1
|
Yasser M, El Naggar EE, Elfar N, Teaima MH, El-Nabarawi MA, Elhabal SF. Formulation, optimization and evaluation of ocular gel containing nebivolol Hcl-loaded ultradeformable spanlastics nanovesicles: In vitro and in vivo studies. Int J Pharm X 2024; 7:100228. [PMID: 38317829 PMCID: PMC10839649 DOI: 10.1016/j.ijpx.2023.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
The study aims to improve the ocular delivery of Nebivolol HCL (NBV) belonging to the Biopharmaceutics classification system (BCSII) by using spanlastic nanovesicles (SNVs) for ophthalmic delivery and incorporating them into hydroxypropyl methylcellulose gel with ketorolac tromethamine (KET) as an anti-inflammatory to improve glaucoma complications like Conjunctivitis. SNVs were prepared by ethanol injection technique using span (60) as a surfactant and labrasol as an edge activator (EA). The impact of formulation factors on SNVs properties was investigated using a Box-Behnken design. In vitro evaluations showed that the formulations (F1, F4, and F14), containing Span 60 and labrasol as EA (25%, 50%, and 25%), exhibited high EE% with low PS and high ZP and DI. Additionally, 61.72 ± 0.77%, 58.97 ± 1.44%, and 56.20 ± 2.32% of the NBV amount were released from F1, F4, and F14 after 5 h, compared to 93.94 ± 1.21% released from drug suspension. The selected formula (G1), containing F1 in combination with KET and 2% w/w HPMC, exhibited 76.36 ± 0.90% drug release after 12 h. Ex vivo Confocal laser scanning revealed a high penetration of NBV-SNVs gel that ascertained the results of the in-vitro study. In vivo studies showed a significant decrease in glaucoma compared to drug suspension, and histopathological studies showed improvement in glaucomatous eye retinal atrophy. G1 is considered a promising approach to improving ocular permeability, absorption, and anti-inflammatory activity, providing a safer alternative to current regimens.
Collapse
Affiliation(s)
- Mohamed Yasser
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutical technology, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Eman E. El Naggar
- Department of Pharmaceutical technology, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nehal Elfar
- Department of Pharmaceutical technology, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| |
Collapse
|
2
|
Ansari MD, Shafi S, Pandit J, Waheed A, Jahan RN, Khan I, Vohora D, Jain S, Aqil M, Sultana Y. Raloxifene encapsulated spanlastic nanogel for the prevention of bone fracture risk via transdermal administration: Pharmacokinetic and efficacy study in animal model. Drug Deliv Transl Res 2024; 14:1635-1647. [PMID: 37996726 DOI: 10.1007/s13346-023-01480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
This research work is to evaluate spanlastic-loaded raloxifene (RLX) nanogel administration via the transdermal route to avoid its hepatic metabolism and to enhance the bioavailability for better management of osteoporosis. RLX-loaded spanlastic nanogel was prepared and characterized for its viscosity, pH, spreadability, and texture profile. The formulation was applied on the skin surface of the animal for pharmacokinetic evaluation, and later, the efficacy of the formulation was assessed in ovariectomized female Wistar rats. The nanogel was obtained with a viscosity (2552.66 ± 30.61 cP), pH (7.1 ± 0.1), and spreadability (7.1 ± 0.2 cm). The texture properties, cohesiveness, and adhesiveness of the nanogel showed its suitability for transdermal application. Nanogel showed no sign of edema and erythema in the skin irritation test which revealed its safety for transdermal application. The t1/2 obtained for RLX-spanlastic nanogel (37.02 ± 0.59 h) was much higher than that obtained for RLX-oral suspension (14.43 h). The relative bioavailability was found to be 215.96% for RLX-spanlastic nanogel, and the drug and formulation did not show any toxicity in any of the vital organs, as well as no hematological changes occurring in blood samples. In microarchitectural measurement, RLX-spanlastic nanogel exhibited no unambiguous deviations along with improved bone mineral density compared to the RLX suspension treated group. Transdermal administration of RLX-spanlastic nanogel showed significant improvement of drug bioavailability (approx. twice to oral administration) without any toxic effect in the treated rats. Hence, spanlastic nanogel could be a better approach to deliver RLX via transdermal route for the management of osteoporosis.
Collapse
Affiliation(s)
- Mohd Danish Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Jayamanti Pandit
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Ayesha Waheed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Rao Nargis Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Iram Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India.
| |
Collapse
|
3
|
Kumar L, Rana R, Kukreti G, Aggarwal V, Chaurasia H, Sharma P, Jyothiraditya V. Overview of Spanlastics: A Groundbreaking Elastic Medication Delivery Device with Versatile Prospects for Administration via Various Routes. Curr Pharm Des 2024; 30:2206-2221. [PMID: 38967069 DOI: 10.2174/0113816128313398240613063019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024]
Abstract
When compared to the challenges associated with traditional dosage forms, medication delivery systems based on nanotechnology have been a huge boon. One such candidate for medication delivery is spanlastics, an elastic nanovesicle that can transport a diverse array of medicinal compounds. The use of spanlastics has been associated with an increase in interest in alternative administration methods. The non-ionic surfactant or surfactant blend is the main component of spanlastics. The purpose of this review was primarily to examine the potential of spanlastics as a delivery system for a variety of medication classes administered via diverse routes. Science Direct, Google Scholar, and Pubmed were utilized to search the academic literature for this review. Several studies have demonstrated that spanlastics greatly improve therapeutic effectiveness, increase medication absorption, and decrease drug toxicity. This paper provides a summary of the composition and structure of spanlastics along with their utility in the delivery of various therapeutic agents by adopting different routes. Additionally, it provides an overview of the numerous disorders that may be treated using drugs that are contained in spanlastic vesicles.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, GNA School of Pharmacy, GNA University, Phagwara, Punjab 144401, India
| | - Ritesh Rana
- Department of Pharmaceutical Sciences (Pharmaceutics), Laureate Institute of Pharmacy, Kathog-Kangra, Himachal Pradesh 176031, India
| | - Gauree Kukreti
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala Dehradun, Uttarakhand 248161, India
| | - Vikas Aggarwal
- Senior Pharmacovigilance Specialist, Continuum India LLP, 3rd Floor, Tower F DLF Building, Chandigarh Technology Park, Chandigarh 160101, India
| | - Himanshu Chaurasia
- Department of Pharmacy, Quantum School of Health Science, Quantum University, Vill. Mandawar (N.H.73), Roorkee-Dehradun Highway, Roorkee, Uttrakhand 247662, India
| | - Puneet Sharma
- Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER), Bela-Nadaun, District-Hamirpur, H.P. 177033, India
| | - Vuluchala Jyothiraditya
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
4
|
El Hosary R, Teaima MH, El-Nabarawi M, Yousry Y, Eltahan M, Bakr A, Aboelela H, Abdelmonem R, Nassif RM. Topical delivery of extracted curcumin as curcumin loaded spanlastics anti-aging gel: Optimization using experimental design and ex-vivo evaluation. Saudi Pharm J 2024; 32:101912. [PMID: 38178851 PMCID: PMC10765109 DOI: 10.1016/j.jsps.2023.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Objective This study aimed to extract and separate the organic coloring agent known as Curcumin from the rhizomes of Curcuma longa, and then to create Spanlastics that were loaded with curcumin using the ethanol injection technique. The optimized Spanlastic dispersions were then incorporated into a gel preparation for topical anti-aging use. The Spanlastic dispersions were analyzed for particle size, zeta potential, drug loading efficiency, and in vitro release profile. Furthermore, the rheological properties of the gel preparation were assessed, and a skin penetration study was conducted using confocal microscopy. Methods Twelve different Curcumin-loaded Spanlastic dispersions using the ethanol injection method with Span® 60 as a surfactant and Tween® 80 as an edge activator in varying ratios. The dispersions were then subjected to various tests, such as particle size analysis, zeta potential measurement, drug entrapment efficiency assessment, and in vitro release profiling. The optimized formula was selected using Design-Expert® software version 13, then used to create a gel preparation, which utilized 2% HPMC E50 as a gelling polymer. The gel was evaluated for its rheological properties and analyzed using confocal microscopy. Additionally, Raman analysis was performed to ensure that the polymers used in the gel were compatible with the drug substance. Results F5 formula, (that contains 10 mg Curcumin, and mixture 5 of span-tween mixtures that consist of 120 mg Span® 60 with 80 mg Tween® 80) was selected as the optimized formula with a desirability produced by Design Expert® software equal to 0.761, based on its particle size (212.8 ± 4.76), zeta potential (-29.4 ± 2.11), drug loading efficiency (99.788 ± 1.34), and in vitro release profile evaluations at Q 6hr equal to almost 100 %. Statistical significance (P < 0.05) was obtained using one-way ANOVA. Then F5 was used to formulate HPMC E50 gel-based preparations. The gel formula that was created and analyzed using Raman spectroscopy demonstrated no signs of incompatibility between the Curcumin and the polymers that were utilized.The confocal spectroscopy found that the anti-aging gel preparation showed promising results in terms of skin penetration. Also, images revealed that the gel could penetrate the layers of the skin (reached a depth of about 112.5 μm), where it could potentially target and reduce the appearance of fine lines and wrinkles. The gel also appeared to be well-tolerated by the skin, with no signs of irritation or inflammation observed in the images. Conclusion The obtained results successfully confirmed the potential of the promising (F5) formula to produce sustained release action and its ability to be incorporated into 2% HPMC E50 anti-aging gel. The confocal microscopy study suggested that the anti-aging gel had the potential to be an effective and safe topical treatment for aging skin.
