1
|
Umakoshi H. Beyond pharmacotherapy: bilateral adrenal artery embolization as a potential game-changer for idiopathic hyperaldosteronism patients. Hypertens Res 2024:10.1038/s41440-024-01984-1. [PMID: 39543428 DOI: 10.1038/s41440-024-01984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Affiliation(s)
- Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Iwahashi N, Umakoshi H, Fujita M, Fukumoto T, Ogasawara T, Yokomoto-Umakoshi M, Kaneko H, Nakao H, Kawamura N, Uchida N, Matsuda Y, Sakamoto R, Seki M, Suzuki Y, Nakatani K, Izumi Y, Bamba T, Oda Y, Ogawa Y. Single-cell and spatial transcriptomics analysis of human adrenal aging. Mol Metab 2024; 84:101954. [PMID: 38718896 PMCID: PMC11101872 DOI: 10.1016/j.molmet.2024.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE The human adrenal cortex comprises three functionally and structurally distinct layers that produce layer-specific steroid hormones. With aging, the human adrenal cortex undergoes functional and structural alteration or "adrenal aging", leading to the unbalanced production of steroid hormones. Given the marked species differences in adrenal biology, the underlying mechanisms of human adrenal aging have not been sufficiently studied. This study was designed to elucidate the mechanisms linking the functional and structural alterations of the human adrenal cortex. METHODS We conducted single-cell RNA sequencing and spatial transcriptomics analysis of the aged human adrenal cortex. RESULTS The data of this study suggest that the layer-specific alterations of multiple signaling pathways underlie the abnormal layered structure and layer-specific changes in steroidogenic cells. We also highlighted that macrophages mediate age-related adrenocortical cell inflammation and senescence. CONCLUSIONS This study is the first detailed analysis of the aged human adrenal cortex at single-cell resolution and helps to elucidate the mechanism of human adrenal aging, thereby leading to a better understanding of the pathophysiology of age-related disorders associated with adrenal aging.
Collapse
Affiliation(s)
- Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tazuru Fukumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuki Ogasawara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kaneko
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakao
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Namiko Kawamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naohiro Uchida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yayoi Matsuda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kohta Nakatani
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
3
|
Fukumoto T, Umakoshi H, Iwahashi N, Ogasawara T, Yokomoto-Umakoshi M, Kaneko H, Fujita M, Uchida N, Nakao H, Kawamura N, Matsuda Y, Sakamoto R, Miyazawa T, Seki M, Eto M, Oda Y, Suzuki Y, Ogawa S, Ogawa Y. Steroids-producing nodules: a two-layered adrenocortical nodular structure as a precursor lesion of cortisol-producing adenoma. EBioMedicine 2024; 103:105087. [PMID: 38570222 PMCID: PMC11121169 DOI: 10.1016/j.ebiom.2024.105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The human adrenal cortex consists of three functionally and structurally distinct layers; zona glomerulosa, zona fasciculata (zF), and zona reticularis (zR), and produces adrenal steroid hormones in a layer-specific manner; aldosterone, cortisol, and adrenal androgens, respectively. Cortisol-producing adenomas (CPAs) occur mostly as a result of somatic mutations associated with the protein kinase A pathway. However, how CPAs develop after adrenocortical cells acquire genetic mutations, remains poorly understood. METHODS We conducted integrated approaches combining the detailed histopathologic studies with genetic, RNA-sequencing, and spatially resolved transcriptome (SRT) analyses for the adrenal cortices adjacent to human adrenocortical tumours. FINDINGS Histopathological analysis revealed an adrenocortical nodular structure that exhibits the two-layered zF- and zR-like structure. The nodular structures harbour GNAS somatic mutations, known as a driver mutation of CPAs, and confer cell proliferative and autonomous steroidogenic capacities, which we termed steroids-producing nodules (SPNs). RNA-sequencing coupled with SRT analysis suggests that the expansion of the zF-like structure contributes to the formation of CPAs, whereas the zR-like structure is characterised by a macrophage-mediated immune response. INTERPRETATION We postulate that CPAs arise from a precursor lesion, SPNs, where two distinct cell populations might contribute differently to adrenocortical tumorigenesis. Our data also provide clues to the molecular mechanisms underlying the layered structures of human adrenocortical tissues. FUNDING KAKENHI, The Uehara Memorial Foundation, Daiwa Securities Health Foundation, Kaibara Morikazu Medical Science Promotion Foundation, Secom Science and Technology Foundation, ONO Medical Research Foundation, and Japan Foundation for Applied Enzymology.
