1
|
Axelsson J, LeBlanc D, Shojaeisaadi H, Meier MJ, Fitzgerald DM, Nachmanson D, Carlson J, Golubeva A, Higgins J, Smith T, Lo FY, Pilsner R, Williams A, Salk J, Marchetti F, Yauk C. Frequency and spectrum of mutations in human sperm measured using duplex sequencing correlate with trio-based de novo mutation analyses. Sci Rep 2024; 14:23134. [PMID: 39379474 PMCID: PMC11461794 DOI: 10.1038/s41598-024-73587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
De novo mutations (DNMs) are drivers of genetic disorders. However, the study of DNMs is hampered by technological limitations preventing accurate quantification of ultra-rare mutations. Duplex Sequencing (DS) theoretically has < 1 error/billion base-pairs (bp). To determine the DS utility to quantify and characterize DNMs, we analyzed DNA from blood and spermatozoa from six healthy, 18-year-old Swedish men using the TwinStrand DS mutagenesis panel (48 kb spanning 20 genic and intergenic loci). The mean single nucleotide variant mutation frequency (MF) was 1.2 × 10- 7 per bp in blood and 2.5 × 10- 8 per bp in sperm, with the most common base substitution being C > T. Blood MF and substitution spectrum were similar to those reported in blood cells with an orthogonal method. The sperm MF was in the same order of magnitude and had a strikingly similar spectrum to DNMs from publicly available whole genome sequencing data from human pedigrees (1.2 × 10- 8 per bp). DS revealed much larger numbers of insertions and deletions in sperm over blood, driven by an abundance of putative extra-chromosomal circular DNAs. The study indicates the strong potential of DS to characterize human DNMs to inform factors that contribute to disease susceptibility and heritable genetic risks.
Collapse
Affiliation(s)
- Jonatan Axelsson
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | | | | | | | | | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Richard Pilsner
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Jesse Salk
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
2
|
Richter S, Pacak K, Kunst HPM, Januszewicz A, Nölting S, Remde H, Robledo M, Eisenhofer G, Timmers HJLM, Pamporaki C. Management and follow-up strategies for patients with head and neck paraganglioma. Eur J Endocrinol 2024; 191:389-398. [PMID: 39303070 PMCID: PMC11443905 DOI: 10.1093/ejendo/lvae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/30/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Head-neck paragangliomas (HNPGLs) are rare tumors with approximately half arising due to germline pathogenic variants (PVs) in succinate dehydrogenase genes (SDHx). Patients with HNPGL have heterogeneous propensity to recur and metastasize. Thus, we aim to assess prevalence and predictors of recurrent (RD) and/or metastatic disease in patients with and without SDHx-related HNPGLs. DESIGN AND METHODS This cross-sectional study used retrospective data of 214 patients enrolled in six referral centers. Data included sex, age, primary tumor treatment, location, and size, biochemical phenotype, germline PVs, presence of RD (locoregional or new tumor), and/or metastasis. RESULTS Patients with and without SDHx-related HNPGLs showed 74% and 40% prevalence of RD, respectively. Patients without SDHx-related HNPGLs presented with recurrent tumors only in head-neck regions. The only independent predictor for RD in the entire cohort was presence of SDHx PVs. Metastatic prevalence reached 9%-13%. For patients with SDHx-related HNPGLs, large tumor size (>2.3 cm, OR:50.0, CI:2.6-977.6), young age at initial diagnosis (<42years, OR:27.3, CI:1.8-407.2), and presence of SDHB PV (OR:15.6; CI:1.5-164.8) were independent predictors of metastasis. For patients without SDHx-related HNPGLs, only carotid-body location was an independent predictor of metastasis (OR:18.9, CI:2.0-182.5). CONCLUSIONS Patients without SDHx-related HNPGLs require long-term follow-up due to high prevalence of RD with imaging largely restricted to head-neck regions. As carotid-body HNPGLs have the highest metastatic risk among sporadic tumors, radical treatment with frequent follow-up is suggested until population-based data are available. Importantly, patients with SDHx-related HNPGLs might benefit from early radical treatment when tumors are still small to reduce metastatic risk.
