1
|
Maharaj A, Kwong R, Williams J, Smith C, Storr H, Krone R, Braslavsky D, Clemente M, Ram N, Banerjee I, Çetinkaya S, Buonocore F, Güran T, Achermann JC, Metherell L, Prasad R. A retrospective analysis of endocrine disease in sphingosine-1-phosphate lyase insufficiency: case series and literature review. Endocr Connect 2022; 11:e220250. [PMID: 35904228 PMCID: PMC9346324 DOI: 10.1530/ec-22-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022]
Abstract
Sphingosine-1-phosphate lyase (SGPL1) insufficiency syndrome (SPLIS) is an autosomal recessive multi-system disorder, which mainly incorporates steroid-resistant nephrotic syndrome and primary adrenal insufficiency. Other variable endocrine manifestations are described. In this study, we aimed to comprehensively annotate the endocrinopathies associated with pathogenic SGPL1 variants and assess for genotype-phenotype correlations by retrospectively reviewing the reports of endocrine disease within our patient cohort and all published cases in the wider literature up to February 2022. Glucocorticoid insufficiency in early childhood is the most common endocrine manifestation affecting 64% of the 50 patients reported with SPLIS, and a third of these individuals have additional mineralocorticoid deficiency. While most individuals also have nephrotic syndrome, SGPL1 variants also account for isolated adrenal insufficiency at presentation. Primary gonadal insufficiency, manifesting with microphallus and cryptorchidism, is reported in less than one-third of affected boys, all with concomitant adrenal disease. Mild primary hypothyroidism affects approximately a third of patients. There is paucity of data on the impact of SGPL1 deficiency on growth, and pubertal development, limited by the early and high mortality rate (approximately 50%). There is no clear genotype-phenotype correlation overall in the syndrome, with variable disease penetrance within individual kindreds. However, with regards to endocrine phenotype, the most prevalent disease variant p.R222Q (affecting 22%) is most consistently associated with isolated glucocorticoid deficiency. To conclude, SPLIS is associated with significant multiple endocrine disorders. While endocrinopathy in the syndrome generally presents in infancy, late-onset disease also occurs. Screening for these is therefore warranted both at diagnosis and through follow-up.
Collapse
Affiliation(s)
- Avinaash Maharaj
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Ruth Kwong
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Jack Williams
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Christopher Smith
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Helen Storr
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Ruth Krone
- Birmingham Children’s Hospital, Birmingham, UK
| | - Debora Braslavsky
- Centro de Investigaciones Endocrinológicas ‘Dr. Cesar Bergadá’ (CEDIE) – CONICET – FEI – División de Endocrinología, Hospital de Niños ‘Ricardo Gutiérrez’, Buenos Aires, Argentina
| | - Maria Clemente
- Paediatric Endocrinology, Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Hospital Vall d’Hebron, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nanik Ram
- Department of Endocrinology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Semra Çetinkaya
- Health Sciences University, Dr. Sami Ulus Obstetrics and Gynaecology, Children’s Health and Disease Education and Research Hospital, Ankara, Turkey
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tülay Güran
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - John C Achermann
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Louise Metherell
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Rathi Prasad
- Centre for Endocrinology, John Vane Science Centre, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Zhang J, Yan D, He L, Zhang Q, Wen S, Liu P, Zhou H, Peng Y. Expression of Caveolin-1 Is Associated With Thyroid Function in Patients With Human Papillary Thyroid Carcinoma. Dose Response 2020; 18:1559325820919330. [PMID: 32313526 PMCID: PMC7160781 DOI: 10.1177/1559325820919330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022] Open
Abstract
Objective: The aim of this study was to evaluate the levels of caveolin-1 in thyroid
follicular epithelial cells of papillary thyroid cancer, follicular thyroid
cancer, and nonmalignant thyroid nodule benign follicular adenoma, as well
as to explore the relationship between the levels of caveolin-1 and thyroid
function. Methods: Thirty cases of papillary thyroid cancer, 10 cases of follicular thyroid
cancer, 32 cases of nonmalignant thyroid nodule benign follicular adenoma,
and 30 controls were enrolled in this study. Caveolin-1 expression in tissue
specimens obtained from these cases was evaluated by immunohistochemistry
and Western blotting. Results: Caveolin-1 expression in thyroid epithelial cells of patients with papillary
thyroid cancer, particularly female patients, was significantly higher than
that in patients with follicular thyroid cancer and nonmalignant thyroid
nodule benign follicular adenoma (P < .005). Serum
thyroid-stimulating hormone (TSH) levels in the caveolin-1-positive
expression group were lower than that in the caveolin-1-negative expression
group, and the lowest expression of caveolin-1 was detected in tissues of
patients with Graves’ disease. The serum TSH level was associated with
caveolin-1 expression in thyroid epithelial cells. Conclusion: Caveolin-1 may participate in regulating thyroid function and is a potential
biomarker of follicular thyroid cancer.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Endocrinology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Immunology, Nanjing Medical University, Nanjing, China.,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Dongxia Yan
- Department of Pathology, Ma'anshan People's Hospital, Ma'anshan, China
| | - Lianping He
- College of Experience Industry, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Qing Zhang
- Department of Pathology, Ma'anshan People's Hospital, Ma'anshan, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Peiyu Liu
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yongde Peng
- Department of Endocrinology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
3
|
Luo Y, Akama T, Okayama A, Yoshihara A, Sue M, Oda K, Hayashi M, Ishido Y, Hirano H, Hiroi N, Katoh R, Suzuki K. A Novel Role for Flotillin-Containing Lipid Rafts in Negative-Feedback Regulation of Thyroid-Specific Gene Expression by Thyroglobulin. Thyroid 2016; 26:1630-1639. [PMID: 27676653 DOI: 10.1089/thy.2016.0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Thyroglobulin (Tg) stored in thyroid follicles regulates follicular function in thyroid hormone (TH) synthesis by suppressing thyroid-specific gene expression in a concentration-dependent manner. Thus, Tg is an intrinsic negative-feedback regulator that can restrain the effect of thyrotropin (TSH) in the follicle. However, the underlying mechanisms by which Tg exerts its prominent autoregulatory effect following recognition by thyrocytes remains unclear. METHODS In order to identify potential proteins that recognize and interact with Tg, mass spectrometry was used to analyze immunoprecipitated Tg-bound proteins derived from Tg-treated rat thyroid FRTL-5 cells. RESULTS Flotillin 1 and flotillin 2, two homologs that are integral membrane proteins in lipid rafts, were identified as novel Tg-binding proteins with high confidence. Further studies revealed that flotillins physically interact with endocytosed Tg, and together these proteins redistribute from the cell membrane to cytoplasmic vesicles. Treatment with the lipid raft disrupter methyl-β-cyclodextrin abolished both the endocytosis and the negative-feedback effect of Tg on thyroid-specific gene expression. Meanwhile, siRNA-mediated knockdown of flotillin 1 or flotillin 2 also significantly inhibited Tg effects on gene expression. CONCLUSION Together these results indicate that flotillin-containing lipid rafts are essential for follicular Tg to be recognized by thyrocytes and exert its negative-feedback effects in the thyroid.
