1
|
Cypess AM, Cannon B, Nedergaard J, Kazak L, Chang DC, Krakoff J, Tseng YH, Schéele C, Boucher J, Petrovic N, Blondin DP, Carpentier AC, Virtanen KA, Kooijman S, Rensen PCN, Cero C, Kajimura S. Emerging debates and resolutions in brown adipose tissue research. Cell Metab 2025; 37:12-33. [PMID: 39644896 PMCID: PMC11710994 DOI: 10.1016/j.cmet.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Until two decades ago, brown adipose tissue (BAT) was studied primarily as a thermogenic organ of small rodents in the context of cold adaptation. The discovery of functional human BAT has opened new opportunities to understand its physiological role in energy balance and therapeutic applications for metabolic disorders. Significantly, the role of BAT extends far beyond thermogenesis, including glucose and lipid homeostasis, by releasing mediators that communicate with other cells and organs. The field has made major advances by using new model systems, ranging from subcellular studies to clinical trials, which have also led to debates. In this perspective, we identify six fundamental issues that are currently controversial and comprise dichotomous models. Each side presents supporting evidence and, critically, the necessary methods and falsifiable experiments that would resolve the dispute. With this collaborative approach, the field will continue to productively advance the understanding of BAT physiology, appreciate the importance of thermogenic adipocytes as a central area of ongoing research, and realize the therapeutic potential.
Collapse
Affiliation(s)
- Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Douglas C Chang
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ 85016, USA
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Camilla Schéele
- Novo Nordisk Foundation Center for Basic Metabolic Research, The Center of Inflammation and Metabolism and the Center for Physical Activity Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Cheryl Cero
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Zhang D, Kou W, Luo S, Chen J, An X, Fang S, Liang X. The effect of ambient temperature on lipid metabolism in children: From a prospective cohort study. ENVIRONMENTAL RESEARCH 2024; 261:119692. [PMID: 39068968 DOI: 10.1016/j.envres.2024.119692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Dyslipidemia is increasingly recognized as an essential risk factor for cardiovascular diseases. However, few studies illustrated the effects of ambient temperature exposure (TE) on lipid levels in children. The study aimed to examine the association between ambient TE and lipid levels in children. METHODS Based on a prospective cohort, a total of 2423 children (with 4466 lipids measure person-time) were collected from 2014 to 2019. The meteorological observation data and adjusted variables were collected. Mixed-effect models and generalized additive mixed model (GAMM) were applied to investigate the association between ambient TE and lipid levels. RESULTS A significant negative association was observed between TE and low-density lipoprotein cholesterol (LDL-C) or total cholesterol (TC) levels both in all children [LDL-C, β(95%CI) = -0.350(-0.434,-0.265), P < 0.001; TC, β(95%CI) = -0.274(-0.389,-0.160), P < 0.001] and by different sex group. However, no significant association was found in low-density lipoprotein cholesterol (HDL-C) or triglycerides (TG) levels. The estimated optimal ambient TEs for LDL-C were 18.273 °C and 18.024 °C for girls and boys, respectively. For TC, the optimal ambient TEs were 17.949 °C and 18.024 °C, respectively. With ambient TE decreased, the risk of dyslipidemia increased for both boys [OR = 0.032(0.006,0.179), P < 0.001] and girls [OR = 0.582(0.576,0.587), P < 0.001]. CONCLUSION This study provided a comprehensive illustration about the associations between ambient TE and lipid levels in different sex and ages from a prospective cohort study. The findings will provide evidence for the government to prevent dyslipidemia in vulnerable children through regulating TE.
Collapse
Affiliation(s)
- Di Zhang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei Kou
- Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shunqing Luo
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Jingyu Chen
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Xizhou An
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Shenying Fang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.
