1
|
González-Gil A, Sánchez-Maldonado B, Rojo C, Flor-García M, Queiroga FL, Ovalle S, Ramos-Ruiz R, Fuertes-Recuero M, Picazo RA. Proneurogenic actions of follicle-stimulating hormone on neurospheres derived from ovarian cortical cells in vitro. BMC Vet Res 2024; 20:372. [PMID: 39160565 PMCID: PMC11334536 DOI: 10.1186/s12917-024-04203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Neural stem and progenitor cells (NSPCs) from extra-neural origin represent a valuable tool for autologous cell therapy and research in neurogenesis. Identification of proneurogenic biomolecules on NSPCs would improve the success of cell therapies for neurodegenerative diseases. Preliminary data suggested that follicle-stimulating hormone (FSH) might act in this fashion. This study was aimed to elucidate whether FSH promotes development, self-renewal, and is proneurogenic on neurospheres (NS) derived from sheep ovarian cortical cells (OCCs). Two culture strategies were carried out: (a) long-term, 21-days NS culture (control vs. FSH group) with NS morphometric evaluation, gene expression analyses of stemness and lineage markers, and immunolocalization of NSPCs antigens; (b) NS assay to demonstrate FSH actions on self-renewal and differentiation capacity of NS cultured with one of three defined media: M1: positive control with EGF/FGF2; M2: control; and M3: M2 supplemented with FSH. RESULTS In long-term cultures, FSH increased NS diameters with respect to control group (302.90 ± 25.20 μm vs. 183.20 ± 7.63 on day 9, respectively), upregulated nestin (days 15/21), Sox2 (day 21) and Pax6 (days 15/21) and increased the percentages of cells immunolocalizing these proteins. During NS assays, FSH stimulated NSCPs proliferation, and self-renewal, increasing NS diameters during the two expansion periods and the expression of the neuron precursor transcript DCX during the second one. In the FSH-group there were more frequent cell-bridges among neighbouring NS. CONCLUSIONS FSH is a proneurogenic hormone that promotes OCC-NSPCs self-renewal and NS development. Future studies will be necessary to support the proneurogenic actions of FSH and its potential use in basic and applied research related to cell therapy.
Collapse
Affiliation(s)
- Alfredo González-Gil
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain.
| | - Belén Sánchez-Maldonado
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Madrid, 28040, Spain
| | - Concepción Rojo
- Department of Anatomy and Embriology, School of Veterinary Medicine, University Complutense of Madrid, Madrid, 28040, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Felisbina Luisa Queiroga
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal.
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Quinta dos Prados, Vila Real, 5000-801, Portugal.
| | - Susana Ovalle
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Ricardo Ramos-Ruiz
- Genomic Unit Cantoblanco, Fundación Parque Científico de Madrid. C/ Faraday 7, Madrid, 28049, Spain
| | - Manuel Fuertes-Recuero
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| | - Rosa Ana Picazo
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro SN, Madrid, 28040, Spain
| |
Collapse
|
2
|
Xu X, Zhuang X, Yu H, Li P, Li X, Lin H, Teoh JP, Chen Y, Yang Y, Cheng Y, Chen W, Fu X. FSH induces EMT in ovarian cancer via ALKBH5-regulated Snail m6A demethylation. Theranostics 2024; 14:2151-2166. [PMID: 38505602 PMCID: PMC10945345 DOI: 10.7150/thno.94161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Background: The therapeutic benefits of targeting follicle-stimulating hormone (FSH) receptor in treatment of ovarian cancer are significant, whereas the role of FSH in ovarian cancer progresses and the underlying mechanism remains to be developed. Methods: Tissue microarray of human ovarian cancer, tumor xenograft mouse model, and in vitro cell culture were used to investigate the role of FSH in ovarian carcinogenesis. siRNA, lentivirus and inhibitors were used to trigger the inactivation of genes, and plasmids were used to increase transcription of genes. Specifically, pathological characteristic was assessed by histology and immunohistochemistry (IHC), while signaling pathway was studied using western blot, quantitative RT-PCR, and immunofluorescence. Results: Histology and IHC of human normal ovarian and tumor tissue confirmed the association between FSH and Snail in ovarian cancer metastasis. Moreover, in epithelial ovarian cancer cells and xenograft mice, FSH was showed to promote epithelial mesenchymal transition (EMT) progress and metastasis of ovarian cancer via prolonging the half-life of Snail mRNA in a N6-methyladenine methylation (m6A) dependent manner, which was mechanistically through the CREB/ALKBH5 signaling pathway. Conclusions: These findings indicated that FSH induces EMT progression and ovarian cancer metastasis via CREB/ALKBH5/Snail pathway. Thus, this study provided new insight into the therapeutic strategy of ovarian cancer patients with high level of FSH.
