1
|
Luk C, Haywood NJ, Bridge KI, Kearney MT. Paracrine Role of the Endothelium in Metabolic Homeostasis in Health and Nutrient Excess. Front Cardiovasc Med 2022; 9:882923. [PMID: 35557517 PMCID: PMC9086712 DOI: 10.3389/fcvm.2022.882923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 02/02/2023] Open
Abstract
The vascular endothelium traditionally viewed as a simple physical barrier between the circulation and tissue is now well-established as a key organ mediating whole organism homeostasis by release of a portfolio of anti-inflammatory and pro-inflammatory vasoactive molecules. Healthy endothelium releases anti-inflammatory signaling molecules such as nitric oxide and prostacyclin; in contrast, diseased endothelium secretes pro-inflammatory signals such as reactive oxygen species, endothelin-1 and tumor necrosis factor-alpha (TNFα). Endothelial dysfunction, which has now been identified as a hallmark of different components of the cardiometabolic syndrome including obesity, type 2 diabetes and hypertension, initiates and drives the progression of tissue damage in these disorders. Recently it has become apparent that, in addition to vasoactive molecules, the vascular endothelium has the potential to secrete a diverse range of small molecules and proteins mediating metabolic processes in adipose tissue (AT), liver, skeletal muscle and the pancreas. AT plays a pivotal role in orchestrating whole-body energy homeostasis and AT dysfunction, characterized by local and systemic inflammation, is central to the metabolic complications of obesity. Thus, understanding and targeting the crosstalk between the endothelium and AT may generate novel therapeutic opportunities for the cardiometabolic syndrome. Here, we provide an overview of the role of the endothelial secretome in controlling the function of AT. The endothelial-derived metabolic regulatory factors are grouped and discussed based on their physical properties and their downstream signaling effects. In addition, we focus on the therapeutic potential of these regulatory factors in treating cardiometabolic syndrome, and discuss areas of future study of potential translatable and clinical significance. The vascular endothelium is emerging as an important paracrine/endocrine organ that secretes regulatory factors in response to nutritional and environmental cues. Endothelial dysfunction may result in imbalanced secretion of these regulatory factors and contribute to the progression of AT and whole body metabolic dysfunction. As the vascular endothelium is the first responder to local nutritional changes and adipocyte-derived signals, future work elucidating the changes in the endothelial secretome is crucial to improve our understanding of the pathophysiology of cardiometabolic disease, and in aiding our development of new therapeutic strategies to treat and prevent cardiometabolic syndrome.
Collapse
Affiliation(s)
- Cheukyau Luk
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Regulation of Metabolic Processes by Hydrogen Peroxide Generated by NADPH Oxidases. Processes (Basel) 2020. [DOI: 10.3390/pr8111424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important oxidizing molecule that regulates the metabolisms of aerobic organisms. Redox signaling comprises physiological oxidative stress (eustress), while excessive oxidative stress causes damage to molecules. The main enzymatic generators of H2O2 are nicotinamide adenine dinucleotide phosphate oxidases or NADPH oxidases (NOXs) and mitochondrial respiratory chains, as well as various oxidases. The NOX family is constituted of seven enzyme isoforms that produce a superoxide anion (O2−), which can be converted to H2O2 by superoxide dismutase or spontaneously. H2O2 passes through the membranes by some aquaporins (AQPs), known as peroxyporins. It diffuses through cells and tissues to initiate cellular effects, such as proliferation, the recruitment of immune cells, and cell shape changes. Therefore, it has been proposed that H2O2 has the same importance as Ca2+ or adenosine triphosphate (ATP) to act as modulators in signaling and the metabolism. The present overview focuses on the metabolic processes of liver and adipose tissue, regulated by the H2O2 generated by NOXs.
