1
|
Mei Y, Chen Y, Zhang H, Fan W, Liu L, Wang Z, Wang J, Fan L, Xiong A, Yang L, Wang Z. Borneol acts as an adjuvant agent to enhance the oral absorption of Panax notoginseng saponins in rats: Effect of optical configuration and compatibility ratios. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118331. [PMID: 38734392 DOI: 10.1016/j.jep.2024.118331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponins (PNS), as the main active component of Panax notoginseng, shows broad pharmacological effects but with low oral bioavailability. Borneol (BO) is commonly used as an adjuvant drug in the field of traditional Chinese medicine, which has been proven to facilitate the absorption of ginsenosides such as Rg1 and Rb1 in vivo. The presence of chiral carbons has resulted in three optical isomers of BO commercially available in the market, all of which are documented by national standards. AIM OF THE STUDY This study aimed to investigate the role of BO in promoting the oral absorption of PNS from the perspective of optical configuration and compatibility ratios. MATERIALS AND METHODS In this study, an ultra-performance liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (UPLC-QTRAP-MS/MS) method was validated and applied to determine the concentrations of five main saponins in PNS in rat plasma. The kinetic characteristics of PNS were compared when co-administered with BO based on optical isomerism and different compatibility ratios. RESULTS The results showed that BO promoted the exposure of PNS in rats. Three forms of BO, namely d-borneol (DB), l-borneol (LB), and synthetic borneol (SB), exhibited different promotion strengths. SB elevated PNS exposure in rats more than DB or LB. It is also interesting to note that under different compatibility ratios, SB can exert a strong promoting effect only when PNS and BO were combined in a 1:1 ratio (PNS 75 mg/kg; BO 75 mg/kg). As a pharmacokinetic booster, the dosage of BO is worthy of consideration and should follow the traditional medication principles of Chinese medicine. CONCLUSIONS This study shed new light on the compatible use of PNS and BO from the perspective of "configuration-dose-influence" of BO. The results provide important basis for the clinical application and selection of BO.
Collapse
Affiliation(s)
- Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yan Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Haoyue Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jinyuan Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Aizhen Xiong
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201203, China.
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201203, China.
| |
Collapse
|
2
|
Wang Z, Fang J, Zu S, Sun Q, Song Z, Geng J, Wang D, Li M, Wang C. Protective Effect of Panax notoginseng Extract Fermented by Four Different Saccharomyces cerevisiae Strains on H 2O 2 Induced Oxidative Stress in Skin Fibroblasts. Clin Cosmet Investig Dermatol 2024; 17:621-635. [PMID: 38505810 PMCID: PMC10949305 DOI: 10.2147/ccid.s443717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/16/2024] [Indexed: 03/21/2024]
Abstract
Purpose To produce Panax notoginseng extract as a cosmetic ingredient through Saccharomyces cerevisiae fermentation. Methods We first compared the total sugar content, polysaccharide content, reducing sugar content, total phenolic content, total saponin content, DPPH free radical, ABTS free radical, hydroxyl free radical scavenging ability and ferric reducing antioxidant power (FRAP) of Panax notoginseng fermented extract (pnFE) and unfermented extract (pnWE). Their potential correlations were analyzed by Pearson's correlation analysis. Then, the oxidative stress model of H2O2-induced MSFs was used to evaluate the effects of different pnFE on MSF viability, reactive oxygen species (ROS), malondialdehyde (MDA), and the activities of catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) to explore their protective effects on MSFs subjected to H2O2-induced cellular oxidative damage. Finally, their safety and stability were evaluated by using the red blood cell (RBC) test and hen's egg test-chorioallantoic membrane (HET-CAM) assay, and changes in pH and content of soluble solids, respectively. Results Compared with pnWE, pnFE has more active substances and stronger antioxidant capacity. In addition, pnFE has a protective effect on H2O2-induced oxidative stress in MSFs with appropriate safety and stability. Conclusion PnFE has broad application prospects in the field of cosmetics.
Collapse
Affiliation(s)
- Ziwen Wang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Jiaxuan Fang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Shigao Zu
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Qianru Sun
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Zixin Song
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Jiman Geng
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Dongdong Wang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| |
Collapse
|
3
|
Bhattacharjee A, Chaulya NC, Mukhopadhyay G, Chakraborty A, Mondal B. Optimization of Self-Double Emulsifying Drug Delivery System Using Design of Experiments for Enhanced Oral Bioavailability of Gentamicin: In-vitro, Ex-vivo and In-vivo Studies. J Pharm Sci 2024; 113:659-668. [PMID: 37607594 DOI: 10.1016/j.xphs.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Water-in-oil-in-water (w/o/w) double emulsions have shown excellent capability in augmenting the enteral bioavailability of BCS class III drugs, besides being effective controlled-release formulations. However, the problem of thermodynamic instability has restrained their industrial applicability. The self-double emulsifying drug delivery system (SDEDDS) is one of several approaches used to improve the stability of double emulsions. SDEDDS is a mixture of primary emulsion and secondary surfactant that can spontaneously emulsify into double emulsions in an external aqueous environment with mild agitation. Here, we prepared SDEDDS of gentamicin sulfate by response surface methodology. Selected optimized formulations (ODS1 and ODS2) were evaluated for zeta potential (Y1), optical clarity (Y2), release at 420 min (Y3), emulsion stability index (Y4) and self-emulsification time (Y5). For ODS1, Y1=-35.45 (±1.06)mV, Y2=53.19 (±0.35)%, Y3=75.79 (±0.60)%, Y4=93.97(±0.15)% and Y5=0.631 (±0.014)min, whereas for ODS2, Y1=-35.70 (±0.56)mV, Y2=48.09 (±0.64)%, Y3=76.61 (±0.99)%, Y4=93.00(±0.94)% and Y5=0.687(±0.02)min. Furthermore, ex-vivo studies on intestinal permeability revealed that SDEDDS improved membrane permeability compared to drug solution. Histopathology investigations revealed that SDEDDS promoted permeation without causing significant local membrane distortion. In addition, in-vivo studies revealed a 2.84 -fold increase in AUC0-∞ of optimized SDEDD compared to pure drug oral solution.