Collapse
Affiliation(s)
- Xingyan Xu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuefen Zhuang
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haowei Yu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ping Li
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaosa Li
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huiping Lin
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jian-peng Teoh
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiwen Chen
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuanlan Yang
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yang Cheng
- Department of Gynecology and Obstetrics, Guangzhou First People's Hospital, Guangzhou, China
| | - Weiyu Chen
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Gynecology and Obstetrics, The Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Kolnes AJ, Øystese KAB, Sjöstedt E, Olarescu NC, Heck A, Pahnke J, Dahlberg D, Berg-Johnsen J, Ringstad G, Casar-Borota O, Bollerslev J, Jørgensen AP. TGFBR3L is associated with gonadotropin production in non-functioning gonadotroph pituitary neuroendocrine tumours. Pituitary 2023:10.1007/s11102-023-01310-x. [PMID: 36952069 DOI: 10.1007/s11102-023-01310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE Transforming growth factor-beta receptor 3-like (TGFBR3L) is a pituitary enriched membrane protein selectively detected in gonadotroph cells. TGFBR3L is named after transforming growth factor-beta receptor 3 (TGFBR3), an inhibin A co-receptor in mice, due to sequence identity to the C-terminal region. We aimed to characterize TGFBR3L detection in a well-characterized, prospectively collected cohort of non-functioning pituitary neuroendocrine tumours (NF-PitNETs) and correlate it to clinical data. METHODS 144 patients operated for clinically NF-PitNETs were included. Clinical, radiological and biochemical data were recorded. Immunohistochemical (IHC) staining for FSHβ and LHβ was scored using the immunoreactive score (IRS), TGFBR3L and TGFBR3 were scored by the percentage of positive stained cells. RESULTS TGFBR3L staining was selectively present in 52% of gonadotroph tumours. TGFBR3L was associated to IRS of LHβ (median 2 [IQR 0-3] in TGFBR3L negative and median 6 [IQR 3-9] in TGFBR3L positive tumours, p < 0.001), but not to the IRS of FSHβ (p = 0.32). The presence of TGFBR3L was negatively associated with plasma gonadotropin concentrations in males (P-FSH median 5.5 IU/L [IQR 2.9-9.6] and median 3.0 [IQR 1.8-5.6] in TGFBR3L negative and positive tumours respectively, p = 0.008) and P-LH (median 2.8 IU/L [IQR 1.9-3.7] and median 1.8 [IQR 1.1-3.0] in TGFBR3L negative and positive tumours respectively, p = 0.03). TGFBR3 stained positive in 22% (n = 25) of gonadotroph tumours with no correlation to TGFBR3L. CONCLUSION TGFBR3L was selectively detected in half (52%) of gonadotroph NF-PitNETs. The association to LHβ staining and plasma gonadotropins suggests that TGFBR3L may be involved in hormone production in gonadotroph NF-PitNETs.
Collapse
Affiliation(s)
- Anders Jensen Kolnes
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Sognsvannsveien 20, 0372, Oslo, Norway
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Kristin Astrid Berland Øystese
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Sognsvannsveien 20, 0372, Oslo, Norway.
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway.