Collapse
Affiliation(s)
- Rania El Hosary
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yousra Yousry
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Mahmoud Eltahan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| | - Ahmed Bakr
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Hussein Aboelela
- Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| | - Rafik M. Nassif
- Department of Pharmacognosy, Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| |
Collapse
|
5
|
Saini H, Rapolu Y, Razdan K, Nirmala, Sinha VR. Spanlastics: a novel elastic drug delivery system with potential applications via multifarious routes of administration. J Drug Target 2023; 31:999-1012. [PMID: 37926975 DOI: 10.1080/1061186x.2023.2274805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Drug delivery systems (DDS) based on nanocarriers are designed to transport therapeutic agents to specific areas of the body where they are required to exhibit pharmacodynamic effect. These agents rely on an appropriate carrier to protect them from rapid degradation or clearance and enhance their concentration in target tissues. Spanlastics, an elastic, deformable surfactant-based nanovesicles have the potential to be used as a drug delivery vehicle for wide array of drug molecules. Spanlastics are formed by the self-association of non-ionic surfactants and edge activators in an aqueous phase and have gained attention as promising drug carriers due to their biodegradable, biocompatible, and non-immunogenic structure. In recent years, numerous scientific journals have published research articles exploring the potential of spanlastics to serve as a DDS for various types of drugs as they offer targeted delivery and regulated release of the drugs. Following brief introduction to spanlastics, their structure and methods of preparation, this review focuses on the delivery of various drugs using spanlastics as a carrier via various routes viz. topical, transdermal, ototopical, ocular, oral and nasal. Work carried out by various researchers by employing spanlastics as a carrier for enhancing therapeutic activity of different moieties has been discussed in detail.
Collapse
Affiliation(s)
- Harshita Saini
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- University School of Pharmaceutical Sciences, Rayat Bahra University, Mohali, India
| | - Yugendhar Rapolu
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Karan Razdan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Nirmala
- University School of Pharmaceutical Sciences, Rayat Bahra University, Mohali, India
| | - Vivek Ranjan Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Abdelmonem R, El-Enin HAA, Abdelkader G, Abdel-Hakeem M. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment. Drug Deliv 2023; 30:2163321. [PMID: 36579655 PMCID: PMC9809415 DOI: 10.1080/10717544.2022.2163321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lamotrigine. (LMT) is a triazine drug has an antiepileptic effect but with low water solubility, dissolution rate and thus therapeutic effect. Spanlastics are nano-vesicular carriers' act as site-specific drug delivery system. Intranasal route could direct the drug from nose to brain and provide a faster and more specific therapeutic effect. Therefore, this study aimed to upload lamotrigine onto nano-vesicles using spanlastic nasal insert delivery for effective epilepsy treatment via overcoming lamotrigine's low solubility and improving its bioavailability. Lamtrigine-loaded nano-spanlastic vesicles were prepared by ethanol injection method. To study different formulation factor's effect on formulations characters; particle size (PS), Zeta potential (ZP), polydispersity index (PDI), entrapment efficiency percentage (EE%) and LMT released amount after 6 h (Q6h); 2^1 and 3^1 full factorial designs were employed. Optimized formula was loaded in lyophilized nasal inserts formulation which were characterized for LMT release and mucoadhesion. Pharmacokinetics studies in plasma and brain were performed on rats to investigate drug targeting efficiency. The optimal nano-spanlastic formulation (F4; containing equal Span 60 amount (100 mg) and edge activator; Tween 80) exhibited nano PS (174.2 nm), high EE% (92.75%), and Q6h > 80%. The prepared nasal inserts (S4) containing 100 mg HPMC has a higher mucoadhesive force (9319.5 dyne/cm2) and dissolution rate (> 80% within 10 min) for rapid in vivo bio-distribution. In vivo studies showed considerable improvement brain and plasma's rate and extent absorption after intranasal administration indicating a high brain targeting efficiency. The results achieved indicate that nano-spanlastic nasal-inserts offer a promising LMT brain targeting in order to maximize its antiepileptic effect.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, 12566, Egypt
| | - Hadel A. Abo El-Enin
- Department of Pharmaceutics, National organization of drug Control and Research (NODCAR), Giza, Egypt,CONTACT Hadel A. Abo El-Enin Department of Pharmaceutics, National organization of drug Control and Research (NODCAR), Giza, Egypt
| | - Ghada Abdelkader
- College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| | - Mohamed Abdel-Hakeem
- Department of pharmaceutical biotechnology, College of biotechnology, Misr University For Science and Technology (MUST), 6th of October City, Giza, Egypt
| |
Collapse
|
7
|
Magdy M, Elmowafy E, Elassal M, Ishak RAH. Glycerospanlastics: State-of-the-art two-in-one nano-vesicles for boosting ear drug delivery in otitis media treatment. Int J Pharm 2023; 645:123406. [PMID: 37703960 DOI: 10.1016/j.ijpharm.2023.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
The purpose of this research was to design innovative nanovesicles for ototopical conveyance of triamcinolone acetonide (TA) for otitis media (OM) treatment via incorporating glycerol into nanospanlastics to be termed "Glycerospanlastics". The glycerospanlastics were formulated employing ethanol injection procedure, and central composite design (CCD) was harnessed for optimization of the vesicles. Various attributes of the nanovesicles, viz. particle size distribution, surface charge, TA entrapment efficiency, morphology as well as ex-vivo permeation across the tympanic membrane (TM) were characterized. In vivo implementation of the optimized glycerospanlastics loaded with TA was appraised in OM-induced rats via histopathological and biochemical measurements of the tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β) levels in ear homogenates. The safety and tolerability of optimized TA glycerospanlastics was also investigated in non-OM induced animals. The results demonstrated that the optimized TA-glycerospanlastics were in a nanometer range (around 200 nm) with negative charges, high TA entrapment (>85%), good storage properties and better TM permeation relative to TA suspension. More importantly, TA-glycerospanlastics performed better than marketed drug suspension in OM treatment as manifested by restoration of histopathological alterations in TM and lowered values of IL-1β and TNF-α. Glycerospanlastics could be promising safe ototopical nanoplatforms for OM treatment and other middle ear disorders.
