320 PMCID: PMC11125162 DOI: 10.3390/pharmaceutics16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
In this review, we aim to highlight the advantages, challenges, and limitations of electronic tongues (e-tongues) in pharmaceutical drug development. The authors, therefore, critically evaluated the performance of e-tongues regarding their qualification to assess peroral formulations containing bitter active pharmaceutical ingredients. A literature search using the keywords 'electronic', 'tongue', 'bitter', and 'drug' in a Web of Science search was therefore initially conducted. Reviewing the publications of the past decade, and further literature where necessary, allowed the authors to discuss whether and how e-tongues perform as expected and whether they have the potential to become a standard tool in drug development. Specifically highlighted are the expectations an e-tongue should meet. Further, a brief insight into the technologies of the utilized e-tongues is given. Reliable protocols were found that enable (i) the qualified performance of e-tongue instruments from an analytical perspective, (ii) proper taste-masking assessments, and (iii) under certain circumstances, the evaluation of bitterness.
Collapse
Affiliation(s)
- Denise Steiner
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany;
| | - Alexander Meyer
- Institute for Life Science Technologies (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| | | | - Miriam Pein-Hackelbusch
- Institute for Life Science Technologies (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| |
Collapse
|
2
|
Zhu C, Chen J, Shi L, Liu Q, Liu C, Zhang F, Wu H. Development of Child-Friendly Lisdexamfetamine Chewable Tablets Using Ion Exchange Resin as a Taste-Masking Carrier Based on the Concept of Quality by Design (QbD). AAPS PharmSciTech 2023; 24:132. [PMID: 37291437 DOI: 10.1208/s12249-023-02592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Taste masking is critical to improving the compliance of pediatric oral dosage forms. However, it is challenging for extremely bitter lisdexamfetamine dimesylate (LDX) with a long half-life and given in large dose. The present study aims to develop an immediate-release, taste-masked lisdexamfetamine chewable tablet. Lisdexamfetamine-resin complexes (LRCs) were prepared using the batch method. The molecular mechanism of taste masking was explored by PXRD, PLM, STA, and FT-IR. The results showed that taste masking was attributed to the ionic interaction between drug and the resin. The ion exchange process conformed to first-order kinetics. The rate-limiting step of drug release was the diffusion of ions inside the particles, and the concentration of H+ was the key factor for immediate release. The masking efficiency of the prepared LRCs in saliva exceeded 96%, and the drug could be completely released within 15 min in aqueous HCl (pH 1.2). Furthermore, the SeDeM expert system was used for the first time to comprehensively study the powder properties of LRCs and to quickly visualize their defects (compressibility, lubricity/stability, and lubricity/dosage). The selection of excipients was targeted rather than traditional screening, thus obtaining a robust chewable tablet formulation suitable for direct compression. Finally, the difference between chewable tablets containing LRCs and chewable tablets containing lisdexamfetamine dimesylate was compared by in vitro dissolution test, electronic tongue, and disintegration test. In conclusion, an immediate-released, child-friendly lisdexamfetamine chewable tablets without bitterness was successfully developed by the QbD approach, using the SeDeM system, which may help in further development of chewable tablets.
Collapse
Affiliation(s)
- Chunmei Zhu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China
| | - Jinmin Chen
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China
| | - Limin Shi
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China
| | - Qing Liu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China
| | - Chunfeng Liu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China
| | - Fuli Zhang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China
| | - Haoxiang Wu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, China.
| |
Collapse
|
3
|
Hu S, Liu X, Zhang S, Quan D. An Overview of Taste-Masking Technologies: Approaches, Application, and Assessment Methods. AAPS PharmSciTech 2023; 24:67. [PMID: 36788171 DOI: 10.1208/s12249-023-02520-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
It is well-known that plenty of active pharmaceutical ingredients (API) inherently possess an unpleasant taste, which influences the acceptance of patients, especially children. Therefore, manufacturing taste-masked dosage forms has attracted a lot of attention. This review describes in detail the taste-masking technologies based on the difference in the taste transmission mechanism which is currently available. In particular, the review highlights the application of various methods, with a special focus on how to screen the appropriate masking technology according to the properties of API. Subsequently, we overviewed how to assess taste-masking efficacy, guiding researchers to rationally design taste-masking formulations.