Collapse
Affiliation(s)
- Yuqian Luo
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Takeshi Akama
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Akiko Okayama
- 4 Advanced Medical Research Center, Yokohama City University , Yokohama, Japan
| | - Aya Yoshihara
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 5 Department of Education Planning and Development, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Mariko Sue
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 6 Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University , Tokyo, Japan
| | - Kenzaburo Oda
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 6 Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University , Tokyo, Japan
| | - Moyuru Hayashi
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Yuko Ishido
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Hisashi Hirano
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Naoki Hiroi
- 5 Department of Education Planning and Development, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Ryohei Katoh
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Koichi Suzuki
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
4
|
Rapoport B, McLachlan SM. TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev 2016; 37:114-34. [PMID: 26799472 PMCID: PMC4823380 DOI: 10.1210/er.2015-1098] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 02/07/2023]
Abstract
The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with loss of a C-peptide region. The potential pathophysiological importance of TSHR cleavage into A- and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling.
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
5
|
Rapoport B, McLachlan SM. Withdrawn: TSH Receptor Cleavage Into Subunits and Shedding of the A-Subunit; A Molecular and Clinical Perspective. Endocr Rev 2016; 2016:23-42. [PMID: 27454362 PMCID: PMC6958993 DOI: 10.1210/er.2015-1098.2016.1.test] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/14/2016] [Indexed: 12/29/2022]
Abstract
The TSH receptor (TSHR) on the surface of thyrocytes is unique among the glycoprotein hormone receptors in comprising two subunits: an extracellular A-subunit, and a largely transmembrane and cytosolic B-subunit. Unlike its ligand TSH, whose subunits are encoded by two genes, the TSHR is expressed as a single polypeptide that subsequently undergoes intramolecular cleavage into disulfide-linked subunits. Cleavage is associated with removal of a C-peptide region, a mechanism similar in some respects to insulin cleavage into disulfide linked A- and B-subunits with lossofaC-peptideregion. The potential pathophysiological importance of TSHR cleavage into A-and B-subunits is that some A-subunits are shed from the cell surface. Considerable experimental evidence supports the concept that A-subunit shedding in genetically susceptible individuals is a factor contributing to the induction and/or affinity maturation of pathogenic thyroid-stimulating autoantibodies, the direct cause of Graves' disease. The noncleaving gonadotropin receptors are not associated with autoantibodies that induce a "Graves' disease of the gonads." We also review herein current information on the location of the cleavage sites, the enzyme(s) responsible for cleavage, the mechanism by which A-subunits are shed, and the effects of cleavage on receptor signaling. (Endocrine Reviews 37: 114-134, 2016).
Collapse
Affiliation(s)
- Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| | - Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048
| |
Collapse
|
6
|
Albi E, Curcio F, Lazzarini A, Floridi A, Cataldi S, Lazzarini R, Loreti E, Ferri I, Ambesi-Impiombato FS. A firmer understanding of the effect of hypergravity on thyroid tissue: cholesterol and thyrotropin receptor. PLoS One 2014; 9:e98250. [PMID: 24866829 PMCID: PMC4035327 DOI: 10.1371/journal.pone.0098250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/30/2014] [Indexed: 01/03/2023] Open
Abstract
Maintaining a good health requires the maintenance of a body homeostasis which largely depends on correct functioning of thyroid gland. The cells of the thyroid tissue are strongly sensitive to hypogravity, as already proven in mice after returning to the earth from long-term space missions. Here we studied whether hypergravity may be used to counteract the physiological deconditioning of long-duration spaceflight. We investigated the influence of hypergravity on key lipids and proteins involved in thyroid tissue function. We quantified cholesterol (CHO) and different species of sphingomyelin (SM) and ceramide, analysed thyrotropin (TSH) related molecules such as thyrotropin-receptor (TSHR), cAMP, Caveolin-1 and molecule signalling such as Signal transducer and activator of transcription-3 (STAT3). The hypergravity treatment resulted in the upregulation of the TSHR and Caveolin-1 and downregulation of STAT3 without changes of cAMP. TSHR lost its specific localization and spread throughout the cell membrane; TSH treatment facilitated the shedding of α subunit of TSHR and its releasing into the extracellular space. No specific variations were observed for each species of SM and ceramide. Importantly, the level of CHO was strongly reduced. In conclusion, hypergravity conditions induce change in CHO and TSHR of thyroid gland. The possibility that lipid rafts are strongly perturbed by hypergravity-induced CHO depletion by influencing TSH-TSHR interaction was discussed.