| | - Evelina Sjöstedt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Nicoleta Cristina Olarescu
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Sognsvannsveien 20, 0372, Oslo, Norway
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Ansgar Heck
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Sognsvannsveien 20, 0372, Oslo, Norway
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Pahnke lab (Drug Discovery and Chemical Biology), Lübeck Institute of Dermatology, LIED, University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia
| | - Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Jon Berg-Johnsen
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Sognsvannsveien 20, 0372, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Jens Bollerslev
- Department of Medical Biochemistry, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Sognsvannsveien 20, 0372, Oslo, Norway
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Anders Palmstrøm Jørgensen
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Prognostic Factors for Invasiveness and Recurrence of Pituitary Adenomas: A Series of 94 Patients. Diagnostics (Basel) 2022; 12:diagnostics12102413. [PMID: 36292101 PMCID: PMC9600140 DOI: 10.3390/diagnostics12102413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: The aim of the current study is to evaluate the immunohistochemical expression of Ki-67, CD-56, Cyclin-D1 and E-Cadherin in the tissues samples of pituitary adenomas (PAs) and its association with PAs clinical manifestation tumor size, invasiveness and the risk of recurrence. (2) Materials and Methods: Ninety-four patients who underwent endoscope transsphenoidal excision of PAs were included in our study. The immunohistochemical expression of the Cyclin-D1, CD-56, E-Cadherin and Ki-67 markers was analyzed in paraffin-embedded tissue samples. (3) Results: The expression of Cyclin-D1 and Ki-67 index levels was positively correlated with the size (p < 0.001, r = 0.56 and p < 0.001, r = 0.43, respectively), the recurrence (p < 0.001, r = 0.46 and p = 0.007 r = 0.3, respectively), the extrasellar extension (p < 0.001, r = 0.48 and p < 0.001, r = 0.4, respectively) and the cavernous sinus invasion of (p < 0.001, r = 0.39 and p < 0.001, r = 0.3, respectively). No correlation was found between CD-56 and E-Cadherin expression with the size, the invasiveness and the recurrence of PAs. (4) Conclusion: Cyclin-D1 and Ki-67 are promising immunohistochemical markers in predicting the invasive behavior and recurrence of PAs in contrast to E-Cadherin and CD-56 which did not seem to be associated with PAs behavior post-surgery. However, larger studies are required in order to establish their role in the routine evaluation of PAs.
Collapse
|
5
|
Wang L, Liang H, Deng C, Yu Q, Gong F, Feng F, You H, Liang Z, Chen B, Deng K, Ma J, Wang R, Yao Y, Zhu H. Functioning gonadotroph adenomas in premenopausal women: clinical and molecular characterization and review of the literature. Pituitary 2022; 25:454-467. [PMID: 35138520 DOI: 10.1007/s11102-021-01205-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To summary the clinical features of premenopausal women with functioning gonadotroph adenomas (FGAs) and preliminarily explore their molecular characterization. METHODS 12 premenopausal females with FGAs in our center were retrospectively analyzed. Previously reported cases were also summarized. The patients were clinically divided into FSH- or LH-predominant types according to their preoperative serum FSH/LH ratio. The expressions of related genes in the tumor tissues of female FGAs, non-functioning gonadotroph adenomas (NFGAs), and silent corticotropin adenomas were evaluated by RT-qPCR. RESULTS Of all the 12 patients with FGAs from our center, 11 (91.7%) were diagnosed as FSH-predominant type, and they all had menstrual disorders, including 9 with spontaneous ovarian hyperstimulation syndrome (sOHSS). Their hormonal profiles showed non-suppressed FSH (12.45 ± 7.34 IU/L) with hyperestrogenemia [median estradiol level 1353.0 pg/mL (636.0, 3535.0)]. The other patient (8.3%) with LH-predominant type mainly manifested with infertility and sustained elevated serum LH without FSH or estradiol increasing. 65 premenopausal FGAs patients were systematic reviewed. 60 patients (92.3%) were FSH-predominant type, including 86.7% presented with menstrual disorders, 16.7% reported infertility, and 98.2% (55/56) showed sOHSS. No sOHSS or hyperestrogenemia were found in the 5 patients (7.7%) with LH-predominant type. Pituitary imaging data revealed macroadenomas and microadenomas accounted for 89.2% and 10.8%, respectively. Of 63 patients (96.9%) who underwent pituitary adenoma resection, 77.8% had complete tumor resection and no recurrence at the last follow-up. The relative expressions of KISS1 mRNA were significantly higher in FGA group than in NFGA group (p = 0.018), and significantly positively correlated with the preoperative serum estradiol levels (p = 0.004). CONCLUSIONS Different clinical features were observed in premenopausal women with FGAs of FSH- or LH-predominant types. The elevated KISS1 expression in tumor tissues might involve in the secretion function of FGAs.