Collapse
Affiliation(s)
- Shuqin Hu
- Institute of Advanced Drug Delivery Technology, No.10 Xinghuo Avenue Jiangbei New Area, Nanjing, 210032, People's Republic of China.,China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Xiaoxuan Liu
- China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Shuangshuang Zhang
- Institute of Advanced Drug Delivery Technology, No.10 Xinghuo Avenue Jiangbei New Area, Nanjing, 210032, People's Republic of China
| | - Danyi Quan
- Institute of Advanced Drug Delivery Technology, No.10 Xinghuo Avenue Jiangbei New Area, Nanjing, 210032, People's Republic of China.
| |
Collapse
|
4
|
Yadav D, Savjani J, Savjani K, Kumar A, Patel S. Pharmaceutical Co-crystal of Antiviral Agent Efavirenz with Nicotinamide for the Enhancement of Solubility, Physicochemical Stability, and Oral Bioavailability. AAPS PharmSciTech 2022; 24:7. [PMID: 36447108 DOI: 10.1208/s12249-022-02467-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
The present research work attempted to improve the oral bioavailability of the antiviral drug Efavirenz (EFV) using a pharmaceutical cocrystallization technique. EFV comes under BCS-II and has extremely low water solubility, and results in low oral bioavailability. EFV and nicotinamide (NICO) were selected in a (1:1) stoichiometric ratio and efavirenz nicotinamide cocrystal (ENCOC) was prepared through the liquid-assisted grinding method (LAG). The confirmation of the formation of a new solid phase was done through spectroscopic techniques like Fourier transmission infrared (FTIR), Raman, and 13C solid-state nuclear magnetic resonance (13C ssNMR). Thermal techniques like differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and hot stage microscopy (HSM) illustrated the thermal behavior and melting patterns of ENCOC, EFV, and NICO. The X-ray powder diffraction (XRPD) confirms the formation of a new crystalline phase in ENCOC. The Morphology was determined through scanning electron microscopy (FESEM). The results of saturated solubility studies and in vitro drug release studies exhibited 8.9-fold enhancement in solubility and 2.56-fold enhancement in percentage cumulative drug release. The percentage drug content of ENCOC was found higher than 97% and cocrystal exhibits excellent accelerated stability. The oral bioavailability of EFV (Cmax, 799.08 ng/mL) exhibits significant enhancement after cocrystallization (Cmax, 5597.09 ng/mL) than EFV and Efcure®-200 tablet (2896.21 ng/mL). The current work investigates the scalable and cost-effective method for enhancement of physicochemical stability, solubility, and oral bioavailability of an antiviral agent EFV.
Collapse
Affiliation(s)
- Dattatraya Yadav
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University Ahmedabad, Ahmedabad, Gujarat, India, 382481
| | - Jignasa Savjani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University Ahmedabad, Ahmedabad, Gujarat, India, 382481.
| | - Ketan Savjani
- Emcure Pharmaceuticals, Gandhinagar, Gujarat, India, 382423
| | - Aakash Kumar
- Department of Pharmacology, Institute of Pharmacy, Nirma University Ahmedabad, Ahmedabad, Gujarat, India, 382481
| | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University Ahmedabad, Ahmedabad, Gujarat, India, 382481
| |
Collapse
|
5
|
Tonjan R, Singh D. Functional Excipients and Novel Drug Delivery Scenario in Self-nanoemulsifying Drug Delivery System: A Critical Note. Pharm Nanotechnol 2022; 10:PNT-EPUB-125930. [PMID: 36043758 DOI: 10.2174/2211738510666220829085745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Lipid-based formulations have emerged as prospective dosage forms for extracting the therapeutic effects of existing lipophilic compounds and novel chemical entities more efficiently. Compared to other excipients, lipids have the added benefit of enhancing the bioavailability of lipophilic and highly metabolizable drugs due to their unique physicochemical features and similarities to in vivo components. Furthermore, lipids can minimize the needed dose and even the toxicity of drugs with poor aqueous solubility when employed as the primary excipient. Hence, the aim of the present review is to highlight the functional behavior of lipid excipients used in SNEDD formulation along with the stability aspects of the formulation in vivo. Moreover, this review also covered the importance of SNEDDS in drug delivery, the therapeutic and manufacturing benefits of lipids as excipients, and the technological advances made so far to convert liquid to solid SNEDDS like melt granulation, adsorption on solid support, spray cooling, melt extrusion/ spheronization has also highlighted. The mechanistic understanding of SNEDD absorption in vivo is highly complex, which was discussed very critically in this review. An emphasis on their application and success on an industrial scale was presented, as supported by case studies and patent surveys.