Collapse
Affiliation(s)
- Elisabetta Albi
- Laboratory of Nuclear Lipid BioPathology, CRABioN, Perugia, Italy
- * E-mail:
| | - Francesco Curcio
- Department of Clinical and Biological Sciences, University of Udine, Udine, Italy
| | - Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABioN, Perugia, Italy
- Department of Clinical and Biological Sciences, University of Udine, Udine, Italy
| | | | - Samuela Cataldi
- Laboratory of Nuclear Lipid BioPathology, CRABioN, Perugia, Italy
| | - Remo Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABioN, Perugia, Italy
| | - Elisabetta Loreti
- Institute of Pathologic Anatomy and Histology - University of Perugia, Ospedale Santa Maria Della Misericordia - Piazzale Menghini, Italy
| | - Ivana Ferri
- Institute of Pathologic Anatomy and Histology - University of Perugia, Ospedale Santa Maria Della Misericordia - Piazzale Menghini, Italy
| | | |
Collapse
|
7
|
Marique L, Van Regemorter V, Gérard AC, Craps J, Senou M, Marbaix E, Rahier J, Daumerie C, Mourad M, Lengelé B, Colin IM, Many MC. The expression of dual oxidase, thyroid peroxidase, and caveolin-1 differs according to the type of immune response (TH1/TH2) involved in thyroid autoimmune disorders. J Clin Endocrinol Metab 2014; 99:1722-32. [PMID: 24476075 DOI: 10.1210/jc.2013-3469] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Hashimoto's thyroiditis (HT) and Graves' disease (GD) are thyroid autoimmune disorders driven by Th1 and Th2 immune responses, respectively. Caveolin-1 (Cav-1), thyroid peroxidase (TPO), and dual oxidase (DUOX) are thought to be part of the thyroxisome, which is essential to maintain thyroid hormone synthesis, at the apical membrane. OBJECTIVES To analyze the thyroxisome in HT and GD thyroids, we investigated Cav-1, DUOX, and TPO expression as well as markers of oxidative stress (OS), cell proliferation, apoptosis, and antioxidant defenses. The effects of cytokines on Cav-1 expression were analyzed in vitro. RESULTS In HT, the decrease in Cav-1, DUOX, and TPO expression was marked in follicles having the morphological aspect of active follicles in normal glands and thus called active-like follicles. T4 was not detected in the colloid but in the cytoplasm as well as DUOX and TPO. These abnormalities were associated with increased OS and cell damage. In the hypofunctioning follicles of HT and normal thyroids, Cav-1, DUOX, and TPO were not expressed. In GD, they were expressed at the apical pole of thyrocytes, and T4 accumulated in the colloid of all follicles. Th1 cytokines IL-1α/interferonγ decreased Cav-1 expression in vitro, whereas the Th2 cytokine IL-4 had no effect. CONCLUSION Th1 cytokine-induced down-regulation of Cav-1 could be responsible for intracytoplasmic T4 synthesis and mislocalization of DUOX and TPO, suggesting an important role for Cav-1 in the preservation of thyroxisome integrity. The thyroxisome's disruption, leading to uncontrolled OS and cell apoptosis, is a key, event in HT pathogenesis.
Collapse
Affiliation(s)
- Lancelot Marique
- Pôle de Morphologie (L.M., V.V.R., A.C.G., J.C., M.S., B.L., I.M.C., M.-C.M.), Institut de Recherche Expérimentale et Clinique, Départements d'Anatomo-Pathologie (E.M., J.R.), d'Endocrinologie (C.D.), and de Chirurgie Endocrinienne et de Transplantation rénale (M.M.), Secteur des Sciences de la Santé, Faculté de Médecine, Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
BACKGROUND The established paradigm for thyroglobulin (Tg) function is that of a high molecular weight precursor of the much smaller thyroid hormones, triiodothyronine (T3) and thyroxine (T4). However, speculation regarding the cause of the functional and morphologic heterogeneity of the follicles that make up the thyroid gland has given rise to the proposition that Tg is not only a precursor of thyroid hormones, but that it also functions as an important signal molecule in regulating thyroid hormone biosynthesis. SUMMARY Evidence supporting this alternative paradigm of Tg function, including the up- or downregulation by colloidal Tg of the transcription of Tg, iodide transporters, and enzymes employed in Tg iodination, and also the effects of Tg on the proliferation of thyroid and nonthyroid cells, is examined in the present review. Also discussed in detail are potential mechanisms of Tg signaling in follicular cells. CONCLUSIONS Finally, we propose a mechanism, based on experimental observations of Tg effects on thyroid cell behavior, that could account for the phenomenon of follicular heterogeneity as a highly regulated cycle of increasing and decreasing colloidal Tg concentration that functions to optimize thyroid hormone production through the transcriptional activation or suppression of specific genes.
Collapse
Affiliation(s)
- Donald F. Sellitti
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Koichi Suzuki
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
9
|
Massart C, Hoste C, Virion A, Ruf J, Dumont JE, Van Sande J. Cell biology of H2O2 generation in the thyroid: investigation of the control of dual oxidases (DUOX) activity in intact ex vivo thyroid tissue and cell lines. Mol Cell Endocrinol 2011; 343:32-44. [PMID: 21683758 DOI: 10.1016/j.mce.2011.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/06/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
H2O2 generation by dual oxidase (DUOX) at the apex of thyroid cells is the limiting factor in the oxidation of iodide and the synthesis of thyroid hormones. Its characteristics have been investigated using different in vitro models, from the most physiological thyroid slices to the particulate fraction isolated from transfected DUOX expressing CHO cells. Comparison of the models shows that some positive controls are thyroid specific (TSH) or require the substructure of the in vivo cells (MβCD). Other controls apply to all intact cell models such as the stimulation of the PIP(2) phospholipase C pathway by ATP acting on purinergic receptors, the activation of the Gq protein downstream (NaF), or surrogates of the intracellular signals generated by this cascade (phorbol esters for protein kinase C, Ca(++) ionophore for Ca(++)). Still, other controls, exerted by intracellular Ca(++) or its substitute Mn(++), the intracellular pH, or arachidonate bear directly on the enzyme. Iodide acts at the apical membrane of the cell through an oxidized form, presumably iodohexadecanal. Cooling of the cells to 22°C blocks the activation of the PIP(2) phospholipase C cascade. All these effects are reversible. Their kinetics and concentration-effect characteristics have been defined in the four models. A general scheme of the thyroid signaling pathways regulating this metabolism is proposed. The probes characterized could be applied to other H2O2 producing cells and to pathological material.