Collapse
Affiliation(s)
- Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda 20892, MD, United States
| | - Henricus P M Kunst
- Department of Otorhinolaryngology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
- Dutch Academic Alliance Skull Base Pathology, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Svenja Nölting
- Medizinische Klinik and Poliklinik IV, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Department for Endocrinology, Diabetology and Clinical Nutrition, Universitätsspital Zürich, 8091 Zurich, Switzerland
| | - Hanna Remde
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, CNIO, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Graeme Eisenhofer
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Centre, 6265 GA Nijmegen, The Netherlands
| | - Christina Pamporaki
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
3
|
Fedorova M, Snezhkina A, Kalinin D, Pudova E, Lantsova M, Krasnov G, Pavlov V, Kudryavtseva A. Intratumoral Microbiome in Head and Neck Paragangliomas. Int J Mol Sci 2024; 25:9180. [PMID: 39273129 PMCID: PMC11394710 DOI: 10.3390/ijms25179180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Head and neck paragangliomas (HNPGLs) are rare neoplasms arising from paraganglia of the parasympathetic nervous system. HNPGLs are characterized by high vascularity and are located in proximity to major vessels and nerves, which may be potential sources of microbial invasion in these tumors. There have been no studies in the literature on the microbiota in HNPGLs. Investigation of the microbiome associated with paragangliomas is important for understanding tumor pathogenesis. In this study, we investigated the microbiome composition in two sets of HNPGLs. First, 29 fresh frozen (FF) tissues were subjected to 16S rRNA gene sequencing; concurrently, a panel of candidate laboratory-derived contaminants was investigated. Second, we analyzed microbial reads from whole transcriptome sequencing data obtained for 82 formalin-fixed paraffin-embedded (FFPE) HNPGLs. The bacterial diversity in FF tumors was found to be significantly lower than that observed in FFPE HNPGLs. Based on 16S rRNA gene sequencing, only seven bacterial families were identified as potential tumor inhabitants: Bryobacteraceae, Enterococcaceae, Neisseriaceae, Legionellaceae, Vibrionaceae, Obscuribacteraceae, and Mycobacteriaceae. However, RNA-Seq demonstrated higher sensitivity for identifying microbiome composition and revealed abundant bacterial families that partially correlated with those previously described in pheochromocytomas and extra-adrenal paragangliomas. No viruses were found in HNPGLs. In summary, our findings indicated the presence of a microbiome in HNPGLs, comprising a number of bacterial families that overlap with those observed in pheochromocytomas/paragangliomas and glioblastomas.
Collapse
Affiliation(s)
- Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Margarita Lantsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
4
|
Gao R, Zhou D, Qiu X, Zhang J, Luo D, Yang X, Qian C, Liu Z. Cancer Therapeutic Potential and Prognostic Value of the SLC25 Mitochondrial Carrier Family: A Review. Cancer Control 2024; 31:10732748241287905. [PMID: 39313442 PMCID: PMC11439189 DOI: 10.1177/10732748241287905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Transporters of the solute carrier family 25 (SLC25) regulate the intracellular distribution and concentration of nucleotides, amino acids, dicarboxylates, and vitamins within the mitochondrial and cytoplasmic matrices. This mechanism involves changes in mitochondrial function, regulation of cellular metabolism, and the ability to provide energy. In this review, important members of the SLC25 family and their pathways affecting tumorigenesis and progression are elucidated, highlighting the diversity and complexity of these pathways. Furthermore, the significant potential of the members of SLC25 as both cancer therapeutic targets and biomarkers will be emphasized.
Collapse
Affiliation(s)
- Renzhuo Gao
- School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dan Zhou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xingpeng Qiu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiayi Zhang
- School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaohong Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Caiyun Qian
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhuoqi Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Ruffini Egea S, Campos Ramírez SE, Pascual de la Fuente NP, Monreal Cepero ML, Mocha Campillo F, Trincado Cobos P, Antón Torres A, Martínez Trufero J. Delayed and Long-Lasting Response to 177Lu-DOTATATE in a Head and Neck Paraganglioma: Case Report and Literature Review. Case Rep Oncol 2024; 17:1252-1257. [PMID: 39478702 PMCID: PMC11524611 DOI: 10.1159/000541359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Malignant paragangliomas (M-PGL) are a group of neuroendocrine tumors that originate from chromaffin cells. The most common location for PGL is the head and neck, which comprise 65-70% of all PGL, and the M-PGL accounts for 0.6% of all head and neck cancers. It is a rare tumor, with an incidence of 2-8 per million. Diagnosing PGL can be challenging, and treatment for metastatic disease is usually not curative. Case Presentation A 66-year-old woman was diagnosed with left cervical pain and laterocervical mass in March 2015. Octreotide scintigraphy showed intense uptake in the cervical mass, two pulmonary micronodules of 4-5 mm, and another lesion in the lumbar region (L3-L4). The final diagnosis was malignant nonsecretory PGL with adjacent tissue involvement and distant metastases. After three different treatments with minimal symptomatic improvement, 177Lu-DOTATATE was requested off-label. With a dose of 7,400 MBq until January 2018, the patient showed remarkable symptomatic pain improvement and a decrease in tumor size. Conclusion We believe that our case report provides relevant information that can be considered in similar cases. First, the patient tripled the expected survival in such a clinical setting, and this benefit seems to rely on 177Lu-DOTATATE treatment. Second, we documented an early symptomatic response to this treatment but a long-term delayed volumetric radiographic response.