| |
Collapse
|
3
|
Hoekx CA, Martinez-Tellez B, Straat ME, Verkleij MMA, Kemmeren M, Kooijman S, Uhrbom M, de Jager SCA, Rensen PCN, Boon MR. Cold exposure increases circulating fibroblast growth factor 21 in the evening in males and females. Endocr Connect 2024; 13:e240074. [PMID: 38781402 PMCID: PMC11227058 DOI: 10.1530/ec-24-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Objectives Cold exposure is linked to cardiometabolic benefits. Cold activates brown adipose tissue (BAT), increases energy expenditure, and induces secretion of the hormones fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). The cold-induced increase in energy expenditure exhibits a diurnal rhythm in men. Therefore, we aimed to investigate the effect of cold exposure on serum FGF21 and GDF15 levels in humans and whether cold-induced changes in FGF21 and GDF15 levels differ between morning and evening in males and females. Method In this randomized cross-over study, serum FGF21 and GDF15 levels were measured in healthy lean males (n = 12) and females (n = 12) before, during, and after 90 min of stable cold exposure in the morning (07:45 h) and evening (19:45 h) with a 1-day washout period in between. Results Cold exposure increased FGF21 levels in the evening compared to the morning both in males (+61% vs -13%; P < 0.001) and in females (+58% vs +8%; P < 0.001). In contrast, cold exposure did not significantly modify serum GDF15 levels, and no diurnal variation was found. Changes in FGF21 and GDF15 levels did not correlate with changes in cold-induced energy expenditure in the morning and evening. Conclusion Cold exposure increased serum FGF21 levels in the evening, but not in the morning, in both males and females. GDF15 levels were not affected by cold exposure. Thus, this study suggests that the timing of cold exposure may influence cold-induced changes in FGF21 levels but not GDF15 levels and seems to be independent of changes in energy expenditure.
Collapse
Affiliation(s)
- Carlijn A Hoekx
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Borja Martinez-Tellez
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nursing Physiotherapy and Medicine, SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
| | - Maaike E Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Magdalena M A Verkleij
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam Kemmeren
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Uhrbom
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo Building, Huddinge, Sweden
| | - Saskia C A de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
King KE, McCormick JJ, McManus MK, Janetos KMT, Goulet N, Kenny GP. Impaired autophagy following ex vivo cooling of simulated hypothermic temperatures in peripheral blood mononuclear cells from young and older adults. J Therm Biol 2024; 121:103831. [PMID: 38565070 DOI: 10.1016/j.jtherbio.2024.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Hypothermia is a critical consequence of extreme cold exposure that increases the risk of cold-related injury and death in humans. While the initiation of cytoprotective mechanisms including the process of autophagy and the heat shock response (HSR) is crucial to cellular survival during periods of stress, age-related decrements in these systems may underlie cold-induced cellular vulnerability in older adults. Moreover, whether potential sex-related differences in autophagic regulation influence the human cold stress response remain unknown. We evaluated the effect of age and sex on mechanisms of cytoprotection (autophagy and the HSR) and cellular stress (apoptotic signaling and the acute inflammatory response) during ex vivo hypothermic cooling. Venous blood samples from 20 healthy young (10 females; mean [SD]: 22 [2] years) and 20 healthy older (10 females; 66 [5] years) adults were either isolated immediately (baseline) for peripheral blood mononuclear cells (PBMCs) or exposed to water bath temperatures maintained at 37, 35, 33, 31, or 4 °C for 90 min before PBMC isolation. Proteins associated with autophagy, apoptosis, the HSR, and inflammation were analyzed via Western blotting. Indicators of autophagic initiation and signaling (LC3, ULK1, and beclin-2) and the HSR (HSP90 and HSP70) increased when exposed to hypothermic temperatures in young and older adults (all p ≤ 0.007). Sex-related differences were only observed with autophagic initiation (ULK1; p = 0.015). However, despite increases in autophagic initiators ULK1 and beclin-2 (all p < 0.001), this was paralleled by autophagic dysfunction (increased p62) in all groups (all p < 0.001). Further, apoptotic (cleaved-caspase-3) and inflammatory (IL-6 and TNF-α) signaling increased in all groups (all p < 0.001). We demonstrated that exposure to hypothermic conditions is associated with autophagic dysfunction, irrespective of age or sex, although there may exist innate sex-related differences in cytoprotection in response to cold exposure as evidenced through altered autophagic initiation.