Collapse
Affiliation(s)
- C Massart
- Institute of Interdisciplinary Research (IRIBHM), University of Brussels, Campus Erasme, Route de Lennik 808, B 1070 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
10
|
The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells. Toxicol Appl Pharmacol 2011; 253:121-9. [PMID: 21466821 DOI: 10.1016/j.taap.2011.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/21/2011] [Accepted: 03/25/2011] [Indexed: 12/11/2022]
Abstract
DDT is a highly lipophilic molecule known to deplete membrane rafts of their phosphoglycolipid and cholesterol contents. However, we have recently shown that DDT can also alter the thyroid homeostasis by inhibiting TSH receptor (TSHr) internalization. The present study was undertaken to verify whether DDT goitrogenic effects are due to the insecticide acting directly on TSHr or via alteration of the membrane rafts hosting the receptor itself. Our results demonstrate that, in CHO-TSHr transfected cells, TSHr is activated in the presence of TSH, while it is inhibited following DDT exposure. DDT can also reduce the endocytic vesicular traffic, alter the extension of multi-branched microvilli along their plasma membranes and induce TSHr shedding in vesicular forms. To verify whether TSHr displacement might depend on DDT altering the raft constitution of CHO-TSHr cell membranes the extent of TSHr and lipid raft co-localization was examined by confocal microscopy. Evidence shows that receptor/raft co-localization increased significantly upon exposure to TSH, while receptors and lipid rafts become dislodged on opposite cell poles in DDT-exposed CHO-TSHr cells. As a control, under similar culturing conditions, diphenylethylene, which is known to be a lipophilic substance that is structurally related to DDT, did not affect the extent of TSHr and lipid raft co-localization in CHO-TSHr cells treated with TSH. These findings corroborate and extend our view that, in CHO cells, the DDT disrupting action on TSHr is primarily due to the insecticide acting on membranes to deplete their raft cholesterol content, and that the resulting inhibition on TSHr internalization is due to receptor dislodgement from altered raft microdomains of the plasma membrane.
Collapse
|
11
|
Albi E, Ambesi-Impiombato FS, Peverini M, Damaskopoulou E, Fontanini E, Lazzarini R, Curcio F, Perrella G. Thyrotropin receptor and membrane interactions in FRTL-5 thyroid cell strain in microgravity. ASTROBIOLOGY 2011; 11:57-64. [PMID: 21294645 DOI: 10.1089/ast.2010.0519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264 km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.
Collapse
Affiliation(s)
- E Albi
- Department of Clinical and Experimental Medicine, University School of Medicine, Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Senou M, Khalifa C, Thimmesch M, Jouret F, Devuyst O, Col V, Audinot JN, Lipnik P, Moreno JC, Van Sande J, Dumont JE, Many MC, Colin IM, Gérard AC. A coherent organization of differentiation proteins is required to maintain an appropriate thyroid function in the Pendred thyroid. J Clin Endocrinol Metab 2010; 95:4021-30. [PMID: 20501687 DOI: 10.1210/jc.2010-0228] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Pendred syndrome is caused by mutations in the gene coding for pendrin, an apical Cl-/I- exchanger. OBJECTIVE To analyze intrathyroidal compensatory mechanisms when pendrin is lacking, we investigated the thyroid of a patient with Pendred syndrome. The expression of proteins involved in thyroid hormone synthesis, markers of oxidative stress (OS), cell proliferation, apoptosis, and antioxidant enzymes were analyzed. RESULTS Three morphological zones were identified: nearly normal follicles with iodine-rich thyroglobulin in the colloid (zone 1.a), small follicles without iodine-rich thyroglobulin in lumina (zone 1.b), and destroyed follicles (zone 2). In zones 1.a, dual oxidase (Duox) and thyroid peroxidase (TPO) were localized at the apical pole, OS and cell apoptosis were absent, but ClC-5 expression was strongly increased. In zones 1.b, Duox and TPO were aberrantly present and increased in the cytosol and associated with high OS, apoptosis, cell proliferation, and increased expression of peroxiredoxin-5, catalase, and dehalogenase-1 but moderate ClC-5 expression. CONCLUSION In conclusion, the absence of pendrin is accompanied by increased ClC-5 expression that may transiently compensate for apical iodide efflux. In more affected follicles, Duox and TPO are relocated in the cytosol, leading to abnormal intracellular thyroid hormone synthesis, which results in cell destruction presumably because intracellular OS cannot be buffered by antioxidant defenses.