Collapse
Affiliation(s)
- Sofía Ruffini Egea
- Medical Oncology Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | | | | | | | - Pablo Trincado Cobos
- Medical Oncology Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Antonio Antón Torres
- Medical Oncology Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | |
Collapse
|
6
|
Liu C, Zhou D, Yang K, Xu N, Peng J, Zhu Z. Research progress on the pathogenesis of the SDHB mutation and related diseases. Biomed Pharmacother 2023; 167:115500. [PMID: 37734265 DOI: 10.1016/j.biopha.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
With the improvement of genetic testing technology in diseases in recent years, researchers have a more detailed and clear understanding of the source of cancers. Succinate dehydrogenase B (SDHB), a mitochondrial gene, is related to the metabolic activities of cells and tissues throughout the body. The mutations of SDHB have been found in pheochromocytoma, paraganglioma and other cancers, and is proved to affect the occurrence and progress of those cancers due to the important structural functions. The importance of SDHB is attracting more and more attention of researchers, however, reviews on the structure and function of SDHB, as well as on the mechanism of its carcinogenesis is inadequate. This paper reviews the relationship between SDHB mutations and related cancers, discusses the molecular mechanism of SDHB mutations that may lead to tumor formation, analyzes the mutation spectrum, structural domains, and penetrance of SDHB and sorts out some of the previously discovered diseases. For the patients with SDHB mutation, it is recommended that people in SDHB mutation families undergo regular genetic testing or SDHB immunohistochemistry (IHC). The purpose of this paper is hopefully to provide some reference and help for follow-up researches on SDHB.
Collapse
Affiliation(s)
- Chang Liu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Dayang Zhou
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Kexin Yang
- Department of Surgical oncology, Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, 650118, China
| | - Ning Xu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Jibang Peng
- Department of Surgical oncology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Zhu Zhu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China.
| |
Collapse
|
7
|
Snezhkina A, Pavlov V, Fedorova M, Kalinin D, Pudova E, Kobelyatskaya A, Bakhtogarimov I, Krasnov G, Kudryavtseva A. Comprehensive Genetic Study of Malignant Cervical Paraganglioma. Int J Mol Sci 2023; 24:ijms24098220. [PMID: 37175927 PMCID: PMC10179044 DOI: 10.3390/ijms24098220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant middle ear paraganglioma (MEPGL) is an exceedingly rare tumor of the neuroendocrine system. In general, MEPGLs represent as slow growing and hypervascularized benign neoplasms. The genetic basis of MEPGL tumorigenesis has been poorly investigated. We report a case of malignant MEPGL accompanied by the comprehensive genetic analysis of the primary tumor and metastasis. Based on whole-exome sequencing data, the germline pathogenic mutation p.R230H in the SDHB gene, encoding for subunit B of mitochondrial complex II, was found in a patient. Analysis of somatic mutation spectra revealed five novel variants in different genes, including a potentially deleterious variant in UNC13C that was common for the tumor and metastasis. Identified somatic variants clustered into SBS1 and SBS5 mutational signatures. Of note, the primary tumor was characterized by Ki-67 4% and had an elevated mutational load (1.4/Mb); the metastasis' mutational load was about 4.5 times higher (6.4/Mb). In addition, we revealed somatic loss of the wild-type SDHB allele, as well as loss of heterozygosity (LOH) at the 11p locus. Thus, germline mutation in SDHB combined with somatic LOH seem to be drivers that lead to the tumor's initiation and progression. Other somatic changes identified can be additional disease-causing factors. Obtained results expand our understanding of molecular genetic mechanisms associated with the development of this rare tumor.
Collapse
Affiliation(s)
- Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Ildar Bakhtogarimov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
8
|
Snezhkina A, Fedorova M, Kobelyatskaya A, Markova D, Lantsova M, Ikonnikova A, Emelyanova M, Kalinin D, Pudova E, Melnikova N, Dmitriev A, Krasnov G, Pavlov V, Kudryavtseva A. The SDHD:p.H102R Variant Is Frequent in Russian Patients with Head and Neck Paragangliomas and Associated with Loss of 11p15.5 Region and Hypermethylation of H19-DMR. Int J Mol Sci 2022; 24:ijms24010628. [PMID: 36614070 PMCID: PMC9820527 DOI: 10.3390/ijms24010628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Head and neck paragangliomas (HNPGLs) are rare neuroendocrine neoplasms derived from the parasympathetic paraganglia of the head and neck. At least 30% of HNPGLs are linked to germline mutations, predominantly in SDHx genes. In this study, we analyzed an extended cohort of Russian patients with HNPGLs using whole-exome sequencing and found a highly frequent missense variant p.H102R in the SDHD gene. We determined this variant in 34% of the SDHD mutation carriers. This variant was associated with somatic loss of the gene wild-type allele. Data from the B allele frequency method and microsatellite and microdeletion analysis indicated evident LOH at the 11p15.5 region and potential loss of the whole of chromosome 11. We found hypermethylation of H19-DMR in all tumors, whereas differential methylation of KvDMR was mostly retained. These findings do not support the paternal transmission of SDHD:p.H102R but are in agreement with the Hensen model. Using targeted sequencing, we also studied the variant frequency in a control cohort; we found SDHD:p.H102R in 1.9% of cases, allowing us to classify this variant as pathogenic. The immunohistochemistry of SDHB showed that the SDHD:p.H102R mutation, even in combination with wild-type allele loss, does not always lead to SDH deficiency. The obtained results demonstrate the frequent variant associated with HNPGLs in a Russian population and support its pathogenicity. Our findings help with understanding the mechanism of tumorigenesis and are also important for the development of cost-effective genetic screening programs.
Collapse
Affiliation(s)
- Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Correspondence:
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Daria Markova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Margarita Lantsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Marina Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|