Collapse
Affiliation(s)
- Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Morgan K McManus
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Kristina-Marie T Janetos
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada; Behavioural and Metabolic Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Civelek E, Ozturk Civelek D, Akyel YK, Kaleli Durman D, Okyar A. Circadian Dysfunction in Adipose Tissue: Chronotherapy in Metabolic Diseases. BIOLOGY 2023; 12:1077. [PMID: 37626963 PMCID: PMC10452180 DOI: 10.3390/biology12081077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Essential for survival and reproduction, the circadian timing system (CTS) regulates adaptation to cyclical changes such as the light/dark cycle, temperature change, and food availability. The regulation of energy homeostasis possesses rhythmic properties that correspond to constantly fluctuating needs for energy production and consumption. Adipose tissue is mainly responsible for energy storage and, thus, operates as one of the principal components of energy homeostasis regulation. In accordance with its roles in energy homeostasis, alterations in adipose tissue's physiological processes are associated with numerous pathologies, such as obesity and type 2 diabetes. These alterations also include changes in circadian rhythm. In the current review, we aim to summarize the current knowledge regarding the circadian rhythmicity of adipogenesis, lipolysis, adipokine secretion, browning, and non-shivering thermogenesis in adipose tissue and to evaluate possible links between those alterations and metabolic diseases. Based on this evaluation, potential therapeutic approaches, as well as clock genes as potential therapeutic targets, are also discussed in the context of chronotherapy.
Collapse
Affiliation(s)
- Erkan Civelek
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; (E.C.); (D.K.D.)
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakıf University, 34093 Istanbul, Turkey;
| | - Yasemin Kubra Akyel
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, 34815 Istanbul, Turkey;
| | - Deniz Kaleli Durman
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; (E.C.); (D.K.D.)
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; (E.C.); (D.K.D.)
| |
Collapse
|
6
|
Yue K, Rensen PC, Kooijman S. Circadian control of white and brown adipose tissues. Curr Opin Genet Dev 2023; 80:102056. [PMID: 37244110 DOI: 10.1016/j.gde.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
White and brown adipose tissues are highly dynamic organs anticipating and responding to changes in the environment. The circadian timing system facilitates anticipation, and it is therefore not surprising that circadian disturbances, a prominent feature of modern 24/7 society, increase the risk for (cardio)metabolic diseases. In this mini-review, we will address mechanisms and strategies to mitigate disease risk associated with circadian disturbances. In addition, we discuss the opportunities arising from the knowledge we gained about circadian rhythms in these adipose tissues, including the application of chronotherapy, optimizing endogenous circadian rhythms to allow for more effective intervention, and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Kaiming Yue
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick Cn Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands. https://twitter.com/@Rensen_Lab
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
7
|
Straat ME, Jurado-Fasoli L, Ying Z, Nahon KJ, Janssen LG, Boon MR, Grabner GF, Kooijman S, Zimmermann R, Giera M, Rensen PC, Martinez-Tellez B. Cold exposure induces dynamic changes in circulating triacylglycerol species, which is dependent on intracellular lipolysis: A randomized cross-over trial. EBioMedicine 2022; 86:104349. [PMID: 36371986 PMCID: PMC9663865 DOI: 10.1016/j.ebiom.2022.104349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The application of cold exposure has emerged as an approach to enhance whole-body lipid catabolism. The global effect of cold exposure on the lipidome in humans has been reported with mixed results depending on intensity and duration of cold. METHODS This secondary study was based on data from a previous randomized cross-over trial (ClinicalTrials.gov ID: NCT03012113). We performed sequential lipidomic profiling in serum during 120 min cold exposure of human volunteers. Next, the intracellular lipolysis was blocked in mice (eighteen 10-week-old male wild-type mice C57BL/6J) using a small-molecule inhibitor of adipose triglyceride lipase (ATGL; Atglistatin), and mice were exposed to cold for a similar duration. The quantitative lipidomic profiling was assessed in-depth using the Lipidyzer platform. FINDINGS In humans, cold exposure gradually increased circulating free fatty acids reaching a maximum at 60 min, and transiently decreased total triacylglycerols (TAGs) only at 30 min. A broad range of TAG species was initially decreased, in particular unsaturated and polyunsaturated TAG species with ≤5 double bonds, while after 120 min a significant increase was observed for polyunsaturated TAG species with ≥6 double bonds in humans. The mechanistic study in mice revealed that the cold-induced increase in polyunsaturated TAGs was largely prevented by blocking adipose triglyceride lipase. INTERPRETATION We interpret these findings as that cold exposure feeds thermogenic tissues with TAG-derived fatty acids for combustion, resulting in a decrease of circulating TAG species, followed by increased hepatic production of polyunsaturated TAG species induced by liberation of free fatty acids stemming from adipose tissue. FUNDING This work was supported by the Netherlands CardioVascular Research Initiative: 'the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organisation for Health Research and Development and the Royal Netherlands Academy of Sciences' [CVON2017-20 GENIUS-II] to Patrick C.N. Rensen. Borja Martinez-Tellez is supported by individual postdoctoral grant from the Fundación Alfonso Martin Escudero and by a Maria Zambrano fellowship by the Ministerio de Universidades y la Unión Europea - NextGenerationEU (RR_C_2021_04). Lucas Jurado-Fasoli was supported by an individual pre-doctoral grant from the Spanish Ministry of Education (FPU19/01609) and with an Albert Renold Travel Fellowship from the European Foundation for the Study of Diabetes (EFSD). Martin Giera was partially supported by NWO XOmics project #184.034.019.