Collapse
Affiliation(s)
- Manar Magdy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt (FUE), Fifth Settlement, P.O. Box 11835, Cairo, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Mona Elassal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt (FUE), Fifth Settlement, P.O. Box 11835, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt.
| |
Collapse
|
8
|
Nemr AA, El-Mahrouk GM, Badie HA. Hyaluronic acid-enriched bilosomes: an approach to enhance ocular delivery of agomelatine via D-optimal design: formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits. Drug Deliv 2022; 29:2343-2356. [PMID: 35869684 PMCID: PMC9477486 DOI: 10.1080/10717544.2022.2100513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agomelatine (AGO) is a dual-functional drug. It uses as an antidepressant when orally administrated and antiglaucomic when topically applied to the eye. This study aimed to formulate AGO into bilosomal vesicles for glaucoma treatment, as modern studies pointed out the effect of topical AGO on intraocular pressure for the treatment of glaucoma. A modified ethanol injection technique was used for the fabrication of AGO bilosomes according to a D-optimal design. Phosphatidylcholine (PC) to edge activator (EA) ratio, Hyaluronic acid percentage (HA%), and EA type were utilized as independent variables. The measured responses were percent entrapment efficiency (EE%), particle size (PS), polydispersity index, zeta potential, percentage of drug released after 2 h (Q2h%), and 24 h (Q24h%). The optimal bilosomal formula (OB), with the desirability of 0.814 and the composition of 2:1 PC: EA ratio, 0.26% w/v HA and sodium cholate as EA, was subjected to further in vitro characterizations and in vivo evaluation studies. The OB formula had EE% of 81.81 ± 0.23%, PS of 432.45 ± 0.85 nm, Q2h% of 42.65 ± 0.52%, and Q24h% of 75.14 ± 0.39%. It demonstrated a higher elasticity than their corresponding niosomes with a typical spherical shape of niosomes by using transmission electron microscope. It exhibited acceptable stability over three months. pH and Refractive index measurements together with the histopathological study ensured that the OB formula is safe for the eye and causes no ocular irritation or blurred vision. The OB formula showed superiority in the in vivo pharmacodynamics parameters over the AGO solution, so AGO-loaded bilosome could improve ocular delivery and the bioavailability of agomelatine.
Collapse
Affiliation(s)
- Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Galal Mohamed El-Mahrouk
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Hany Abdo Badie
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
9
|
Impact of quercetin spanlastics on livin and caspase-9 expression in the treatment of psoriasis vulgaris. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Phyto-Therapeutic and Nanomedicinal Approaches: A New Hope for Management of Alzheimer's Disease. Int J Pharm 2022; 627:122213. [PMID: 36179926 DOI: 10.1016/j.ijpharm.2022.122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022]
|
11
|
Novel Bile Salt Stabilized Vesicles-Mediated Effective Topical Delivery of Diclofenac Sodium: A New Therapeutic Approach for Pain and Inflammation. Pharmaceuticals (Basel) 2022; 15:ph15091106. [PMID: 36145327 PMCID: PMC9506322 DOI: 10.3390/ph15091106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The oral delivery of diclofenac sodium (DNa), a non-steroidal analgesic, anti-inflammatory drug, is associated with various gastrointestinal side effects. The aim of the research was to appraise the potential of transdermal delivery of DNa using bilosomes as a vesicular carrier (BSVC) in inflamed paw edema. DNa-BSVCs were elaborated using a thin-film hydration technique and optimized using a 31.22 multilevel categoric design with Design Expert® software 10 software (Stat-Ease, Inc., Minneapolis, MI, USA). The effect of formulation variables on the physicochemical properties of BSVC, as well as the optimal formulation selection, was investigated. The BSVCs were evaluated for various parameters including entrapment efficiency (EE%), vesicle size (VS), zeta potential (ZP) and permeation studies. The optimized BSVC was characterized for in vitro release, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and incorporated into hydrogel base. The optimized DNa-BSVC gel effectiveness was assessed in vivo using carrageenan-induced paw edema animal model via cyclooxygenase 2 (COX-2), interleukin 6 (IL-6), Hemooxygenase 1 (HO-1) and nuclear factor-erythroid factor2-related factor 2 (Nfr-2) that potentiate anti-inflammatory and anti-oxidant activity coupled with histopathological investigation. The resulting vesicles presented VS from 120.4 ± 0.65 to 780.4 ± 0.99 nm, EE% from 61.7 ± 3.44 to 93.2 ± 2.21%, ZP from −23.8 ± 2.65 to −82.1 ± 12.63 mV and permeation from 582.9 ± 32.14 to 1350.2 ± 45.41 µg/cm2. The optimized BSVCs were nano-scaled spherical vesicles with non-overlapped bands of their constituents in the FTIR. Optimized formulation has superior skin permeability ex vivo approximately 2.5 times greater than DNa solution. Furthermore, histological investigation discovered that the formed BSVC had no skin irritating properties. It was found that DNa-BSVC gel suppressed changes in oxidative inflammatory mediators (COX-2), IL-6 and consequently enhanced Nrf2 and HO-1 levels. Moreover, reduction of percent of paw edema by about three-folds confirmed histopathological alterations. The results revealed that the optimized DNa-BSVC could be a promising transdermal drug delivery system to boost anti-inflammatory efficacy of DNa by enhancing the skin permeation of DNa and suppressing the inflammation of rat paw edema.
Collapse
|
12
|
Aziz D, Mohamed SA, Tayel S, Makhlouf A. Enhanced Ocular Anti-Aspergillus Activity of Tolnaftate Employing Novel Cosolvent-Modified Spanlastics: Formulation, Statistical Optimization, Kill Kinetics, Ex Vivo Trans-Corneal Permeation, In Vivo Histopathological and Susceptibility Study. Pharmaceutics 2022; 14:pharmaceutics14081746. [PMID: 36015372 PMCID: PMC9415006 DOI: 10.3390/pharmaceutics14081746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Tolnaftate (TOL) is a thiocarbamate fungicidal drug used topically in the form of creams and ointments. No ocular formulations of TOL are available for fungal keratitis (FK) treatment due to its poor water solubility and unique ocular barriers. Therefore, this study aimed at developing novel modified spanlastics by modulating spanlastics composition using different glycols for enhancing TOL ocular delivery. To achieve this goal, TOL basic spanlastics were prepared by ethanol injection method using a full 32 factorial design. By applying the desirability function, the optimal formula (BS6) was selected and used as a nucleus for preparing and optimizing TOL-cosolvent spanlastics according to the full 31.21 factorial design. The optimal formula (MS6) was prepared using 30% propylene glycol and showed entrapment efficiency percent (EE%) of 66.10 ± 0.57%, particle size (PS) of 231.20 ± 0.141 nm, and zeta potential (ZP) of -32.15 ± 0.07 mV. MS6 was compared to BS6 and both nanovesicles significantly increased the corneal permeation potential of TOL than drug suspension. Additionally, in vivo histopathological experiment was accomplished and confirmed the tolerability of MS6 for ocular use. The fungal susceptibility testing using Aspergillus niger confirmed that MS6 displayed more durable growth inhibition than drug suspension. Therefore, MS6 can be a promising option for enhanced TOL ocular delivery.
