1
|
Desaulniers AT, Cederberg RA, Lents CA, White BR. Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals. Front Endocrinol (Lausanne) 2017; 8:269. [PMID: 29312140 PMCID: PMC5732264 DOI: 10.3389/fendo.2017.00269] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone 1 (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, signifying high selection pressure and a critical biological role. However, the GnRH2 gene is absent (e.g., rat) or inactivated (e.g., cow and sheep) in some species but retained in others (e.g., human, horse, and pig). Likewise, many species (e.g., human, chimpanzee, cow, and sheep) retain the GnRHR2 gene but lack the appropriate coding sequence to produce a full-length protein due to gene coding errors; although production of GnRHR2 in humans remains controversial. Certain mammals lack the GnRHR2 gene (e.g., mouse) or most exons entirely (e.g., rat). In contrast, old world monkeys, musk shrews, and pigs maintain the coding sequence required to produce a functional GnRHR2. Like GnRHR1, GnRHR2 is a 7-transmembrane, G protein-coupled receptor that interacts with Gαq/11 to mediate cell signaling. However, GnRHR2 retains a cytoplasmic tail and is only 40% homologous to GnRHR1. A role for GnRH2 and its receptor in mammals has been elusive, likely because common laboratory models lack both the ligand and receptor. Uniquely, both GnRH2 and GnRHR2 are ubiquitously expressed; transcript levels are abundant in peripheral tissues and scarcely found in regions of the brain associated with gonadotropin secretion, suggesting a divergent role from GnRH1/GnRHR1. Indeed, GnRH2 and its receptor are not physiological modulators of gonadotropin secretion in mammals. Instead, GnRH2 and GnRHR2 coordinate the interaction between nutritional status and sexual behavior in the female brain. Within peripheral tissues, GnRH2 and its receptor are novel regulators of reproductive organs. GnRH2 and GnRHR2 directly stimulate steroidogenesis within the porcine testis. In the female, GnRH2 and its receptor may help mediate placental function, implantation, and ovarian steroidogenesis. Furthermore, both the GnRH2 and GnRHR2 genes are expressed in human reproductive tumors and represent emerging targets for cancer treatment. Thus, GnRH2 and GnRHR2 have diverse functions in mammals which remain largely unexplored.
Collapse
Affiliation(s)
- Amy T. Desaulniers
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca A. Cederberg
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Brett R. White
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Brett R. White,
| |
Collapse
|
2
|
Madziva MT, Mkhize NN, Flanagan CA, Katz AA. The carboxy-terminal tail or the intracellular loop 3 is required for β-arrestin-dependent internalization of a mammalian type II GnRH receptor. Mol Cell Endocrinol 2015; 411:187-97. [PMID: 25957085 DOI: 10.1016/j.mce.2015.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
The type II GnRH receptor (GnRH-R2) in contrast to mammalian type I GnRH receptor (GnRH-R1) has a cytosolic carboxy-terminal tail. We investigated the role of β-arrestin 1 in GnRH-R2-mediated signalling and mapped the regions in GnRH-R2 required for recruitment of β-arrestin, employing internalization assays. We show that GnRH-R2 activation of ERK is dependent on β-arrestin and protein kinase C. Appending the tail of GnRH-R2 to GnRH-R1 enabled GRK- and β-arrestin-dependent internalization of the chimaeric receptor. Surprisingly, carboxy-terminally truncated GnRH-R2 retained β-arrestin and GRK-dependent internalization, suggesting that β-arrestin interacts with additional elements of GnRH-R2. Mutating serine and threonine or basic residues of intracellular loop 3 did not abolish β-arrestin 1-dependent internalization but a receptor lacking these basic residues and the carboxy-terminus showed no β-arrestin 1-dependent internalization. Our results suggest that basic residues at the amino-terminal end of intracellular loop 3 or the carboxy-terminal tail are required for β-arrestin dependent internalization.