Collapse
|
3
|
Velickovic KD, Ukropina MM, Glisic RM, Cakic-Milosevic MM. Effects of long-term sucrose overfeeding on rat brown adipose tissue: a structural and immunohistochemical study. ACTA ACUST UNITED AC 2018; 221:jeb.166538. [PMID: 29496784 DOI: 10.1242/jeb.166538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/26/2018] [Indexed: 01/06/2023]
Abstract
The aim of this study was to determine the effects of long-term sucrose overfeeding on functional capacity and ultrastructural characteristics of the rat brown adipose tissue (BAT). For the study, 16 male Wistar rats, chow-fed and kept under standard laboratory conditions, were divided into 2 equal groups. The rats from a control group drank tap water, whereas those from a sucrose overfed group were allowed to drink 10% sucrose solution for 21 days. Structural changes of BAT were analysed at the level of light and electron microscopy on routinely prepared tissue sections or using immunohistochemical staining, in combination with stereological methods. Obtained results have shown that the significantly increased energy intake in sucrose overfed rats did not result in a higher gain of body mass compared with controls. The light microscopy analysis revealed that the BAT acquired the appearance of a thermogenically active tissue, with intensified vascularisation, reduced size of brown adipocytes and increased multilocularity. At the ultrastructural level, mitochondria of brown adipocytes became more abundant, enlarged and contained more cristae in comparison to control animals. The immunoexpression of uncoupling protein 1 (UCP1) and noradrenaline, as markers of BAT thermogenic status, was increased, whereas the pattern of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) was slightly modified. Taken together, the results of this investigation indicated that BAT possesses the ability to increase thermogenic capacity/activity in response to high energy intake and to prevent body mass gain. These findings are particularly relevant in view of recent reports on the existence of functional BAT in adult humans and its potential use to combat obesity.
Collapse
Affiliation(s)
- Ksenija D Velickovic
- University of Belgrade, Faculty of Biology, Institute of Zoology, Chair of Cell and Tissue Biology, Studentski trg 16, 11000 Belgrade, Serbia.,University of Belgrade, Faculty of Biology, Centre for Electron Microscopy, Studentski trg 16, 11000 Belgrade, Serbia
| | - Mirela M Ukropina
- University of Belgrade, Faculty of Biology, Institute of Zoology, Chair of Cell and Tissue Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Radmila M Glisic
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Maja M Cakic-Milosevic
- University of Belgrade, Faculty of Biology, Institute of Zoology, Chair of Cell and Tissue Biology, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Bucris E, Beck A, Boura-Halfon S, Isaac R, Vinik Y, Rosenzweig T, Sampson SR, Zick Y. Prolonged insulin treatment sensitizes apoptosis pathways in pancreatic β cells. J Endocrinol 2016; 230:291-307. [PMID: 27411561 DOI: 10.1530/joe-15-0505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
Insulin resistance results from impaired insulin signaling in target tissues that leads to increased levels of insulin required to control plasma glucose levels. The cycle of hyperglycemia and hyperinsulinemia eventually leads to pancreatic cell deterioration and death by a mechanism that is yet unclear. Insulin induces ROS formation in several cell types. Furthermore, death of pancreatic cells induced by oxidative stress could be potentiated by insulin. Here, we investigated the mechanism underlying this phenomenon. Experiments were done on pancreatic cell lines (Min-6, RINm, INS-1), isolated mouse and human islets, and on cell lines derived from nonpancreatic sources. Insulin (100nM) for 24h selectively increased the production of ROS in pancreatic cells and isolated pancreatic islets, but only slightly affected the expression of antioxidant enzymes. This was accompanied by a time- and dose-dependent decrease in cellular reducing power of pancreatic cells induced by insulin and altered expression of several ER stress response elements including a significant increase in Trb3 and a slight increase in iNos The effect on iNos did not increase NO levels. Insulin also potentiated the decrease in cellular reducing power induced by H2O2 but not cytokines. Insulin decreased the expression of MCL-1, an antiapoptotic protein of the BCL family, and induced a modest yet significant increase in caspase 3/7 activity. In accord with these findings, inhibition of caspase activity eliminated the ability of insulin to increase cell death. We conclude that prolonged elevated levels of insulin may prime apoptosis and cell death-inducing mechanisms as a result of oxidative stress in pancreatic cells.