Collapse
Affiliation(s)
- Maximin Senou
- Unité de Morphologie Expérimentale, Université Catholique de Louvain, UCL-5251, 52 Avenue E. Mounier, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Latif R, Michalek K, Morshed SA, Davies TF. A tyrosine residue on the TSH receptor stabilizes multimer formation. PLoS One 2010; 5:e9449. [PMID: 20195479 PMCID: PMC2829087 DOI: 10.1371/journal.pone.0009449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/04/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The thyrotropin stimulating hormone receptor (TSHR) is a G protein coupled receptor (GPCR) with a large ectodomain. The ligand, TSH, acting via this receptor regulates thyroid growth and thyroid hormone production and secretion. The TSH receptor (TSHR) undergoes complex post-translational modifications including intramolecular cleavage and receptor multimerization. Since monomeric and multimeric receptors coexist in cells, understanding the functional role of just the TSHR multimers is difficult. Therefore, to help understand the physiological significance of receptor multimerization, it will be necessary to abrogate multimer formation, which requires identifying the ectodomain and endodomain interaction sites on the TSHR. Here, we have examined the contribution of the ectodomain to constitutive multimerization of the TSHR and determined the possible residue(s) that may be involved in this interaction. METHODOLOGY/PRINCIPAL FINDINGS We studied ectodomain multimer formation by expressing the extracellular domain of the TSHR linked to a glycophosphotidyl (GPI) anchor in both stable and transient expression systems. Using co-immunoprecipitation and FRET of tagged receptors, we established that the TSH receptor ectodomain was capable of multimerization even when totally devoid of the transmembrane domain. Further, we studied the effect of two residues that likely made critical contact points in this interaction. We showed that a conserved tyrosine residue (Y116) on the convex surface of the LRR3 was a critical residue in ectodomain multimer formation since mutation of this residue to serine totally abrogated ectodomain multimers. This abrogation was not seen with the mutation of cysteine 176 on the inner side of the LRR5, demonstrating that inter-receptor disulfide bonding was not involved in ectodomain multimer formation. Additionally, the Y116 mutation in the intact wild type receptor enhanced receptor degradation. CONCLUSIONS/SIGNIFICANCE These data establish the TSH receptor ectodomain as one site of multimerization, independent of the transmembrane region, and that this interaction was primarily via a conserved tyrosine residue in LRR3.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, James J. Peters VA Medical Center, Mount Sinai School of Medicine, New York, New York, United States of America.
| | | | | | | |
Collapse
|
14
|
Song Y, Ruf J, Lothaire P, Dequanter D, Andry G, Willemse E, Dumont JE, Van Sande J, De Deken X. Association of duoxes with thyroid peroxidase and its regulation in thyrocytes. J Clin Endocrinol Metab 2010; 95:375-82. [PMID: 19952225 DOI: 10.1210/jc.2009-1727] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT Thyroid hormone synthesis requires H(2)O(2) produced by dual oxidases (Duoxes) and thyroperoxidase (TPO). Defects in this system lead to congenital hypothyroidism. H(2)O(2) damage to the thyrocytes may be a cause of cancer. OBJECTIVE The objective of the study was to investigate whether Duox and TPO, the H(2)O(2) producer and consumer, might constitute a complex in the plasma membrane of human thyroid cells, thus maximizing efficiency and minimizing leakage and damage. DESIGN The interaction between Duox and TPO was studied by coimmunoprecipitation and Western blotting of plasma membranes from incubated follicles prepared from freshly resected human thyroid tissue from patients undergoing thyroidectomy, and COS-7 cells transiently transfected with the entire Duoxes or truncated [amino (NH2) or carboxyl (COOH) terminal]. RESULTS The following results were reached: 1) Duox and TPO from membranes are coprecipitated, 2) this association is up-regulated through the Gq-phospholipase C-Ca(2+)-protein kinase C pathway and down-regulated through the Gs-cAMP-protein kinase A pathway, 3) H(2)O(2) increases the association of Duox1 and Duox2 to TPO in cells and in membranes, and 4) truncated NH(2)- or COOH-terminal Duox1 and Duox2 proteins show different binding abilities with TPO. CONCLUSION Coimmunoprecipitations show that Duox and TPO locate closely in the plasma membranes of human thyrocytes, and this association can be modulated by H(2)O(2), optimizing working efficiency and minimizing H(2)O(2) spillage. This association could represent one part of a postulated pluriprotein complex involved in iodination. This suggests that defects in this association could impair thyroid hormone synthesis and lead to thyroid insufficiency and cell damage.
Collapse
Affiliation(s)
- Yue Song
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, School of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Senou M, Costa MJ, Massart C, Thimmesch M, Khalifa C, Poncin S, Boucquey M, Gérard AC, Audinot JN, Dessy C, Ruf J, Feron O, Devuyst O, Guiot Y, Dumont JE, Van Sande J, Many MC. Role of caveolin-1 in thyroid phenotype, cell homeostasis, and hormone synthesis: in vivo study of caveolin-1 knockout mice. Am J Physiol Endocrinol Metab 2009; 297:E438-51. [PMID: 19435853 DOI: 10.1152/ajpendo.90784.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In human thyroid, caveolin-1 is localized at the apex of thyrocytes, but its role there remains unknown. Using immunohistochemistry, (127)I imaging, transmission electron microscopy, immunogold electron microscopy, and quantification of H(2)O(2), we found that in caveolin-1 knockout mice thyroid cell homeostasis was disrupted, with evidence of oxidative stress, cell damage, and apoptosis. An even more striking phenotype was the absence of thyroglobulin and iodine in one-half of the follicular lumina and their presence in the cytosol, suggesting that the iodide organification and binding to thyroglobulin were intracellular rather than at the apical membrane/extracellular colloid interface. The latter abnormality may be secondary to the observed mislocalization of the thyroid hormone synthesis machinery (dual oxidases, thyroperoxidase) in the cytosol. Nevertheless, the overall uptake of radioiodide, its organification, and secretion as thyroid hormones were comparable to those of wild-type mice, suggesting adequate compensation by the normal TSH retrocontrol. Accordingly, the levels of free thyroxine and TSH were normal. Only the levels of free triiodothyronine showed a slight decrease in caveolin-1 knockout mice. However, when TSH levels were increased through low-iodine chow and sodium perchlorate, the induced goiter was more prominent in caveolin-1 knockout mice. We conclude that caveolin-1 plays a role in proper thyroid hormone synthesis as well as in cell number homeostasis. Our study demonstrates for the first time a physiological function of caveolin-1 in the thyroid gland. Because the expression and subcellular localization of caveolin-1 were similar between normal human and murine thyroids, our findings in caveolin-1 knockout mice may have direct relevance to the human counterpart.