Collapse
Affiliation(s)
- Diana Aziz
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sally A. Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt
| | - Saadia Tayel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amal Makhlouf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence:
| |
Collapse
|
13
|
Hassan DH, Shohdy JN, El-Setouhy DA, El-Nabarawi M, Naguib MJ. Compritol-Based Nanostrucutured Lipid Carriers (NLCs) for Augmentation of Zolmitriptan Bioavailability via the Transdermal Route: In Vitro Optimization, Ex Vivo Permeation, In Vivo Pharmacokinetic Study. Pharmaceutics 2022; 14:pharmaceutics14071484. [PMID: 35890379 PMCID: PMC9315618 DOI: 10.3390/pharmaceutics14071484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/14/2023] Open
Abstract
Migraine is a severe neurovascular disease manifested mainly as unilateral throbbing headaches. Triptans are agonists for serotonin receptors. Zolmitriptan (ZMP) is a biopharmaceutics classification system (BCS) class III medication with an absolute oral bioavailability of less than 40%. As a result, our research intended to increase ZMP bioavailability by developing transdermal nanostructured lipid carriers (NLCs). NLCs were prepared utilizing a combination of hot melt emulsification and high-speed stirring in a 32 full factorial design. The studied variables were liquid lipid type (X1) and surfactant type (X2). The developed NLCs were evaluated in terms of particle size (Y1, nm), polydispersity index (Y2, PDI), zeta potential (Y3, mV), entrapment efficacy (Y4, %) and amount released after 6 h (Q6h, Y5, %). At 1% Mygliol as liquid lipid component and 1% Span 20 as surfactant, the optimized formula (NLC9) showed a minimum particle size (138 ± 7.07 nm), minimum polydispersity index (0.39 ± 0.001), acceptable zeta potential (−22.1 ± 0.80), maximum entrapment efficiency (73 ± 0.10%) and maximum amount released after 6 h (83.22 ± 0.10%). The optimized formula was then incorporated into gel preparation (HPMC) to improve the system stability and ease of application. Then, the pharmacokinetic study was conducted on rabbits in a cross-over design. The calculated parameters showed a higher area under the curve (AUC0–24, AUC0–∞ (ng·h/mL)) of the developed ZMP-NLCs loaded gel, with a 1.76-fold increase in bioavailability in comparison to the orally administered marketed product (Zomig®). A histopathological examination revealed the safety of the developed nanoparticles. The declared results highlight the potential of utilizing the proposed NLCs for the transdermal delivery of ZMP to improve the drug bioavailability.
Collapse
Affiliation(s)
- Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Oct. 6, Giza 12566, Egypt;
| | - Joseph N. Shohdy
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Oct. 6, Giza 12566, Egypt;
| | - Doaa Ahmed El-Setouhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
| | - Marianne J. Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
- Correspondence:
| |
Collapse
|
14
|
Formulation-by-Design of Efinaconazole Spanlastic Nanovesicles for Transungual Delivery Using Statistical Risk Management and Multivariate Analytical Techniques. Pharmaceutics 2022; 14:pharmaceutics14071419. [PMID: 35890316 PMCID: PMC9324635 DOI: 10.3390/pharmaceutics14071419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
As regulatory and technical landscapes for pharmaceutical formulation development are rapidly evolving, a risk-management approach using multivariate analysis is highly essential for designing a product with requisite critical quality attributes (CQA). Efinaconazole, a newly approved poorly water-soluble antifungal triazole drug has poor permeability. Spanlastics, new-generation surfactant nanovesicles, being fluidic, help improve the permeability of drugs. Therefore, we optimized efinaconazole spanlastics using the concepts of Formulation-by-Design (FbD) and explored the feasibility of transungual delivery for the management of onychomycosis. Using the Ishikawa fishbone diagram, the risk factors that may have an impact on the CQA of efinaconazole spanlastic vesicles were identified. Application of the Plackett–Burman experimental design facilitated the screening of eight different formulation and process parameters influencing particle size, transmittance, relative deformability, zeta potential, entrapment efficiency, and dissolution efficiency. With the help of Pareto charts, the three most significant factors were identified, viz., vesicle builder (Span), edge activator (Tween), and mixing time. The levels of these three critical variables were optimized by FbD to reduce the particle size and maximize the transparency, relative deformability, encapsulation efficiency, and dissolution efficiency of efinaconazole spanlastic nanovesicles. Bayesian and Lenth’s analysis and mathematical modeling of the experimental data helped to quantify the critical formulation attributes required for getting the formulation with optimum quality features. The optimized efinaconazole-loaded spanlastic vesicles had a particle size of 197 nm, transparency of 91%, relative deformability of 12.5 min, and dissolution efficiency of 81.23%. The spanlastic formulation was incorporated into a gel and explored ex vivo for transungual delivery. This explorative study provides an example of the application of principles of risk management, statistical multivariate analysis, and the FbD approach in developing efinaconazole spanlastic nanovesicles.
Collapse
|
15
|
Teaima MH, Alsofany JM, El-Nabarawi MA. Clove Oil Endorsed Transdermal Flux of Dronedarone Hydrochloride Loaded Bilosomal Nanogel: Factorial Design, In vitro Evaluation and Ex vivo Permeation. AAPS PharmSciTech 2022; 23:182. [PMID: 35773361 DOI: 10.1208/s12249-022-02337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
The goal of this study was to develop a bilosomal gel formulation to enhance transdermal permeability of dronedarone hyrdrochloride (DRN) which suffers from poor oral absorption and limited bioavailability. To overcome this obstacle, bilosomes were successfully prepared using 23 full-factorial design. Span®40, cholesterol, sodium deoxycholate (bile salt), clove oil (permeability enhancer), and either Tween® 60 or Tween® 80 (edge activator) were used in bilosome preparation by ethanol injection method. In this design, independent variables were X1, edge activator type; X2, edge activator amount (mg); and X3, permeability enhancer concentration (% w/v). Optimal formula (B2) of the highest desirability of (0.776) demonstrated minimum vesicle size (VS) of 312.4 ± 24.42 nm, maximum absolute value of zeta potential (ZP) - 36.17 ± 2.57 mV, maximum entrapment efficiency (EE %) of 80.95 ± 3.01%, maximum deformability Index (DI) of 8.24 ± 1.26 g and maximum drug flux after 12 h (J12) of 21.23 ± 1.54 µg/cm2 h upon ex vivo permeation study. After 12 h, 70.29 ± 6.46% of DRN was released from B2. TEM identification of B2 showed spherical shaped nanosized vesicles which were physically stable for 3 months at different temperatures. B2 was incorporated into carboxymethylcellulose gel base for easiness of dermal application. B2 gel demonstrated good physical properties, non-Newtonian psuedoplastic flow, and enhanced release (57.0 ± 8.68% of DRN compared to only 13.3 ± 1.2% released from drug suspension after 12 h) and enhanced skin permeation.