Collapse
Affiliation(s)
- Tazuru Fukumoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Norifusa Iwahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuki Ogasawara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kaneko
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naohiro Uchida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakao
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Namiko Kawamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yayoi Matsuda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Miyazawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Murakami M, Hara K, Ikeda K, Horino M, Okazaki R, Niitsu Y, Takeuchi A, Aoki J, Shiba K, Tsujimoto K, Komiya C, Nakamura Y, Kurata M, Akashi T, Fujii Y, Yamada T. Single-Nucleus Analysis Reveals Tumor Heterogeneity of Aldosterone-Producing Adenoma. Hypertension 2024; 81:361-371. [PMID: 38095094 DOI: 10.1161/hypertensionaha.123.21446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/03/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Recent advances in omics techniques have allowed detailed genetic characterization of aldosterone-producing adenoma (APA). The pathogenesis of APA is characterized by tumorigenesis-associated aldosterone synthesis. The pathophysiological intricacies of APAs have not yet been elucidated at the level of individual cells. Therefore, a single-cell level analysis is speculated to be valuable in studying the differentiation process of APA. METHODS We conducted single-nucleus RNA sequencing of APAs with KCNJ5 mutation and nonfunctional adenomas obtained from 3 and 2 patients, respectively. RESULTS The single-nucleus RNA sequencing revealed the intratumoral heterogeneity of APA and identified cell populations consisting of a shared cluster of nonfunctional adenoma and APA. In addition, we extracted 2 cell fates in APA and obtained a cell population specialized in aldosterone synthesis. Genes related to ribosomes and neurodegenerative diseases were upregulated in 1 of these fates, whereas those related to the regulation of glycolysis were upregulated in the other fate. Furthermore, the total RNA reads in the nucleus were higher in hormonally activated clusters, indicating a marked activation of transcription per cell. CONCLUSIONS The single-nucleus RNA sequencing revealed intratumoral heterogeneity of APA with KCNJ5 mutation. The observation of 2 cell fates in KCNJ5-mutated APAs provides the postulation that a heterogeneous process of cellular differentiation was implicated in the pathophysiological mechanisms underlying APA tumors.
Collapse
Affiliation(s)
- Masanori Murakami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| | - Kazunari Hara
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| | - Kenji Ikeda
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| | - Masato Horino
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| | - Rei Okazaki
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| | - Yoshihiro Niitsu
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| | - Akira Takeuchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| | - Jun Aoki
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| | - Kumiko Shiba
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
- Center for Personalized Medicine for Healthy Aging (K.S.), Tokyo Medical and Dental University, Japan
| | - Kazutaka Tsujimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| | - Chikara Komiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| | - Yuki Nakamura
- Department of Urology, Graduate School of Medical and Dental Sciences (Y.N., Y.F.), Tokyo Medical and Dental University, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences (M.K.), Tokyo Medical and Dental University, Japan
| | - Takumi Akashi
- Department of Diagnostic Pathology, Graduate School of Medical and Dental Sciences (T.A.), Tokyo Medical and Dental University, Japan
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Japan (T.A.)
| | - Yasuhisa Fujii
- Department of Urology, Graduate School of Medical and Dental Sciences (Y.N., Y.F.), Tokyo Medical and Dental University, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences (M.M., K.H., K.I., M.H., R.O., Y.N., A.T., J.A., K.S., K.T., C.K., T.Y.), Tokyo Medical and Dental University, Japan
| |
Collapse
|
5
|
Nishimoto K, Ogishima T, Sugiura Y, Suematsu M, Mukai K. Pathology and gene mutations of aldosterone-producing lesions. Endocr J 2023; 70:1113-1122. [PMID: 37766569 DOI: 10.1507/endocrj.ej22-0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
The human adrenal cortex secretes aldosterone and cortisol as major corticosteroids. For their production, CYP11B2 and CYP11B1 catalyze the last steps in the syntheses of aldosterone and cortisol, respectively. In our previous study, CYP11B2 was the first successfully purified from rat adrenals and human clinical samples and then was proved to be aldosterone synthase. We demonstrated the immunohistochemistry for CYP11B2 of both rats and humans and applied it clinically to visualize the functional histology of aldosterone-producing adenoma (APA) causing primary aldosteronism (PA). We discovered aldosterone-producing cell clusters (APCCs) and possible APCC-to-APA transitional lesions (pAATLs) and further visualized aldosterone-producing lesions for rare forms of PA including familial hyperaldosteronism type 3 and novel non-familial juvenile PA. Here we review the history of our research on aldosterone-producing lesions.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tadashi Ogishima
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Suematsu
- Keio University WPI Bio2Q Research Center and Central Institute for Experimental Animal, Kanagawa 210-0821, Japan
| | - Kuniaki Mukai
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Fu R, Walters K, Kaufman ML, Koc K, Baldwin A, Clay MR, Basham KJ, Kiseljak-Vassiliades K, Fishbein L, Mukherjee N. In Situ Spatial Reconstruction of Distinct Normal and Pathological Cell Populations Within the Human Adrenal Gland. J Endocr Soc 2023; 7:bvad131. [PMID: 37953901 PMCID: PMC10638100 DOI: 10.1210/jendso/bvad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 11/14/2023] Open
Abstract
The human adrenal gland consists of concentrically organized, functionally distinct regions responsible for hormone production. Dysregulation of adrenocortical cell differentiation alters the proportion and organization of the functional zones of the adrenal cortex leading to disease. Current models of adrenocortical cell differentiation are based on mouse studies, but there are known organizational and functional differences between human and mouse adrenal glands. This study aimed to investigate the centripetal differentiation model in the human adrenal cortex and characterize aldosterone-producing micronodules (APMs) to better understand adrenal diseases such as primary aldosteronism. We applied spatially resolved in situ transcriptomics to human adrenal tissue sections from 2 individuals and identified distinct cell populations and their positional relationships. The results supported the centripetal differentiation model in humans, with cells progressing from the outer capsule to the zona glomerulosa, zona fasciculata, and zona reticularis. Additionally, we characterized 2 APMs in a 72-year-old woman. Comparison with earlier APM transcriptomes indicated a subset of core genes, but also heterogeneity between APMs. The findings contribute to our understanding of normal and pathological cellular differentiation in the human adrenal cortex.
