1
|
Guseva EA, Emelianova MA, Sidorova VN, Tyulpakov AN, Dontsova OA, Sergiev PV. Diversity of Molecular Functions of RNA-Binding Ubiquitin Ligases from the MKRN Protein Family. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1558-1572. [PMID: 39418515 DOI: 10.1134/s0006297924090037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024]
Abstract
Makorin RING finger protein family includes four members (MKRN1, MKRN2, MKRN3, and MKRN4) that belong to E3 ubiquitin ligases and play a key role in various biological processes, such as cell survival, cell differentiation, and innate and adaptive immunity. MKRN1 contributes to the tumor growth suppression, energy metabolism, anti-pathogen defense, and apoptosis and has a broad variety of targets, including hTERT, APC, FADD, p21, and various viral proteins. MKRN2 regulates cell proliferation, inflammatory response; its targets are p65, PKM2, STAT1, and other proteins. MKRN3 is a master regulator of puberty timing; it controls the levels of gonadotropin-releasing hormone in the arcuate nucleus neurons. MKRN4 is the least studied member of the MKRN protein family, however, it is known to contribute to the T cell activation by ubiquitination of serine/threonine kinase MAP4K3. Proteins of the MKRN family are associated with the development of numerous diseases, for example, systemic lupus erythematosus, central precocious puberty, Prader-Willi syndrome, degenerative lumbar spinal stenosis, inflammation, and cancer. In this review, we discuss the functional roles of all members of the MKRN protein family and their involvement in the development of diseases.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria A Emelianova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera N Sidorova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Aiello F, Palumbo S, Cirillo G, Tornese G, Fava D, Wasniewska M, Faienza MF, Bozzola M, Luongo C, Festa A, Miraglia Del Giudice E, Grandone A. MKRN3 circulating levels in girls with central precocious puberty caused by MKRN3 gene mutations. J Endocrinol Invest 2024; 47:1477-1485. [PMID: 38112911 DOI: 10.1007/s40618-023-02255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE MKNR3 is a paternally expressed gene whose mutations are the main cause of central precocious puberty (CPP). Protein circulating levels can be easily measured, as demonstrated in idiopathic CPP and healthy controls. No data are available for patients harboring an MKRN3 mutation. Our aim was to perform MKRN3 mutation screening and to investigate if circulating protein levels could be a screening tool to identify MKRN3 mutation in CPP patients. METHODS We enrolled 140 CPP girls and performed MKRN3 mutation analysis. Patients were stratified into two groups: idiopathic CPP (iCPP) and MKRN3 mutation-related CPP (MKRN3-CPP). Clinical characteristics were collected. Serum MKRN3 values were measured by a commercially available ELISA assay kit in MKRN3-CPP and a subgroup of 15 iCPP patients. RESULTS We identified 5 patients with MKRN3 mutations: one was a novel mutation (p.Gln352Arg) while the others were previously reported (p.Arg328Cys, p.Arg345Cys, p.Pro160Cysfs*14, p.Cys410Ter). There was a significant difference in circulating MKRN3 values in MKRN3-CPP compared to iCPP (p < 0.001). In MKRN3-CPP, the subject harboring Pro160Cysfs*14 presented undetectable levels. Subjects carrying the missense mutations p.Arg328Cys and p.Gln352Arg showed divergent circulating protein levels, respectively 40.56 pg/mL and undetectable. The patient with the non-sense mutation reported low but measurable MKRN3 levels (12.72 pg/mL). CONCLUSIONS MKRN3 defect in patients with CPP cannot be predicted by MKRN3 circulating levels, although those patients presented lower protein levels than iCPP. Due to the great inter-individual variability of the assay and the lack of reference values, no precise cut-off can be identified to suspect MKRN3 defect.
Collapse
Affiliation(s)
- F Aiello
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - S Palumbo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy.
| | - G Cirillo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - G Tornese
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - D Fava
- Pediatric Endocrinology Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147, Genoa, Italy
| | - M Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - M F Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, Italy
- Unit of Endocrinology and Rare Endocrine Diseases, Giovanni XXIII Pediatric Hospital, Bari, Italy
| | - M Bozzola
- Pediatric and Adolescent Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Onlus, Il Bambino e Il Suo Pediatra, Novara, Galliate, Italy
| | - C Luongo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - A Festa
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - E Miraglia Del Giudice
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| | - A Grandone
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Napoli, Italy
| |
Collapse
|
3
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|