Collapse
Affiliation(s)
- Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Jihad Mahmoud Alsofany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Sadat City, Sadat City, Monufia, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Augmented local skin accumulation efficiency of sertaconazole nitrate via glycerosomal hydrogel: Formulation, statistical optimization, ex vivo performance and in vivo penetration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Ansari MD, Saifi Z, Pandit J, Khan I, Solanki P, Sultana Y, Aqil M. Spanlastics a Novel Nanovesicular Carrier: Its Potential Application and Emerging Trends in Therapeutic Delivery. AAPS PharmSciTech 2022; 23:112. [PMID: 35411425 DOI: 10.1208/s12249-022-02217-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Nanotechnology-based drug delivery system has played a very crucial role in overpowering the tasks allied with the conventional dosage form. Spanlastics, an elastic nanovesicle with an ability to carry wide range of drug molecules, make it a potential drug delivery carrier. Spanlastics have extended rising curiosity for diverse sort of route of administration. They can squeeze themselves through the skin pore due to elastic and deformable nature which makes them favorable for transdermal delivery. Spanlastics consist of non-ionic surfactant or blend of surfactants. Many researchers proved that spanlastics have been significantly augment therapeutic efficacy, enhanced drug bioavailability, and reduced drug toxicity. This review summarizes various vesicular systems, composition and structure of spanlastics, advantages of spanlastics over other drug delivery systems, and mechanism of drug penetration through skin. It also gives a brief on different types of drug encapsulated in spanlastics vesicles for the treatment of various diseases.
Collapse
|
18
|
Habib BA, Abdeltawab NF, Salah Ad-Din I. D-optimal mixture design for optimization of topical dapsone niosomes: in vitro characterization and in vivo activity against Cutibacterium acnes. Drug Deliv 2022; 29:821-836. [PMID: 35266431 PMCID: PMC8920366 DOI: 10.1080/10717544.2022.2048131] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study aimed to illustrate the use of D-optimal mixture design (DOMD) for optimization of an enhancer containing Dapsone niosomal formula for acne topical treatment. Mixture components (MixCs) studied were: Span 20, Cholesterol, and Cremophor RH. Different responses were measured. Optimized formula (OF) was selected to minimize particle size and maximize absolute zeta potential and entrapment efficiency. Optimized formula gel (OF-gel) was prepared and characterized. OF-gel in vivo skin penetration using confocal laser scanning microscopy and activity against Cutibacterium acnes in acne mouse model were studied. Based on DOMD results analysis, adequate models were derived. Piepel and contour plots were plotted accordingly to explain how alteration in MixCs L-pseudo values affected studied responses and regions for different responses’ values. The OF had suitable predicted responses which were in good correlation with the actually measured ones. The OF-gel showed suitable characterization and in vivo skin penetration up to the dermis layer. In vivo acne mouse-model showed that OF-gel-treated group (OF-gel-T-gp) had significantly better recovery (healing) criteria than untreated (UT-gp) and Aknemycin®-treated (A-T-gp) groups. This was evident in significantly higher reduction of inflammation percent observed in OF-gel-T-gp than both UT-gp and A-T-gp. Better healing in OF-gel-T-gp compared with other groups was also verified by histopathological examination. Moreover, OF-gel-T-gp and A-T-gp bacterial loads were non-significantly different from each other but significantly lower than UT-gp. Thus, DOMD was an adequate statistical tool for optimization of an appropriate enhancer containing Dapsone niosomal formula that proved to be promising for topical treatment of acne.
Collapse
Affiliation(s)
- Basant A Habib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibtehal Salah Ad-Din
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Hegazy D, Tag R, Habib BA. Statistical Sequential Experimentation: Preliminary Mixed Factorial Design, I-Optimal Mixture Design Then Finally Novel Design Space Expansion for Optimization of Tazarotene Cubosomes. Int J Nanomedicine 2022; 17:1069-1086. [PMID: 35309964 PMCID: PMC8926415 DOI: 10.2147/ijn.s337130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Doaa Hegazy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Correspondence: Doaa Hegazy, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt, Tel +20-100-911-0847, Email
| | - Randa Tag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Basant Ahmed Habib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Ansari MD, khan I, Solanki P, Pandit J, Jahan RN, Aqil M, Sultana Y. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Alnusaire TS, Sayed AM, Elmaidomy AH, Al-Sanea MM, Albogami S, Albqmi M, Alowaiesh BF, Mostafa EM, Musa A, Youssif KA, Refaat H, Othman EM, Dandekar T, Alaaeldin E, Ghoneim MM, Abdelmohsen UR. An In Vitro and In Silico Study of the Enhanced Antiproliferative and Pro-Oxidant Potential of Olea europaea L. cv. Arbosana Leaf Extract via Elastic Nanovesicles (Spanlastics). Antioxidants (Basel) 2021; 10:antiox10121860. [PMID: 34942963 PMCID: PMC8698813 DOI: 10.3390/antiox10121860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
The olive tree is a venerable Mediterranean plant and often used in traditional medicine. The main aim of the present study was to evaluate the effect of Olea europaea L. cv. Arbosana leaf extract (OLE) and its encapsulation within a spanlastic dosage form on the improvement of its pro-oxidant and antiproliferative activity against HepG-2, MCF-7, and Caco-2 human cancer cell lines. The LC-HRESIMS-assisted metabolomic profile of OLE putatively annotated 20 major metabolites and showed considerable in vitro antiproliferative activity against HepG-2, MCF-7, and Caco-2 cell lines with IC50 values of 9.2 ± 0.8, 7.1 ± 0.9, and 6.5 ± 0.7 µg/mL, respectively. The encapsulation of OLE within a (spanlastic) nanocarrier system, using a spraying method and Span 40 and Tween 80 (4:1 molar ratio), was successfully carried out (size 41 ± 2.4 nm, zeta potential 13.6 ± 2.5, and EE 61.43 ± 2.03%). OLE showed enhanced thermal stability, and an improved in vitro antiproliferative effect against HepG-2, MCF-7, and Caco-2 (IC50 3.6 ± 0.2, 2.3 ± 0.1, and 1.8 ± 0.1 µg/mL, respectively) in comparison to the unprocessed extract. Both preparations were found to exhibit pro-oxidant potential inside the cancer cells, through the potential inhibitory activity of OLE against glutathione reductase and superoxide dismutase (IC50 1.18 ± 0.12 and 2.33 ± 0.19 µg/mL, respectively). These inhibitory activities were proposed via a comprehensive in silico study to be linked to the presence of certain compounds in OLE. Consequently, we assume that formulating such a herbal extract within a suitable nanocarrier would be a promising improvement of its therapeutic potential.