Collapse
Affiliation(s)
- Linjie Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan, Beijing, 100730, China
| | - Hanting Liang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan, Beijing, 100730, China
| | - Chengyan Deng
- Reproductive Center, Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qi Yu
- Reproductive Center, Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan, Beijing, 100730, China
| | - Feng Feng
- Department of Radiology, Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, PekingBeijing, China
| | - Hui You
- Department of Radiology, Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, PekingBeijing, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bo Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jin Ma
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuai Fu Yuan, Dong Dan, Beijing, 100730, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Huijuan Zhu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Dan, Beijing, 100730, China.
| |
Collapse
|
6
|
Ilie MD, Vasiljevic A, Chanal M, Gadot N, Chinezu L, Jouanneau E, Hennino A, Raverot G, Bertolino P. Intratumoural spatial distribution of S100B + folliculostellate cells is associated with proliferation and expression of FSH and ERα in gonadotroph tumours. Acta Neuropathol Commun 2022; 10:18. [PMID: 35139928 PMCID: PMC8827287 DOI: 10.1186/s40478-022-01321-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Folliculostellate cells are S100B-expressing cells with numerous functions in the normal anterior pituitary. These cells have also been identified in pituitary neuroendocrine tumours (PitNETs), where their precise role remains elusive. Here, we aimed to build a refined cartography of S100B-expressing cells to characterise their interpatient and intratumoural spatial distribution, and to start identifying their potential functions in PitNETs. High-throughput histological analysis of S100B-stained tumour sections of 54 PitNETs revealed a significant decrease in S100B + cells in PitNETs compared to the normal anterior pituitary. A Ki67 index ≥ 3, a mitosis count > 2/10 per high power fields, and a proliferative status, were all associated with fewer S100B + cells in gonadotroph tumours. Gonadotroph tumours also showed interpatient and intratumoural heterogeneity in the spatial distribution of S100B + cells. The existence of an intratumoural heterogeneity was further confirmed by the incorporation to our spatial analysis of additional markers: Ki67, FSH, LH, ERα and SSTR2. The tumour areas with fewer S100B + cells displayed a higher percentage of Ki67 + cells, whereas strong positive correlations were observed between S100B + , FSH + , and ERα + cells. Such spatial associations suggest that S100B + folliculostellate cells could play a role in gonadotroph tumorigenesis, and may contribute to the maintenance of tumour cells in a low proliferating, FSH + /ERα + differentiated state. Albeit, further in-depth functional studies are required to decipher the mechanisms underlying these spatial associations and to potentially identify a therapeutic use.
Collapse
|
7
|
Gil J, Jordà M, Soldevila B, Puig-Domingo M. Epithelial-Mesenchymal Transition in the Resistance to Somatostatin Receptor Ligands in Acromegaly. Front Endocrinol (Lausanne) 2021; 12:646210. [PMID: 33790868 PMCID: PMC8006574 DOI: 10.3389/fendo.2021.646210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic process by which epithelial cells loss their phenotype and acquire mesenchymal traits, including increased migratory and invasive capacities. EMT is involved in physiological processes, such as embryogenesis and wound healing, and in pathological processes such as cancer, playing a pivotal role in tumor progression and metastasis. Pituitary tumors, although typically benign, can be locally invasive. Different studies have shown the association of EMT with increased tumor size and invasion in pituitary tumors, and in particular with a poor response to Somatostatin Receptor Ligands (SRLs) treatment in GH-producing pituitary tumors, the main cause of acromegaly. This review will summarize the current knowledge regarding EMT and SRLs resistance in acromegaly and, based on this relation, will suggest new biomarkers and possible therapies to SRLs resistant tumors.