Collapse
Affiliation(s)
- E Bucris
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel Mina and Everard Goodman Faculty of Life SciencesBar-Ilan University, Ramat-Gan, Israel
| | - A Beck
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel
| | - S Boura-Halfon
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel
| | - R Isaac
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel
| | - Y Vinik
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel
| | - T Rosenzweig
- Department of Molecular Biology and Nutritional StudiesAriel University, Ariel, Israel
| | - S R Sampson
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel Mina and Everard Goodman Faculty of Life SciencesBar-Ilan University, Ramat-Gan, Israel
| | - Y Zick
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Scioli MG, Cervelli V, Arcuri G, Gentile P, Doldo E, Bielli A, Bonanno E, Orlandi A. High Insulin-Induced Down-Regulation of Erk-1/IGF-1R/FGFR-1 Signaling Is Required for Oxidative Stress-Mediated Apoptosis of Adipose-Derived Stem Cells. J Cell Physiol 2014; 229:2077-87. [DOI: 10.1002/jcp.24667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/18/2014] [Accepted: 05/09/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Valerio Cervelli
- Plastic Surgery; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Gaetano Arcuri
- Experimental Medicine and Biochemical Sciences; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Pietro Gentile
- Plastic Surgery; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Elena Doldo
- Anatomic Pathology; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Alessandra Bielli
- Anatomic Pathology; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Elena Bonanno
- Anatomic Pathology; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| | - Augusto Orlandi
- Anatomic Pathology; Department of Biomedicine and Prevention; Tor Vergata University; Rome Italy
| |
Collapse
|
6
|
Golomb BA, Allison M, Koperski S, Koslik HJ, Devaraj S, Ritchie JB. Coenzyme Q10 benefits symptoms in Gulf War veterans: results of a randomized double-blind study. Neural Comput 2014; 26:2594-651. [PMID: 25149705 DOI: 10.1162/neco_a_00659] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We sought to assess whether coenzyme Q10 (CoQ10) benefits the chronic multisymptom problems that affect one-quarter to one-third of 1990-1 Gulf War veterans, using a randomized, double-blind, placebo-controlled study. Participants were 46 veterans meeting Kansas and Centers for Disease Control criteria for Gulf War illness. Intervention was PharmaNord (Denmark) CoQ10 100 mg per day (Q100), 300 mg per day (Q300), or an identical-appearing placebo for 3.5 ± 0.5 months. General self-rated health (GSRH), the primary outcome, differed across randomization arms at baseline, and sex significantly predicted GSRH change, compelling adjustment for baseline GSRH and prompting sex-stratified analysis. GSRH showed no significant benefit in the combined-sex sample. Among males (85% of participants), Q100 significantly benefited GSRH versus placebo and versus Q300, providing emphasis on Q100. Physical function (summary performance score, SPS) improved on Q100 versus placebo. A rise in CoQ10 approached significance as a predictor of improvement in GSRH and significantly predicted SPS improvement. Among 20 symptoms each present in half or more of the enrolled veterans, direction-of-difference on Q100 versus placebo was favorable for all except sleep problems; sign test 19:1, p=0.00004) with several symptoms individually significant. Significance for these symptoms despite the small sample underscores large effect sizes, and an apparent relation of key outcomes to CoQ10 change increases prospects for causality. In conclusion, Q100 conferred benefit to physical function and symptoms in veterans with Gulf War illness. Examination in a larger sample is warranted, and findings from this study can inform the conduct of a larger trial.
Collapse
Affiliation(s)
- Beatrice A Golomb
- Departments of Medicine and of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA 92093, U.S.A.
| | | | | | | | | | | |
Collapse
|
7
|
Markelic M, Velickovic K, Golic I, Otasevic V, Stancic A, Jankovic A, Vucetic M, Buzadzic B, Korac B, Korac A. Endothelial cell apoptosis in brown adipose tissue of rats induced by hyperinsulinaemia: the possible role of TNF-α. Eur J Histochem 2011; 55:e34. [PMID: 22297440 PMCID: PMC3284236 DOI: 10.4081/ejh.2011.e34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate whether hyperinsulinaemia, which frequently precedes insulin resistance syndrome (obesity, diabetes), induces apoptosis of endothelial cells (ECs) in brown adipose tissue (BAT) and causes BAT atrophy and also, to investigate the possible mechanisms underlying ECs death. In order to induce hyperinsuli-naemia, adult male rats of Wistar strain were treated with high dose of insulin (4 U/kg, intraperitonely) for one or three days. Examinations at ultrastructural level showed apoptotic changes of ECs, allowing us to point out that changes mainly but not exclusively, occur in nuclei. Besides different stages of condensation and alterations of the chromatin, nuclear fragmentation was also observed. Higher number of ECs apoptotic nuclei in the BAT of hyperinsulinaemic rats was also confirmed by propidium iodide staining. Immunohistochemical localization of tumor necrosis factor-alpha (TNF-α) revealed increased expression in ECs of BAT of hyperinsulinaemic animals, indicating its possible role in insulin-induced apoptotic changes. These results suggest that BAT atrophy in hyperinsulinaemia is a result of endothelial and adipocyte apoptosis combined, rather than any of functional components alone.