Collapse
Affiliation(s)
- Taghreed S. Alnusaire
- Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia; (T.S.A.); (B.F.A.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mha Albqmi
- Chemistry Department, College of Science and Arts, Jouf University, P.O. Box 756 Alqurayyat, Saudi Arabia;
| | - Bassam F. Alowaiesh
- Biology Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia; (T.S.A.); (B.F.A.)
| | - Ehab M. Mostafa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
- Correspondence: (A.M.); (U.R.A.)
| | - Khayrya A. Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11865, Egypt;
| | - Hesham Refaat
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.R.); (E.A.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.R.); (E.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Correspondence: (A.M.); (U.R.A.)
| |
Collapse
|
22
|
Fahmy AM, Hassan M, El-Setouhy DA, Tayel SA, Al-Mahallawi AM. Statistical optimization of hyaluronic acid enriched ultradeformable elastosomes for ocular delivery of voriconazole via Box-Behnken design: in vitro characterization and in vivo evaluation. Drug Deliv 2021; 28:77-86. [PMID: 33342315 PMCID: PMC7875553 DOI: 10.1080/10717544.2020.1858997] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voriconazole (VCZ) is a well-known broad spectrum triazole antifungal, mainly used orally and intravenously. The study aimed to formulate VCZ into ultradeformable elastosomes for the topical treatment of ocular fungal keratitis. Different formulae were prepared using a modified ethanol injection method, employing a 33 Box-Behnken design. They were characterized by measuring their entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI) and zeta potential (ZP). The optimized formula was subjected to further in vitro investigations and in vivo evaluation studies. The prepared vesicles had satisfactory EE%, PS, PDI and ZP values. The numerical optimization process suggested an optimal elastosomal formula (OE) composed of phosphatidyl choline and brij S100 at the weight ratio of 3.62: 1, 0.25%w/v hyaluronic acid and 5% (percentage from phosphatidyl choline/brij mixture) polyvinyl alcohol. It had high EE (72.6%), acceptable PS and PDI (362.4 nm and 0.25, respectively) and highly negative ZP of −41.7 mV. OE exhibited higher elasticity than conventional liposomes, with acceptable stability for three months. Transmission electron microscopy demonstrated the spherical morphology of vesicles with an external transparent coat of Hyaluronic acid. OE was expected to cause no ocular irritation or blurring in vision as reflected by pH and refractive index measurements. The histopathological study revealed the safety of OE for ocular use. The fungal susceptibility testing using Candida albicans demonstrated the superiority of OE to VCZ suspension, with greater and more durable growth inhibition. Therefore, OE can be regarded as a promising formula, achieving both safety and efficacy.
Collapse
Affiliation(s)
- Abdurrahman Muhammad Fahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Doaa Ahmed El-Setouhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Saadia Ahmed Tayel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulaziz Mohsen Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
23
|
Zolmitriptan Intranasal Spanlastics for Enhanced Migraine Treatment; Formulation Parameters Optimized via Quality by Design Approach. Sci Pharm 2021. [DOI: 10.3390/scipharm89020024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Zolmitriptan is a potent second-generation triptan prescribed for migraine attacks. It suffers low bioavailability (40%) after oral administration due to the hepatic first-pass metabolism. Spanlastics are surfactant-based elastic vesicular drug carrier systems. This study aimed to design and optimize intranasal spanlastic formulations as an alternative approach that directly targets brain delivery, enhancing its bioavailability and avoiding the first-pass effect. The quality by design approach was applied to correlate the formulation parameters (Span 60 and Tween 80 concentrations) and critical quality attributes (entrapment efficiency (EE%) and particle size). Spanlastic formulations were designed based on response surface central composite design and prepared via an ethanol injection method. Designed formulations were characterized by EE% and particle size measurements to select the optimized formula (with a combination of small particle size and high EE%). The optimized formula was further subjected to transmission electron microscopy, zeta potential measurement and ex vivo permeation study. The optimized formulation showed a particle size of 117.5 nm and EE% of 45.65%, with a low percentage of error between the observed and predicted values. Seventy percent of zolmitriptan was permeated through the nasal membrane within 30 min, and it completely permeated within 2 h with a significantly higher steady-state flux compared to plain gel. This study introduced a successful and promising intranasal formulation suitable for further brain delivery analysis.
Collapse
|
24
|
Nemr AA, El-Mahrouk GM, Badie HA. Development and evaluation of surfactant-based elastic vesicular system for transdermal delivery of Cilostazole: ex-vivo permeation and histopathological evaluation studies. J Liposome Res 2021; 32:159-171. [PMID: 33970754 DOI: 10.1080/08982104.2021.1918151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cilostazole (CLZ) is an anti-platelet drug that suffers from extensive first pass-metabolism and gastrointestinal side effects. This study aimed to prepare spanlastics for enhancing the transdermal delivery of CLZ to avoid its oral problems. CLZ-loaded spanlastic dispersions were prepared by ethanol injection technique according to a 413121 full factorial design to investigate the effect of formulation variables on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and the percent of drug released after 2 and 24 h (Q2 and 24 h). Spanlastic-loaded gel of the optimized formula was prepared using hydroxypropyl methylcellulose (HPMC K4M). The optimum formula (F13), constitutes of Span60 and CremophoreRH40 at a weight ratio of 80:20 and distilled water for hydration, had the highest desirability value of (0.841) and exhibited the highest EE% of (69.29 ± 0.29%), PS of (452.7 ± 5.94 nm), ZP of (-32.6 ± 0.4 mV), Q 2 h of (33.28 ± 1.45%) and Q24h of (82.37 ± 1.37. F13 was subjected to ex-vivo permeation study and showed a cumulative amount permeated after 48 h(Q48h) equal to (750.71 ± 3 μg/cm2) in comparison to the drug suspension which showed Q48h equal to (190.20 ± 6.3 μg/cm2). Also, F13 showed an increase in the drug flux of (17.84 μg/cm2.h) and enhancement ratio(ER) of (5.71 ± 0.1) in comparison to the drug suspension that showed drug flux of (3.12 ± 0.0 μg/cm2.h). Spanlastics-loaded gel was subjected to an in-vitro release study compared to(F13) spanlastic dispersion and showed a more sustained release effect. In addition, histopathological studies showed no sign of skin alteration confirming safe delivery through the skin. CLZ showed promising results with high potential to be delivered transdermally.
Collapse
Affiliation(s)
- Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Galal Mohamed El-Mahrouk
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hany Abdo Badie
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Jyothi S, Krishna K, Ameena Shirin V, Sankar R, Pramod K, Gangadharappa H. Drug delivery systems for the treatment of psoriasis: Current status and prospects. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Nemr AA, El-Mahrouk GM, Badie HA. Development and evaluation of proniosomes to enhance the transdermal delivery of cilostazole and to ensure the safety of its application. Drug Dev Ind Pharm 2021; 47:403-415. [PMID: 33625936 DOI: 10.1080/03639045.2021.1890111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cilostazole (CLZ) is an anti-platelet drug that suffers from extensive first-pass metabolism and gastrointestinal side effects. This study aimed to prepare proniosomes for enhancing the transdermal delivery of CLZ to avoid its oral problems. proniosomes were prepared by a coacervation phase separation technique according to the D-optimal design to investigate the effect of formulation variables on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and the percent of the drug released after 2 and 24 h (Q2 and 24 h). The desirability criterion is set to select the optimum formula. The optimum formula(opt) with a desirability value (0.75), composed of 540 mg Span60 and 59.7 mg of cholesterol, had the highest EE% of (75.125 ± 0.125%), PS of (300.3 ± 0.2 nm), ZP of (-39.35 ± 0.15 mV), Q2h of (24.32 ± 0.13%) and Q24h of (81.175 ± 0.325%). Further, the opt-gel was prepared by using hydroxy propyl methyl cellulose (HPMC K4M). The opt-formula was subjected to an ex-vivo permeation study and showed a marked increase in drug flux of (22.89 ± 0.1 µg/cm2.h). The opt-gel was subjected to an in-vitro release study in comparison with the opt-formula that showed a more sustained release effect. The histopathological examination study confirmed the safety of the topical application of proniosomes. The CLZ-loaded proniosomes showed promising results with high potential to deliver it across the skin.