Collapse
Affiliation(s)
- Joan Gil
- Endocrine Tumours Lab, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Mireia Jordà
- Endocrine Tumours Lab, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- *Correspondence: Manel Puig-Domingo, ; Mireia Jordà,
| | - Berta Soldevila
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Manel Puig-Domingo
- Endocrine Tumours Lab, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
- *Correspondence: Manel Puig-Domingo, ; Mireia Jordà,
| |
Collapse
|
8
|
Sjöstedt E, Kolnes AJ, Olarescu NC, Mitsios N, Hikmet F, Sivertsson Å, Lindskog C, Øystese KAB, Jørgensen AP, Bollerslev J, Casar-Borota O. TGFBR3L-An Uncharacterised Pituitary Specific Membrane Protein Detected in the Gonadotroph Cells in Non-Neoplastic and Tumour Tissue. Cancers (Basel) 2020; 13:cancers13010114. [PMID: 33396509 PMCID: PMC7795056 DOI: 10.3390/cancers13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 01/23/2023] Open
Abstract
Simple Summary Pituitary neuroendocrine tumours originate from the endocrine cells of the anterior pituitary gland and may develop from any of the cell lineages responsible for producing the different pituitary hormones. The details related to tumour differentiation and hormone production in these tumours are not fully understood. The aim of our study was to investigate an uncharacterised pituitary enriched protein, transforming growth factor beta-receptor 3 like (TGFBR3L). The TGFBR3L protein is highly expressed in the pituitary compared to other organs. We found the protein to be gonadotroph-specific, i.e., detected in the cells that express follicle-stimulating and luteinizing hormones (FSH/LH). The gonadotroph-specific nature of TGFBR3L, a correlation to both FSH and LH as well as an inverse correlation to membranous E-cadherin and oestrogen receptor β suggests a role in gonadotroph cell development and function and, possibly, tumour progression. Abstract Here, we report the investigation of transforming growth factor beta-receptor 3 like (TGFBR3L), an uncharacterised pituitary specific membrane protein, in non-neoplastic anterior pituitary gland and pituitary neuroendocrine tumours. A polyclonal antibody produced within the Human Protein Atlas project (HPA074356) was used for TGFBR3L staining and combined with SF1 and FSH for a 3-plex fluorescent protocol, providing more details about the cell lineage specificity of TGFBR3L expression. A cohort of 230 pituitary neuroendocrine tumours were analysed. In a subgroup of previously characterised gonadotroph tumours, correlation with expression of FSH/LH, E-cadherin, oestrogen (ER) and somatostatin receptors (SSTR) was explored. TGFBR3L showed membranous immunolabeling and was found to be gonadotroph cell lineage-specific, verified by co-expression with SF1 and FSH/LH staining in both tumour and non-neoplastic anterior pituitary tissues. TGFBR3L immunoreactivity was observed in gonadotroph tumours only and demonstrated intra-tumour heterogeneity with a perivascular location. TGFBR3L immunostaining correlated positively to both FSH (R = 0.290) and LH (R = 0.390) immunostaining, and SSTR3 (R = 0.315). TGFBR3L correlated inversely to membranous E-cadherin staining (R = −0.351) and oestrogen receptor β mRNA (R = −0.274). In conclusion, TGFBR3L is a novel pituitary gland specific protein, located in the membrane of gonadotroph cells in non-neoplastic anterior pituitary gland and in a subset of gonadotroph pituitary tumours.
Collapse
Affiliation(s)
- Evelina Sjöstedt
- Department of Neuroscience, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden;
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 37 Uppsala, Sweden; (F.H.); (C.L.); (O.C.-B.)
- Correspondence: ; Tel.: +46-73-956-7077
| | - Anders J. Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, 0424 Oslo, Norway; (A.J.K.); (N.C.O.); (K.A.B.Ø.); (A.P.J.); (J.B.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| | - Nicoleta C. Olarescu
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, 0424 Oslo, Norway; (A.J.K.); (N.C.O.); (K.A.B.Ø.); (A.P.J.); (J.B.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| | - Nicholas Mitsios
- Department of Neuroscience, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden;
| | - Feria Hikmet
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 37 Uppsala, Sweden; (F.H.); (C.L.); (O.C.-B.)
| | - Åsa Sivertsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Tomtebodavägen 23a, 171 65 Solna, Sweden;
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 37 Uppsala, Sweden; (F.H.); (C.L.); (O.C.-B.)
| | - Kristin A. B. Øystese
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, 0424 Oslo, Norway; (A.J.K.); (N.C.O.); (K.A.B.Ø.); (A.P.J.); (J.B.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| | - Anders P. Jørgensen
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, 0424 Oslo, Norway; (A.J.K.); (N.C.O.); (K.A.B.Ø.); (A.P.J.); (J.B.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| | - Jens Bollerslev
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, 0424 Oslo, Norway; (A.J.K.); (N.C.O.); (K.A.B.Ø.); (A.P.J.); (J.B.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Box 1072 Blindern, 0316 Oslo, Norway
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 37 Uppsala, Sweden; (F.H.); (C.L.); (O.C.-B.)
- Department of Clinical Pathology, Uppsala University Hospital, 75185 Uppsala, Sweden
- Department of Pathology, Oslo University Hospital, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|