Collapse
Affiliation(s)
- M Markelic
- Faculty of Biology, Centre for Electron Microscopy, University of Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sampson SR, Bucris E, Horovitz-Fried M, Parnas A, Kahana S, Abitbol G, Chetboun M, Rosenzweig T, Brodie C, Frankel S. Insulin increases H2O2-induced pancreatic beta cell death. Apoptosis 2010; 15:1165-76. [PMID: 20544287 DOI: 10.1007/s10495-010-0517-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin resistance results, in part, from impaired insulin signaling in insulin target tissues. Consequently, increased levels of insulin are necessary to control plasma glucose levels. The effects of elevated insulin levels on pancreatic beta (β) cell function, however, are unclear. In this study, we investigated the possibility that insulin may influence survival of pancreatic β cells. Studies were conducted on RINm, RINm5F and Min-6 pancreatic β-cells. Cell death was induced by treatment with H(2)O(2), and was estimated by measurements of LDH levels, viability assay (Cell-Titer Blue), propidium iodide staining and FACS analysis, and mitochondrial membrane potential (JC-1). In addition, levels of cleaved caspase-3 and caspase activity were determined. Treatment with H(2)O(2) increased cell death; this effect was increased by simultaneous treatment of cells with insulin. Insulin treatment alone caused a slight increase in cell death. Inhibition of caspase-3 reduced the effect of insulin to increase H(2)O(2)-induced cell death. Insulin increased ROS production by pancreatic β cells and increased the effect of H(2)O(2). These effects were increased by inhibition of IR signaling, indicative of an effect independent of the IR cascade. We conclude that elevated levels of insulin may act to exacerbate cell death induced by H(2)O(2) and, perhaps, other inducers of apoptosis.
Collapse
Affiliation(s)
- S R Sampson
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Biphasic effect of insulin on beta cell apoptosis depending on glucose deprivation. FEBS Lett 2008; 582:3855-60. [DOI: 10.1016/j.febslet.2008.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/06/2008] [Accepted: 10/13/2008] [Indexed: 01/09/2023]
|
10
|
Hamzavi J, Ehnert S, Godoy P, Ciuclan L, Weng H, Mertens PR, Heuchel R, Dooley S. Disruption of the Smad7 gene enhances CCI4-dependent liver damage and fibrogenesis in mice. J Cell Mol Med 2008; 12:2130-44. [PMID: 18266971 PMCID: PMC4506177 DOI: 10.1111/j.1582-4934.2008.00262.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) signalling is induced in liver as a consequence of damage and contributes to wound healing with transient activation, whereas it mediates fibrogenesis with long-term up-regulation in chronic disease. Smad-dependent TGF-beta effects are blunted by antagonistic Smad7, which is transcriptionally activated as an immediate early response upon initiation of TGF-beta signalling in most cell types, thereby providing negative feedback regulation. Smad7 can be induced by other cytokines, e.g. IFN-gamma, leading to a crosstalk of these signalling pathways. Here we report on a novel mouse strain, denoted S7DeltaE1, with a deletion of exon I from the endogenous smad7 gene. The mice were viable and exhibited normal adult liver architecture. To obtain insight into Smad7-depend-ent protective effects, chronic liver damage was induced in mice by carbon tetrachloride (CCI4) administration. Subsequent treatment, elevated serum liver enzymes indicated enhanced liver damage in mice lacking functional Smad7. CCI4-dependent Smad2 phosphorylation was pronounced in S7DeltaE1 mice and accompanied by increased numbers of alpha-smooth muscle actin positive 'activated' HSCs. There was evidence for matrix accumulation, with elevated collagen deposition as assessed morphometrically in Sirius red stained tissue and confirmed with higher levels of hydroxyproline in S7DeltaE1 mice. In addition, the number of CD43 positive infiltrating lymphocytes as well as of apoptotic hepatocytes was increased. Studies with primary hepatocytes from S7DeltaE1 and wild-type mice indicate that in the absence of functional Smad7 protein, hepatocytes are more sensitive for TGF-beta effects resulting in enhanced cell death. Furthermore, S7DeltaE1 hepatocytes display increased oxidative stress and cell damage in response to CCI4, as measured by reactive oxygen species production, glutathione depletion, lactate dehydrogenase release and lipid peroxidation. Using an ALK-5 inhibitor all investigated CCI4 effects on hepatocytes were blunted, confirming participation of TGF-beta signalling. We conclude that Smad7 mediates a protective effect from adverse TGF-beta signalling in damaged liver, re-iterating its negative regulatory loop on signalling.