Collapse
Affiliation(s)
- Rui Fu
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
- Computational Biology, New York Genome Center, New York, NY 10013, USA
| | - Kathryn Walters
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Michael L Kaufman
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Katrina Koc
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Amber Baldwin
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
- Research Service Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Lauren Fishbein
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Neelanjan Mukherjee
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Jian H, Poetsch A. CASZ1: Current Implications in Cardiovascular Diseases and Cancers. Biomedicines 2023; 11:2079. [PMID: 37509718 PMCID: PMC10377389 DOI: 10.3390/biomedicines11072079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Castor zinc finger 1 (CASZ1) is a C2H2 zinc finger family protein that has two splicing variants, CASZ1a and CASZ1b. It is involved in multiple physiological processes, such as tissue differentiation and aldosterone antagonism. Genetic and epigenetic alternations of CASZ1 have been characterized in multiple cardiovascular disorders, such as congenital heart diseases, chronic venous diseases, and hypertension. However, little is known about how CASZ1 mechanically participates in the pathogenesis of these diseases. Over the past decades, at first glance, paradoxical influences on cell behaviors and progressions of different cancer types have been discovered for CASZ1, which may be explained by a "double-agent" role for CASZ1. In this review, we discuss the physiological function of CASZ1, and focus on the association of CASZ1 aberrations with the pathogenesis of cardiovascular diseases and cancers.
Collapse
Affiliation(s)
- Heng Jian
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Ansgar Poetsch
- Queen Mary School, Nanchang University, Nanchang 330006, China
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
8
|
Cappola AR, Auchus RJ, El-Hajj Fuleihan G, Handelsman DJ, Kalyani RR, McClung M, Stuenkel CA, Thorner MO, Verbalis JG. Hormones and Aging: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2023; 108:1835-1874. [PMID: 37326526 PMCID: PMC11491666 DOI: 10.1210/clinem/dgad225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Multiple changes occur across various endocrine systems as an individual ages. The understanding of the factors that cause age-related changes and how they should be managed clinically is evolving. This statement reviews the current state of research in the growth hormone, adrenal, ovarian, testicular, and thyroid axes, as well as in osteoporosis, vitamin D deficiency, type 2 diabetes, and water metabolism, with a specific focus on older individuals. Each section describes the natural history and observational data in older individuals, available therapies, clinical trial data on efficacy and safety in older individuals, key points, and scientific gaps. The goal of this statement is to inform future research that refines prevention and treatment strategies in age-associated endocrine conditions, with the goal of improving the health of older individuals.
Collapse
Affiliation(s)
- Anne R Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard J Auchus
- Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Endocrinology and Metabolism Section, Medical Service, LTC Charles S. Kettles Veteran Affairs Medical Center, Ann Arbor, MI 48015, USA
| | - Ghada El-Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, Division of Endocrinology, Department of Internal Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney and Andrology Department, Concord Repatriation General Hospital, Sydney 2139, Australia
| | - Rita R Kalyani
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael McClung
- Oregon Osteoporosis Center, Portland, OR 97213, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Cynthia A Stuenkel
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Michael O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joseph G Verbalis
- Division of Endocrinology and Metabolism, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
9
|
Imaging or Adrenal Vein Sampling Approach in Primary Aldosteronism? A Patient-Based Approach. Tomography 2022; 8:2735-2748. [PMID: 36412687 PMCID: PMC9680373 DOI: 10.3390/tomography8060228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Primary aldosteronism (PA) is the most frequent cause of secondary hypertension, associated with an increased risk of cardiovascular and cerebral disease, compared to essential hypertension. Therefore, it is mandatory to promptly recognize the disease and offer to the patient the correct diagnostic-therapeutic process in order to reduce new-onset cardiovascular events. It is fundamental to define subtype classification (unilateral or bilateral disease), in order to provide the best treatment (surgery for unilateral and medical treatment for bilateral disease). Here, we report five clinical cases of different subtypes of PA (patients with monolateral or bilateral PA, nondiagnostic AVS, allergy to iodinated contrast, and patients not suitable for surgery), with particular attention to the diagnostic-therapeutic process and the different approaches tailored to a single case. Since PA is a spectrum of various diseases, it needs a personalized diagnostic-therapeutic process, customized for the individual patient, depending on previous medical history, suitability for the surgery and patient's preferences.
Collapse
|