Collapse
Affiliation(s)
- Arka Bhattacharjee
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, West Bengal 741249, India.
| | - Nitai Chand Chaulya
- Department of Pharmaceutical Technology, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol, West Bengal 713301, India
| | - Goutam Mukhopadhyay
- Department of Pharmaceutical Technology, BCDA College of pharmacy and Technology, Campus 2, Udairajpur, Madhyamgram, West Bengal 700129, India
| | - Arpan Chakraborty
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, West Bengal 741249, India
| | - Baishakhi Mondal
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, West Bengal 741249, India
| |
Collapse
|
4
|
Wang Y, Sun X, Xie Y, Du A, Chen M, Lai S, Wei X, Ji L, Wang C. Panax notoginseng saponins alleviate diabetic retinopathy by inhibiting retinal inflammation: Association with the NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117135. [PMID: 37689326 DOI: 10.1016/j.jep.2023.117135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a neurovascular disease that causes blindness in adults and is the most serious and common complication of diabetes mellitus. Retinal inflammation is an early stage of DR, and it is believed to play a crucial role in the development of DR. Panax notoginseng saponins (PNS) are the major active constituent in the main root of P. notoginseng, and they exhibit various biological activities, including anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory functions. However, the protective effects and underlying mechanisms of PNS against DR remain unclear. AIM OF THE STUDY This study aimed to investigate the alleviation effects of PNS on DR and the mechanisms involved. Furthermore, it intended to explore the major components that exert efficacy in vivo. MATERIALS AND METHODS Streptozotocin (STZ) was administered intraperitoneally to Sprague Dawley rats, and PNS was administered orally for 1 month after 2 months of STZ injection. The morphological structure of the retina and retinal acellular capillaries were assessed via hematoxylin and eosin (H&E) staining assay. The disruption of the blood-retinal barrier (BRB) was detected through Evans blue dye leakage assay, and retinal leukocyte adhesion was achieved via fluorescein isothiocyanate-coupled concanavalin A lectin labeling assay. Immunofluorescence staining and Western blot assays were conducted to detect the expression of tight junction proteins, adhesion molecules, and the ionized calcium-binding adapter molecule-1 (Iba-1) in the retina. Enzyme-linked immunosorbent assay was performed to detect the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in serum. In addition, the protein expression levels of nuclear factor (NF)-κB p65, phosphorylated IκB kinase (p-IKK), phosphorylated NF-κB inhibitor (p-IκB), and phosphorylated NF-κB p65 (p-p65) were measured using Western blot assay. The ocular tissue distribution of PNS in normal and diabetic rats was determined through ultra-performance liquid chromatography-tandem mass spectrometry. The in vitro anti-inflammatory effects of PNS, notoginsenoside (NGR1), ginsenoside Rg1, Re, Rb1, and Rd (GRg1, GRe, GRb1, and GRd) were evaluated on human Müller (MIO-M1) cells. RESULTS PNS increased the reduction in retinal inner nuclear layer thickness, reduced the increase in retinal acellular capillaries, and attenuated elevated BRB disruption by upregulating the decrease in protein expression of claudin-1 and occludin. Furthermore, PNS significantly abrogated microglial cell activation and reversed the increase in leukocyte adhesion by downregulating the increase in the protein expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Moreover, PNS reduced the elevated levels of TNF-α, IL-6, and IL-1β in serum and inhibited the increased protein expression of p-IKK, p-IκB, and p-p65, and the nuclear translocation of p65. The tissue distribution results revealed that NGR1, GRg1, GRe, GRb1, and GRd were detected in the ocular tissue, while GRg1 and GRb1 were found at the highest levels compared with the other components. The cellular results showed that PNS, NGR1, GRg1, GRe, GRb1, and GRd suppressed the development of cellular inflammatory responses by inhibiting the activation of the NF-κB signaling pathway in MIO-M1 cells and that their anti-inflammatory effects were comparable. CONCLUSION PNS suppressed retinal inflammation by inhibiting the activation of the NF-κB signaling pathway, alleviating DR. GRg1 and GRb1 may be the primary components that exert anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Yaru Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Sun
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yumin Xie
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ming Chen
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Wu Zhou, 543000, China.
| | - Shusheng Lai
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Wu Zhou, 543000, China.
| | - Xiaohui Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|