Collapse
Affiliation(s)
- Jafar Hamzavi
- Molecular Alcohol Research in Gastroenterology, Department of Medicine II, Faculty of Medicine at Mannheim, University of Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 4973] [Impact Index Per Article: 292.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
12
|
Moalem S, Storey KB, Percy ME, Peros MC, Perl DP. The sweet thing about Type 1 diabetes: A cryoprotective evolutionary adaptation. Med Hypotheses 2005; 65:8-16. [PMID: 15893109 DOI: 10.1016/j.mehy.2004.12.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Accepted: 12/29/2004] [Indexed: 11/20/2022]
Abstract
The reasons for the uneven worldwide distribution of Type 1 diabetes mellitus have yet to be fully explained. Epidemiological studies have shown a higher prevalence of Type 1 diabetes in northern Europe, particularly in Scandinavian countries, and Sardinia. Recent animal research has uncovered the importance of the generation of elevated levels of glucose, glycerol and other sugar derivatives as a physiological means for cold adaptation. High concentrations of these substances depress the freezing point of body fluids and prevent the formation of ice crystals in cells through supercooling, thus acting as a cryoprotectant or antifreeze for vital organs as well as in their muscle tissue. In this paper, we hypothesize that factors predisposing to elevated levels of glucose, glycerol and other sugar derivatives may have been selected for, in part, as adaptive measures in exceedingly cold climates. This cryoprotective adaptation would have protected ancestral northern Europeans from the effects of suddenly increasingly colder climates, such as those believed to have arisen around 14,000 years ago and culminating in the Younger Dryas. When life expectancy was short, factors predisposing to Type 1 diabetes provided a survival advantage. However, deleterious consequences of this condition have become significant only in more modern times, as life expectancy has increased, thus outweighing their protective value. Examples of evolutionary adaptations conferring selection advantages against human pathogens that result in deleterious effects have been previously reported as epidemic pathogenic selection (EPS). Such proposed examples include the cystic fibrosis mutations in the CFTR gene bestowing resistance to Salmonella typhi and hemochromatosis mutations conferring protection against iron-seeking intracellular pathogens. This paper is one of the first accounts of a metabolic disorder providing a selection advantage not against a pathogenic stressor alone, but rather against a climatic change. We thus believe that the concept of EPS should now include environmental factors that may be nonorganismal in nature. In so doing we propose that factors resulting in Type 1 diabetes be considered a result of environmental pathogenic selection (EnPS).
Collapse
Affiliation(s)
- S Moalem
- Department of Pathology, Mount Sinai School of Medicine, Box 1134, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
13
|
Valverde AM, Fabregat I, Burks DJ, White MF, Benito M. IRS-2 mediates the antiapoptotic effect of insulin in neonatal hepatocytes. Hepatology 2004; 40:1285-94. [PMID: 15565601 DOI: 10.1002/hep.20485] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To assess the role of insulin action and inaction in the liver, immortalized hepatocyte cell lines have been generated from insulin receptor substrate (IRS)-2(-/-) and wild-type mice. Using this model, we have recently demonstrated that the lack of IRS-2 in neonatal hepatocytes resulted in insulin resistance. In the current study, we show that immortalized neonatal hepatocytes undergo apoptosis on serum withdrawal, with caspase-3 activation and DNA laddering occurring earlier in the absence of IRS-2. Insulin rescued wild-type hepatocytes from serum withdrawal-induced caspase-3 activation and DNA fragmentation in a dose-dependent manner, but it failed to rescue hepatocytes lacking IRS-2. In IRS-2(-/-) cells, insulin failed to phosphorylate Bad. Furthermore, in these cells, insulin was unable to translocate Foxo1 from the nucleus to the cytosol. Adenoviral infection of wild-type cells with constitutively active Foxo1 (ADA) induced caspase-8 and caspase-3 activities, proapoptotic gene expression, DNA laddering and apoptosis. Dominant negative Foxo1 regulated the whole pathway in an opposite manner. Prolonged insulin treatment (24 hours) increased expression of antiapoptotic genes (Bcl-xL), downregulated proapoptotic genes (Bim and nuclear Foxo1), and decreased caspase-3 activity in wild-type hepatocytes but not in IRS-2(-/-) cells. Infection of IRS-2(-/-) hepatocytes with adenovirus encoding IRS-2 reconstituted phosphatidylinositol 3-kinase (PI 3-kinase)/Akt/Foxo1 signaling, restored pro- and antiapoptotic gene expression, and decreased caspase-3 activity in response to insulin, thereby blocking apoptosis. In conclusion, IRS-2 signaling is specifically required through PIP3 generation to mediate the survival effects of insulin. Epidermal growth factor, via PIP3/Akt/Foxo1 phosphorylation, was able to rescue IRS-2(-/-) hepatocytes from serum withdrawal-induced apoptosis, modulating pro- and anti-apoptotic gene expression and downregulating caspase-3 activity.
Collapse
Affiliation(s)
- Angela M Valverde
- Instituto de Bioquímica/Departamento de Bioquímica y Biología Molecular II, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | | | | | | | | |
Collapse
|