Collapse
Affiliation(s)
- Russel Tonjan
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, INDIA
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, INDIA
| |
Collapse
|
6
|
3D printing technique in the development of self-nanoemulsifying drug delivery system: scope and future prospects. Ther Deliv 2021; 13:135-139. [PMID: 34872343 DOI: 10.4155/tde-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Babadi D, Dadashzadeh S, Osouli M, Abbasian Z, Daryabari MS, Sadrai S, Haeri A. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
8
|
Guedes MDV, Marques MS, Guedes PC, Contri RV, Kulkamp Guerreiro IC. The use of electronic tongue and sensory panel on taste evaluation of pediatric medicines: a systematic review. Pharm Dev Technol 2020; 26:119-137. [PMID: 33274664 DOI: 10.1080/10837450.2020.1860088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The palatability of medications is an essential factor for children's adherence to drug treatment. Several methods for drug taste assessment have been developed. The aim of this review is to explore the literature reports of the main methods for the evaluation of medicines taste, named electronic tongue (e-tongue, in vitro) and human sensory panel. A systematic search was performed up to March 2020 and a total of 88 articles were selected. The e-tongue (57.5%) has been more frequently described than the sensory panel (10.3%), while some articles (32.2%) used both techniques. 74.7% of the articles mentioned 'pediatric', 'paediatric' or 'children' in the text, but only 19.5% developed formulations targeting pediatric audience and sensory testing in children is rarely seen. The e-tongue has predominance of use in the taste evaluation of pediatric medicines probably since it is fast, easy to perform and risk free, besides presenting less imprecise data and no fatigue. The human panel is more realistic, despite its intrinsic variability. In this sense, it is proposed the use of e-tongue as a fast way to select the most promising sample(s) and, after that, the sensory panel should be applied in order to confirm the taste masking.
Collapse
Affiliation(s)
| | - Morgana Souza Marques
- Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Pablo Cristini Guedes
- Escola de Administração, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Renata Vidor Contri
- Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | |
Collapse
|
9
|
Prebianca G, Marques MS, Bianchin MD, Contri RV, Külkamp-Guerreiro IC. Improved sensory properties of a nanostructured ritonavir suspension with a pediatric administration perspective. Pharm Dev Technol 2020; 25:1188-1191. [PMID: 32746682 DOI: 10.1080/10837450.2020.1805762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The pediatric adherence to antiretroviral therapy is critical to therapeutic success. Ritonavir, a protease inhibitor drug, is commercially available as an oral solution containing a high amount of ethanol and propylene glycol, contraindicated in children younger than 4 years. Moreover, this medicine presents a bitter taste, which is limiting for the adherence to treatment. This study aims to develop ritonavir nanoparticles followed by polymeric coating for sensory characteristics improvement. The nanoparticles were coated with Eudragit® L 100-55 and characterized. A human sensory panel evaluated the proposed formulations regarding its bitter taste. The formulation showed nanotechnological features, with 130 and 134 nm for ritonavir nanoparticles and ritonavir coated nanoparticles, respectively. The pH, zeta potential, drug content and encapsulation efficiency results were suitable for oral administration. The coated nanoparticles were capable of decreasing the drug bitter taste as shown in the sensory analysis. The ritonavir incorporation in nanoparticles, followed by polymer coating can be a reasonable strategy to obtain alcohol free taste-masked medicines, which are promising for pediatric therapy.
Collapse
Affiliation(s)
- Germano Prebianca
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Morgana Souza Marques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Mariana Domingues Bianchin
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Renata Vidor Contri
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Irene Clemes Külkamp-Guerreiro
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.,Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|