Collapse
Affiliation(s)
- Maximin Senou
- Unité de Morphologie Expérimentale, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ostasov P, Krusek J, Durchankova D, Svoboda P, Novotny J. Ca2+ responses to thyrotropin-releasing hormone and angiotensin II: the role of plasma membrane integrity and effect of G11alpha protein overexpression on homologous and heterologous desensitization. Cell Biochem Funct 2008; 26:264-74. [PMID: 18041110 DOI: 10.1002/cbf.1453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The molecular mechanisms involved in GPCR-initiated signaling cascades where the two receptors share the same signaling cascade, such as thyrotropin-releasing hormone (TRH) and angiotensin II (ANG II), are still far from being understood. Here, we analyzed hormone-induced Ca(2+) responses and the process of desensitization in HEK-293 cells, which express endogenous ANG II receptors. These cells were transfected to express exogenously high levels of TRH receptors (clone E2) or both TRH receptors and G(11)alpha protein (clone E2M11). We observed that the characteristics of the Ca(2+) response, as well as the process of desensitization, were both strongly dependent on receptor number and G(11)alpha protein level. Whereas treatment of E2 cells with TRH or ANG II led to significant desensitization of the Ca(2+) response to subsequent addition of either hormone, the response was not desensitized in E2M11 cells expressing high levels of G(11)alpha. In addition, stimulation of both cell lines with THR elicited a clear heterologous desensitization to subsequent stimulation with ANG II. On the other hand, ANG II did not affect a subsequent response to TRH. ANG II-mediated signal transduction was strongly dependent on plasma membrane integrity modified by cholesterol depletion, but signaling through TRH receptors was altered only slightly under these conditions. It may be concluded that the level of expression of G-protein-coupled receptors and their cognate G-proteins strongly influences not only the magnitude of the Ca(2+) response but also the process of desensitization and resistance to subsequent hormone addition.
Collapse
Affiliation(s)
- Pavel Ostasov
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
17
|
Filipp D, Moemeni B, Ferzoco A, Kathirkamathamby K, Zhang J, Ballek O, Davidson D, Veillette A, Julius M. Lck-dependent Fyn activation requires C terminus-dependent targeting of kinase-active Lck to lipid rafts. J Biol Chem 2008; 283:26409-22. [PMID: 18660530 DOI: 10.1074/jbc.m710372200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms regulating the activation and delivery of function of Lck and Fyn are central to the generation of the most proximal signaling events emanating from the T cell antigen receptor (TcR) complex. Recent results demonstrate that lipid rafts (LR) segregate Lck and Fyn and play a fundamental role in the temporal and spatial coordination of their activation. Specifically, TcR-CD4 co-aggregation-induced Lck activation outside LR results in Lck translocation to LR where the activation of LR-resident Fyn ensues. Here we report a structure-function analysis toward characterizing the mechanism supporting Lck partitioning to LR and its capacity to activate co-localized Fyn. Using NIH 3T3 cells ectopically expressing FynT, we demonstrate that only LR-associated, kinase-active (Y505F)Lck reciprocally co-immunoprecipitates with and activates Fyn. Mutational analyses revealed a profound reduction in the formation of Lck-Fyn complexes and Fyn activation, using kinase domain mutants K273R and Y394F of (Y505F)Lck, both of which have profoundly compromised kinase activity. The only kinase-active Lck mutants tested that revealed impaired physical and enzymatic engagement with Fyn were those involving truncation of the C-terminal sequence YQPQP. Remarkably, sequential truncation of YQPQP resulted in an increasing reduction of kinase-active Lck partitioning to LR, in both fibroblasts and T cells. This in turn correlated with an ablation of the capacity of these truncates to enhance TcR-mediated interleukin-2 production. Thus, Lck-dependent Fyn activation is predicated by proximity-mediated transphosphorylation of the Fyn kinase domain, and targeting kinase-active Lck to LR is dependent on the C-terminal sequence QPQP.
Collapse
Affiliation(s)
- Dominik Filipp
- Sunnybrook Research Institute and the Department of Immunology, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
García-Jiménez C, Santisteban P. Thyroid-stimulating hormone/cAMP-mediated proliferation in thyrocytes. Expert Rev Endocrinol Metab 2008; 3:473-491. [PMID: 30290436 DOI: 10.1586/17446651.3.4.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current research on thyrotropin-activated proliferation in the thyrocyte needs to be aimed at a better understanding of crosstalk and negative-feedback mechanisms with other proliferative pathways, especially the insulin/IGF-1-induced phosphoinositol-3 kinase pathway and the serum-induced MAPK or Wnt pathways. Convergence of proliferative pathways in mTOR is a hotspot of current research, and combined treatment using double class inhibitors for thyroid cancer may bring some success. New thyroid-stimulating hormone receptor (TSHR)-interacting proteins, a better picture of cAMP targets, a deeper knowledge of the action of the protein kinase A regulatory subunits, especially their interactions with the replication machinery, and a further understanding of mechanisms that lead to cell cycle progression through G1/S and G2/M checkpoints are areas that need further elucidation. Finally, massive information coming from microarray data analysis will prompt our understanding of thyroid-stimulating hormone-promoted thyrocyte proliferation in health and disease.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- a Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| | - Pilar Santisteban
- b Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC, C/Arturo Duperier, 4, 28932 Madrid, Spain.