Collapse
Affiliation(s)
- Maaike E. Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Lucas Jurado-Fasoli
- PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Zhixiong Ying
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Kimberly J. Nahon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Laura G.M. Janssen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Gernot F. Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C.N. Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands,Corresponding author. Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| | - Borja Martinez-Tellez
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
8
|
Sardjoe Mishre ASD, Straat ME, Martinez-Tellez B, Mendez Gutierrez A, Kooijman S, Boon MR, Dzyubachyk O, Webb A, Rensen PCN, Kan HE. The Infrared Thermography Toolbox: An Open-access Semi-automated Segmentation Tool for Extracting Skin Temperatures in the Thoracic Region including Supraclavicular Brown Adipose Tissue. J Med Syst 2022; 46:89. [PMID: 36319877 PMCID: PMC9626432 DOI: 10.1007/s10916-022-01871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022]
Abstract
Infrared thermography (IRT) is widely used to assess skin temperature in response to physiological changes. Yet, it remains challenging to standardize skin temperature measurements over repeated datasets. We developed an open-access semi-automated segmentation tool (the IRT-toolbox) for measuring skin temperatures in the thoracic area to estimate supraclavicular brown adipose tissue (scBAT) activity, and compared it to manual segmentations. The IRT-toolbox, designed in Python, consisted of image pre-alignment and non-rigid image registration. The toolbox was tested using datasets of 10 individuals (BMI = 22.1 ± 2.1 kg/m2, age = 22.0 ± 3.7 years) who underwent two cooling procedures, yielding four images per individual. Regions of interest (ROIs) were delineated by two raters in the scBAT and deltoid areas on baseline images. The toolbox enabled direct transfer of baseline ROIs to the registered follow-up images. For comparison, both raters also manually drew ROIs in all follow-up images. Spatial ROI overlap between methods and raters was determined using the Dice coefficient. Mean bias and 95% limits of agreement in mean skin temperature between methods and raters were assessed using Bland-Altman analyses. ROI delineation time was four times faster with the IRT-toolbox (01:04 min) than with manual delineations (04:12 min). In both anatomical areas, there was a large variability in ROI placement between methods. Yet, relatively small skin temperature differences were found between methods (scBAT: 0.10 °C, 95%LoA[-0.13 to 0.33 °C] and deltoid: 0.05 °C, 95%LoA[-0.46 to 0.55 °C]). The variability in skin temperature between raters was comparable between methods. The IRT-toolbox enables faster ROI delineations, while maintaining inter-user reliability compared to manual delineations. (Trial registration number (ClinicalTrials.gov): NCT04406922, [May 29, 2020]).
Collapse
Affiliation(s)
- Aashley S D Sardjoe Mishre
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike E Straat
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Borja Martinez-Tellez
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Andrea Mendez Gutierrez
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18016, Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Biohealth Research Institute in Granada (Ibs. GRANADA), 28029, Madrid, Spain
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Division of Image Processing (LKEB), Leiden University Medical Center, Leiden, The Netherlands
- Department of Cell and Chemical Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hermien E Kan
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|