Collapse
Affiliation(s)
- Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Galal Mohamed El-Mahrouk
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hany Abdo Badie
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Alaaeldin E, Abou-Taleb HA, Mohamad SA, Elrehany M, Gaber SS, Mansour HF. Topical Nano-Vesicular Spanlastics of Celecoxib: Enhanced Anti-Inflammatory Effect and Down-Regulation of TNF-α, NF-кB and COX-2 in Complete Freund's Adjuvant-Induced Arthritis Model in Rats. Int J Nanomedicine 2021; 16:133-145. [PMID: 33447032 PMCID: PMC7802787 DOI: 10.2147/ijn.s289828] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease that underlies chronic inflammation of the synovial membrane. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat RA. However, a long list of adverse events associated with long-term treatment regimens with NSAIDs negatively influences patient compliance and therapeutic outcomes. AIM The aim of this work was to achieve site-specific delivery of celecoxib-loaded spanlastic nano-vesicle-based delivery system to the inflamed joints, avoiding systemic administration of large doses. METHODOLOGY To develop spanlastic nanovesicles for transdermal delivery of celecoxib, modified injection method was adopted using Tween 80 or Brij as edge activators. Entrapment efficiency, vesicle size, ex vivo permeation, and morphology of the prepared nano-vesicles were characterized. Carbopol-based gels containing the selected formulations were prepared, and their clarity, pH, rheological performance, and ex vivo permeation were characterized. Celecoxib-loaded niosomes and noisome-containing gels were developed for comparison. The in vivo efficacy of the selected formulations was evaluated in a rat model of Freund's complete adjuvant-induced arthritis. Different inflammatory markers including TNF-α, NF-кB and COX-2 were assessed in paw tissue before and after treatment. RESULTS The size and entrapment efficiency of the selected spanlastic nano-vesicle formulation were 112.5 ± 3.6 nm, and 83.6 ± 2.3%, respectively. This formulation has shown the highest transdermal flux and permeability coefficient compared to the other investigated formulations. The spanlastics-containing gel of celecoxib has shown transdermal flux of 6.9 ± 0.25 µg/cm2/hr while the celecoxib niosomes-containing gel and unprocessed celecoxib-loaded gel have shown 5.2 ± 0.12 µg/cm2/hr and 0.64 ± 0.09 µg/cm2/hr, respectively. In the animal model of RA, the celecoxib-loaded spanlastics-containing gel significantly reduced edema circumference and significantly suppressed TNF-α, NF-кB and COX-2 levels compared to the niosomes-containing gel, the marketed diclofenac sodium gel, and unprocessed celecoxib-loaded gel. CONCLUSION The spanlastic nano-vesicle-containing gel represents a more efficient site-specific treatment for topical treatment of chronic inflammation like RA, compared to commercial and other conventional alternatives.
Collapse
MESH Headings
- Administration, Cutaneous
- Administration, Topical
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Celecoxib/pharmacology
- Celecoxib/therapeutic use
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Down-Regulation/drug effects
- Drug Delivery Systems/methods
- Freund's Adjuvant
- Gene Expression Regulation/drug effects
- Kinetics
- Liposomes
- Male
- Mice
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nanoparticles/chemistry
- Particle Size
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Rheology
- Skin Absorption/drug effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Rats
Collapse
Affiliation(s)
- Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Soad A Mohamad
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mahmoud Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shereen S Gaber
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba F Mansour
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
28
|
Fahmy AM, Hassan M, El-Setouhy DA, Tayel SA, Al-Mahallawi AM. Voriconazole Ternary Micellar Systems for the Treatment of Ocular Mycosis: Statistical Optimization and In Vivo Evaluation. J Pharm Sci 2020; 110:2130-2138. [PMID: 33346033 DOI: 10.1016/j.xphs.2020.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Voriconazole (VRC) is a broad spectrum, second generation triazole antifungal. The main use of VRC is via the oral and intravenous route. The study aimed to formulate VRC into ternary micellar systems (TMSs) for the topical treatment of ocular mycosis. TMSs were successfully prepared by water addition/solvent evaporation method, applying a 3-factor D-optimal design. The numerical optimization process suggested an optimal formula (OTMS) composed of total Pluronics to drug weight ratio of 22.89: 1, 1:1 weight ratio of Pluronic® P123 and F68, and 2% w/v of Labrasol. OTMS had high solubilization efficiency of 98.0%, small micellar size of 21.8 nm and suitable zeta potential and polydispersity index values of -9.0 mV and 0.261, respectively. OTMS exhibited acceptable stability for 3 months. Transmission electron microscopy demonstrated the spherical morphology of micelles. OTMS was expected to cause no ocular irritation or blurring in vision as reflected by pH and refractive index measurements. The histopathological study revealed the safety of OTMS for ocular use. The fungal susceptibility testing using Candida albicans demonstrated the superiority of OTMS to VRC suspension, with greater and more durable growth inhibition. Therefore, ocular application of optimized VRC-loaded TMSs can be a promising treatment for ocular mycosis.
Collapse
Affiliation(s)
- Abdurrahman Muhammad Fahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Doaa Ahmed El-Setouhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Saadia Ahmed Tayel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulaziz Mohsen Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
29
|
Shah HS, Usman F, Ashfaq–Khan M, Khalil R, Ul-Haq Z, Mushtaq A, Qaiser R, Iqbal J. Preparation and characterization of anticancer niosomal withaferin–A formulation for improved delivery to cancer cells: In vitro, in vivo, and in silico evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Li G, Sun X, Wan X, Wang D. Lactoferrin-Loaded PEG/PLA Block Copolymer Targeted With Anti-Transferrin Receptor Antibodies for Alzheimer Disease. Dose Response 2020; 18:1559325820917836. [PMID: 32863801 PMCID: PMC7430085 DOI: 10.1177/1559325820917836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 11/15/2022] Open
Abstract
Last few years, struggles have been reported to develop the nanovesicles for drug delivery via the brain-blood barrier (BBB). Novel drugs, for instance, iAβ5, are efficient to inhibit the aggregates connected to the treatment of Alzheimer disease and are being evaluated, but most of the reports reflect some drawbacks of the drugs to reach the brain in preferred concentrations owing to the less BBB penetrability of the surface dimensions. In this report, we designed and developed a new approach to enhance the transport of drug via BBB, constructed with lactoferrin (Lf)-coated polyethylene glycol-polylactide nanoparticles (Lf-PPN) with superficial monoclonal antibody-functionalized antitransferrin receptor and anti-Aβ to deliver the iAβ5 hooked on the brain. The porcine brain capillary endothelial cells were utilized as BBB typically to examine the framework efficacy and toxicity. The cellular uptake of the immuno-nanoparticles with measured conveyance of the iAβ5 peptide was significantly enhanced and associated with Lf-PPN without monoclonal antibody functionalizations.