| |
Collapse
|
19
|
Abstract
The application of molecular biology to the study of the thyrotropin receptor (TSHR) has led to major advances in our understanding of its structure, function, and relationship to the pathogenesis of Graves' disease. This review summarizes many of these features and also provides a personal perspective, questioning some assumptions and general concepts, as well as describing remaining challenges. Among the issues raised are the limits in our understanding of the spatial orientation of the structural domains of the TSHR, including the enigmatic hinge region. We review the phenomenon of TSHR intramolecular cleavage, the shedding of the A-subunit component of the ectodomain, and the importance of the latter in generating thyroid-stimulating antibodies. The epitopes of thyroid-stimulating and -blocking autoantibodies have been a confusing and controversial subject that requires review and evaluation of available data. Finally, we address the potential physiological or pathophysiological significance of TSHR multimerization in TSHR. Taken together, this review will, hopefully, convey the fascination and excitement that molecular biology has contributed to the study of the TSHR, especially as it relates to the pathogenesis of Graves' disease.
Collapse
Affiliation(s)
- Basil Rapoport
- Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California, USA.
| | | |
Collapse
|
20
|
Latif R, Ando T, Davies TF. Lipid rafts are triage centers for multimeric and monomeric thyrotropin receptor regulation. Endocrinology 2007; 148:3164-75. [PMID: 17412816 DOI: 10.1210/en.2006-1580] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TSH receptor (TSHR), a heptahelical G protein-coupled receptor on the surface of thyrocytes, is a major autoantigen and physiological regulator of the thyroid gland. Unlike other G protein-coupled receptors, the TSHR undergoes posttranslational cleavage of its ectodomain, leading to the existence of several forms of the receptor on the plasma membrane. We previously hypothesized that to achieve high fidelity and specificity of TSH ligand or TSHR autoantibody signaling, the TSHR may compartmentalize into microdomains within the plasma membrane. In support of this hypothesis we have shown previously that TSHRs reside in GM1 ganglioside-enriched lipid rafts in the plasma membrane of TSHR-expressing cells. In this study, we further explored the different forms of TSHRs that reside in lipid rafts. We studied both TSHR-transfected cells and rat thyrocytes, using both nondetergent biochemical analyses and receptor-lipid raft colocalization. Using the biochemical approach, we observed that monomeric receptors existed in both raft and nonraft fractions of the cell surface in the steady state. We also demonstrated that the multimeric forms of the receptor were preferentially partitioned into the lipid microdomains. Different TSHR forms, including multimers, were dynamically regulated both by receptor-specific and postreceptor-specific modulators. TSH ligand and TSHR antibody of the stimulating variety induced a decrease of multimeric forms in the raft fractions. In addition, multimeric and monomeric forms of the receptor were both associated with Gsalpha within and without the rafts. Although failure to achieve total lipid raft disruption prevented a conclusion regarding the relative power of TSHR signaling within and without the raft domains, these data showed clearly that not only were a significant proportion of TSHRs residing within lipid microdomains but that constitutive multimerization of TSHRs was actually regulated within the lipid rafts.
Collapse
Affiliation(s)
- R Latif
- Division of Endocrinology and Metabolism, James J. Peters Veterans Affairs Medical Center, Mount Sinai School of Medicine, New York, New York 10468, USA.
| | | | | |
Collapse
|
21
|
Kursawe R, Paschke R. Modulation of TSHR signaling by posttranslational modifications. Trends Endocrinol Metab 2007; 18:199-207. [PMID: 17524661 DOI: 10.1016/j.tem.2007.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/02/2007] [Accepted: 05/11/2007] [Indexed: 11/21/2022]
Abstract
Posttranslational modifications of seven transmembrane receptors (7TMRs) affect their function to a large extent. Many studies of glycosylation or phosphorylation of 7TMRs have shown that these modifications influence the cell-surface expression or signaling of the receptor. Recently, other types of posttranslational modifications of the thyrotropin-stimulating hormone receptor (TSHR) have been characterized, including sialylation and dimerization. Increased TSHR sialylation results in increased TSHR cell-surface expression. Furthermore, TSHR oligomerization and the probable modification of TSHR signaling in lipid rafts require further clarification with regard to their functional consequences. In addition to its known coupling to Galphas and Galphaq, and possibly other G proteins, the TSHR also couples to further signaling pathways, such as the mitogen-activated protein kinase (MAPK) pathway, which involves G-protein-coupled receptor kinases (GRKs) and arrestins. We discuss these emerging new findings and their implications for signaling of the TSHR.
Collapse
Affiliation(s)
- Romy Kursawe
- Medical Department III, University of Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | | |
Collapse
|
22
|
Costa MJ, Senou M, Van Rode F, Ruf J, Capello M, Dequanter D, Lothaire P, Dessy C, Dumont JE, Many MC, Van Sande J. Reciprocal negative regulation between thyrotropin/3',5'-cyclic adenosine monophosphate-mediated proliferation and caveolin-1 expression in human and murine thyrocytes. Mol Endocrinol 2007; 21:921-32. [PMID: 17202321 DOI: 10.1210/me.2006-0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The expression of caveolins is down-regulated in tissue samples of human thyroid autonomous adenomas and in the animal model of this disease. Because several cell types present in thyroid express caveolins, it remained unclear if this down-regulation occurs in thyrocytes and which are the mechanism and role of this down-regulation in the tumor context. Here we show that prolonged stimulation of isolated human thyrocytes by TSH/cAMP/cAMP-dependent protein kinase inhibits caveolins' expression. The expression of caveolins is not down-regulated by activators of other signaling pathways relevant to thyroid growth/function. Therefore, the down-regulation of caveolins' expression in autonomous adenomas is a direct consequence of the chronic activation of the TSH/cAMP pathway in thyrocytes. The down-regulation of caveolin-1 occurs at the mRNA level, with a consequent protein decrease. TSH/cAMP induces a transcription-dependent, translation-independent destabilization of the caveolin-1 mRNA. This effect is correlated to the known proliferative role of that cascade in thyrocytes. In vivo, thyrocytes of caveolin-1 knockout mice display enhanced proliferation. This demonstrates, for the first time, the in vivo significance of the specific caveolin-1 down-regulation by one mitogenic cascade and its relation to a human disease.
Collapse
Affiliation(s)
- Maria José Costa
- Institut de Recherche Interdisciplinaire, Campus Erasme, Université Libre de Bruxelles, 808 Route de Lennik, Building C, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated diseases: from adenomata to Graves disease. J Clin Invest 2005; 115:1972-83. [PMID: 16075037 PMCID: PMC1180562 DOI: 10.1172/jci26031] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thyroid-stimulating hormone receptor (TSHR) is a G protein-linked, 7-transmembrane domain (7-TMD) receptor that undergoes complex posttranslational processing unique to this glycoprotein receptor family. Due to its complex structure, TSHR appears to have unstable molecular integrity and a propensity toward over- or underactivity on the basis of point genetic mutations or antibody-induced structural changes. Hence, both germline and somatic mutations, commonly located in the transmembrane regions, may induce constitutive activation of the receptor, resulting in congenital hyperthyroidism or the development of actively secreting thyroid nodules. Similarly, mutations leading to structural alterations may induce constitutive inactivation and congenital hypothyroidism. The TSHR is also a primary antigen in autoimmune thyroid disease, and some TSHR antibodies may activate the receptor, while others inhibit its activation or have no influence on signal transduction at all, depending on how they influence the integrity of the structure. Clinical assays for such antibodies have improved significantly and are a useful addition to the investigative armamentarium. Furthermore, the relative instability of the receptor can result in shedding of the TSHR ectodomain, providing a source of antigen and activating the autoimmune response. However, it may also provide decoys for TSHR antibodies, thus influencing their biological action and clinical effects. This review discusses the role of the TSHR in the physiological and pathological stimulation of the thyroid.
Collapse
Affiliation(s)
- Terry F Davies
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
24
|
Frenzel R, Krohn K, Eszlinger M, Tönjes A, Paschke R. Sialylation of human thyrotropin receptor improves and prolongs its cell-surface expression. Mol Pharmacol 2005; 68:1106-13. [PMID: 16014806 DOI: 10.1124/mol.105.012906] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosylation of the thyrotropin receptor (TSHR) has been shown to be essential for correct protein folding and for cell-surface targeting. In a recent study, we detected increased expression of beta-galactoside alpha(2,6)-sialyltransferase (SIAT1) in toxic thyroid adenomas where gain-of-function mutations of the TSHR have been invoked as one of the major causes. To investigate the physiological meaning of these findings, we designed experiments to evaluate the consequences of sialylation for the expression of the TSHR. Hence, we investigated the effect of coexpressing the TSHR and different sialyltransferases (SIAT1, SIAT4a, and SIAT8a) for cell-surface expression of the receptor. Coexpression of each of the three SIAT isoforms and the TSHR in COS-7 cells increased TSHR expression on the cell surface in the range of 50 to 100%. Moreover, Western blot analysis with lectins specific for alpha(2,3) and alpha(2,6)-linked sialic acids and lectin-binding enzyme-linked immunosorbent assay support a direct effect on TSHR cell-surface expression mediated by sialic acid transfer to the TSHR. Finally, we treated living COS-7 cells after cotransfection of TSHR and SIAT8a with neuraminidase for 30 min to remove covalently linked sialic acid. Subsequent loss of TSHR cell-surface expression suggests that sialylation prolongs the resting time of the TSHR on the cell surface. Our data demonstrate for the first time that the transfer of sialic acid can improve and prolong cell-surface expression of a transmembrane receptor.
Collapse
Affiliation(s)
- Romy Frenzel
- Medical Department, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
25
|
Latrofa F, Chazenbalk GD, McLachlan SM, Rapoport B. Evidence that the thyrotropin receptor protease is membrane-associated and is not within lipid rafts. Thyroid 2004; 14:801-5. [PMID: 15588374 DOI: 10.1089/thy.2004.14.801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The thyrotropin receptor (TSHR) cleaves to a variable extent within the ectodomain into a ligand-binding A subunit linked by disulfide bonds to the largely transmembrane B subunit. To obtain insight into this variability, we examined the extent of cleavage of TSHR ectodomains tethered to the plasma membrane by different means: (1) the wild-type, serpentine region, (2) a glycosylphosphatidylinositol (GPI) anchor, and (3) a single CD8alpha transmembrane region. For this purpose, we covalently cross-linked(125)I-TSH to the TSHR ectodomain expressed on the surface of intact cell monolayers. The extent of cleavage of the CD8alpha-tethered ectodomain was similar to the wild-type TSHR (approximately 50%) whereas the same ectodomain with a GPI anchor remained almost entirely (approximately 90%) uncleaved. These findings have three possible implications. First, differential cleavage of the TSHR ectodomain depending on its attachment to the plasma membrane suggests that the TSHR protease is membrane-associated and is not a soluble (secreted or shed) protease. Second, because GPI-anchored proteins (unlike CD8alpha) segregate in membrane lipid rafts, the TSHR protease appears not to be associated with lipid rafts. Finally, the similar extent of cleavage of the wild-type TSHR and the CD8alpha (not the GPI) tethered ectodomain supports the concept that the wild-type TSHR resides largely outside lipid rafts.
Collapse
Affiliation(s)
- Francesco Latrofa
- Autoimmune Disease Unit, Cedars-Sinai Research Institute and School of Medicine, University of California, Los Angeles 90048, USA
| | | | | | | |
Collapse
|