Collapse
Affiliation(s)
- Guichen Li
- Department of Clinical Psychology, Qingdao Mental Health Center, Qingdao, China
| | - Xianghong Sun
- Second Elderly Ward, Qingdao Mental Health Center, Qingdao, China
| | - Xiaona Wan
- Second Elderly Ward, Qingdao Mental Health Center, Qingdao, China
| | - Dongming Wang
- Second Elderly Ward, Qingdao Mental Health Center, Qingdao, China
| |
Collapse
|
31
|
El Menshawe SF, Nafady MM, Aboud HM, Kharshoum RM, Elkelawy AMMH, Hamad DS. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund's adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv 2020; 26:1140-1154. [PMID: 31736366 PMCID: PMC6882467 DOI: 10.1080/10717544.2019.1686087] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The current study aimed to encapsulate fluvastatin sodium (FVS), a member of the statins family possessing pleiotropic effects in rheumatoid arthritis (RA), into spanlastic nanovesicles (SNVs) for transdermal delivery. This novel delivery could surmount FVS associated oral encumbrances such as apparent first-pass effect, poor bioavailability and short elimination half-life, hence, accomplishing platform for management of RA. To consummate this objective, FVS-loaded SNVs were elaborated by thin film hydration method, utilizing either Span 60 or Span 80, together with Tween 80 or Brij 35 as an edge activator according to full factorial design (24). Applying Design-Expert® software, the influence of formulation variables on SNVs physicochemical properties and the optimized formulation selection were explored. Additionally, the pharmacokinetic studies were scrutinized in rats. Furthermore, in Freund's adjuvant-induced arthritis, rheumatoid markers, TNF-α, IL-10, p38 MAPK, and antioxidant parameters were measured. The optimum SNVs were nano-scaled spherical vesicles (201.54 ± 9.16 nm), having reasonable entrapment efficiency (71.28 ± 2.05%), appropriate release over 8 h (89.45 ± 3.64%) and adequate permeation characteristics across the skin (402.55 ± 27.48 µg/cm2). The pharmacokinetic study disclosed ameliorated bioavailability of the optimum SNVs gel by 2.79- and 4.59-fold as compared to the oral solution as well as the traditional gel, respectively. Moreover, it elicited a significant suppression of p38 MAPK expression and also significant improvement of all other measured biomarkers. Concisely, the foregoing findings proposed that SNVs can be auspicious for augmenting FVS transdermal delivery for management of RA.
Collapse
Affiliation(s)
- Shahira F El Menshawe
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed M Nafady
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Heba M Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Doaa S Hamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
32
|
Emad Eldeeb A, Salah S, Ghorab M. Proniosomal gel-derived niosomes: an approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in-vitro characterization, and in-vivo pharmacodynamic study. Drug Deliv 2019; 26:509-521. [PMID: 31090464 PMCID: PMC6534210 DOI: 10.1080/10717544.2019.1609622] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
Brimonidine tartrate (BRT) is a hydrophilic α2 adrenergic agonist used for the treatment of glaucoma. Glaucoma is an ocular disease affecting the anterior segment of the eye requiring lifetime treatment. Owing to the obstacles facing ocular delivery systems and hydrophilicity of BRT, frequent administration of the eye drops is required. Niosomes have been widely used to improve the ocular bioavailability of the topically applied drugs and to enhance the ocular residence time. However, they have drawbacks as physical instability, aggregation, and loss of the entrapped drug. For this reason, BRT proniosomes were prepared to overcome niosomal instability issues. A D-optimal design was utilized to determine the optimum conditions for preparation of the proniosomal gels. Independent variables were amount of surfactant, surfactant:cholesterol ratio, and type of surfactant used. The dependent variables were entrapment efficiency (EE%), particle size, percentage of drug released after 2 h (Q2h), and percentage of drug released after 24 h (Q24h). The optimum formula was suggested with desirability 0.732 and the composition of 540 mg Span 60 and 10:1 surfactant:cholesterol ratio. The results obtained after reconstitution were; EE% of 79.23 ± 1.12% particle size of 810.95 ± 16.758 nm, polydispersity index (PDI) 0.6785 ± 0.213, zeta potential 59.1 ± 0.99 mV, Q2h40.98 ± 1.29%, Q8h 63.35 ± 6.07%, and Q24h = 91.11 ± 1.76%. Transmission electron microscope imaging of the formula showed the typical spherical shape of niosomes. In-vivo pharmacodynamic study assured the improved ocular bioavailability of BRT selected formula when compared with Alphagan®P with relative AUC0-24 of 5.024 and 7.90 folds increase in the mean residence time (MRT). Lack of ocular irritation of the formula was assured by Draize test.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Abruzzo A, Cerchiara T, Luppi B, Bigucci F. Transdermal Delivery of Antipsychotics: Rationale and Current Status. CNS Drugs 2019; 33:849-865. [PMID: 31493244 DOI: 10.1007/s40263-019-00659-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this article is to provide the rationale for the development of transdermal formulations of antipsychotics by highlighting their main advantages, starting with an overview of the antipsychotic formulations that are currently available on the market. Progress regarding transdermal antipsychotic formulations was investigated by performing a search of papers, patents and clinical trials published in the last 10 years. Available data on antipsychotic transdermal formulations are reported and discussed, focusing on the characteristics of the dosage forms and their ability to promote drug absorption. Despite the current availability of a large number of antipsychotics, only a few of these drugs (e.g. aripiprazole, asenapine, blonanserin, chlorpromazine, haloperidol, olanzapine, prochlorperazine, quetiapine, and risperidone) have been developed as transdermal delivery systems. Several papers and patents show that transdermal formulations, such as creams, films, gels, nanosystems, patches, solutions, and sprays, have been evaluated with the aim of expanding the clinical utility of antipsychotic drugs. In particular, the employment of different strategies, such as the use of nanoparticles/vesicles, or permeation enhancers as well as microneedles with iontophoresis, may improve the absorption of antipsychotic drugs through the skin. However, few clinical trials on transdermal delivery of antipsychotic drugs are available and only delivery systems containing asenapine and blonanserin have shown interesting clinical results in terms of pharmacokinetic data, efficacy, and tolerability. Recently, the transdermal patch formulation of blonanserin was approved in Japan for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy.
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, Italy
| |
Collapse
|
34
|
Eldeeb AE, Salah S, Ghorab M. Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: Ex-vivo permeation and in-vivo pharmacodynamic study. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Novel antipsoriatic fluidized spanlastic nanovesicles: In vitro physicochemical characterization, ex vivo cutaneous retention and exploratory clinical therapeutic efficacy. Int J Pharm 2019; 568:118556. [PMID: 31348982 DOI: 10.1016/j.ijpharm.2019.118556] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022]
Abstract
Tazarotene (TAZ) is a topical synthetic retinoid used in psoriasis treatment, however, it is extremely lipophilic and exhibits skin irritation. Research is in a state of continuous advancement in the field of nanocarriers fabrication, and in this regard, we investigated the formulation of novel topically oriented nanovesicles; representing a combination of spanlastics and penetration enhancer vesicles, to be termed (fluidized-SNs). TAZ-loaded fluidized SNs were physicochemically characterized, tested for ex vivo cutaneous retention, and the selected formulation was compared with the marketed product Acnitaz® regarding clinical antipsoriatic activity. The selected fluidized-SNs enriched with 1% cineole exhibited high entrapment for TAZ (76.19%), suitable size and zeta potential of 241.5 ± 5.68 nm and -36.10 ± 2.50 mV respectively, and retaining of stability after refrigeration storage for one month. As hypothesized, cineole enriched fluidized-SNs exhibited remarkable TAZ deposition amounting to a total of 81.51% in the different skin layers. Upon clinical assessment, the presented formulation displayed superior traits compared to the marketed product, in terms of dermoscopic imaging, morphometric analysis of psoriatic lesions, and statistical analysis of PASI scores. Results confirmed that the prepared novel fluidized spanlastics formulation holds great promise for the treatment of psoriasis, and its benefit should futuristically be investigated in other topical diseases.
Collapse
|