Collapse
Affiliation(s)
- Michael T Madziva
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | - Nonhlanhla N Mkhize
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colleen A Flanagan
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | - Arieh A Katz
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
3
|
Perrett RM, McArdle CA. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. Front Endocrinol (Lausanne) 2013; 4:180. [PMID: 24312080 PMCID: PMC3834291 DOI: 10.3389/fendo.2013.00180] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Rebecca M. Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
- *Correspondence: Craig A. McArdle, Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol BS1 3NY, UK e-mail:
| |
Collapse
|
4
|
Armstrong S, Caunt C, Finch A, McArdle C. Using automated imaging to interrogate gonadotrophin-releasing hormone receptor trafficking and function. Mol Cell Endocrinol 2011; 331:194-204. [PMID: 20688134 PMCID: PMC3021717 DOI: 10.1016/j.mce.2010.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/07/2010] [Accepted: 07/13/2010] [Indexed: 01/03/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH) acts via seven transmembrane receptors on gonadotrophs to stimulate gonadotrophin synthesis and secretion, and thereby mediates central control of reproduction. Type I mammalian GnRHR are unique, in that they lack C-terminal tails. This is thought to underlie their resistance to rapid homologous desensitisation as well as their slow rate of internalisation and inability to provoke G-protein-independent (arrestin-mediated) signalling. More recently it has been discovered that the vast majority of human GnRHR are actually intracellular, in spite of the fact that they are activated at the cell surface by a membrane impermeant peptide hormone. This apparently reflects inefficient exit from the endoplasmic reticulum and again, the absence of the C-tail likely contributes to their intracellular localisation. This review is intended to cover some of these novel aspects of GnRHR biology, focusing on ways that we have used automated fluorescence microscopy (high content imaging) to explore GnRHR localisation and trafficking as well as spatial and temporal aspects of GnRH signalling via the Ca(2+)/calmodulin/calcineurin/NFAT and Raf/MEK/ERK pathways.
Collapse
Affiliation(s)
- S.P. Armstrong
- University of Bristol, School of Clinical Sciences, Labs. for Integrative Neuroscience and Endocrinology, 1 Whitson Street, Bristol BS1 3NY, UK
| | - C.J. Caunt
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - A.R. Finch
- University of Bristol, School of Clinical Sciences, Labs. for Integrative Neuroscience and Endocrinology, 1 Whitson Street, Bristol BS1 3NY, UK
| | - C.A. McArdle
- University of Bristol, School of Clinical Sciences, Labs. for Integrative Neuroscience and Endocrinology, 1 Whitson Street, Bristol BS1 3NY, UK
- Corresponding author.
| |
Collapse
|
5
|
Sower SA, Freamat M, Kavanaugh SI. The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys. Gen Comp Endocrinol 2009; 161:20-9. [PMID: 19084529 DOI: 10.1016/j.ygcen.2008.11.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/04/2008] [Accepted: 11/20/2008] [Indexed: 11/30/2022]
Abstract
The acquisition of a hypothalamic-pituitary axis was a seminal event in vertebrate evolution leading to the neuroendocrine control of many complex functions including growth, reproduction, osmoregulation, stress and metabolism. Lampreys as basal vertebrates are the earliest evolved vertebrates for which there are demonstrated functional roles for two gonadotropin-releasing hormones (GnRHs) that act via the hypothalamic-pituitary-gonadal axis controlling reproductive processes. With the availability of the lamprey genome, we have identified a novel GnRH form (lamprey GnRH-II) and a novel glycoprotein hormone receptor, lGpH-R II (thyroid-stimulating hormone-like receptor). Based on functional studies, in situ hybridization and phylogenetic analysis, we hypothesize that the newly identified lamprey GnRH-II is an ancestral GnRH to the vertebrate GnRHs. This finding opens a new understanding of the GnRH family and can help to delineate the evolution of the complex neuro/endocrine axis of reproduction. A second glycoprotein hormone receptor (lGpH-R II) was also identified in the sea lamprey. The existing data suggest the existence of a primitive, overlapping yet functional HPG and HPT endocrine systems in this organism, involving one possibly two pituitary glycoprotein hormones and two glycoprotein hormone receptors as opposed to three or four glycoprotein hormones interacting specifically with three receptors in gnathostomes. We hypothesize that the glycoprotein hormone/glycoprotein hormone receptor systems emerged as a link between the neuro-hormonal and peripheral control levels during the early stages of gnathostome divergence. The significance of the results obtained by analysis of the HPG/T axes in sea lamprey may transcend the limited scope of the corresponding physiological compartments by providing important clues in respect to the interplay between genome-wide events (duplications), coding sequence (mutation) and expression control level evolutionary mechanisms in definition of the chemical control pathways in vertebrates.
Collapse
Affiliation(s)
- Stacia A Sower
- Center for Molecular and Comparative Endocrinology and Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | | | | |
Collapse
|
6
|
Pawson AJ, Faccenda E, Maudsley S, Lu ZL, Naor Z, Millar RP. Mammalian type I gonadotropin-releasing hormone receptors undergo slow, constitutive, agonist-independent internalization. Endocrinology 2008; 149:1415-22. [PMID: 18039780 DOI: 10.1210/en.2007-1159] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulatory elements present in the cytoplasmic carboxyl-terminal tails of G protein-coupled receptors contribute to agonist-dependent receptor desensitization, internalization, and association with accessory proteins such as beta-arrestin. The mammalian type I GnRH receptors are unique among the rhodopsin-like G protein-coupled receptors because they lack a cytoplasmic carboxyl-terminal tail. In addition, they do not recruit beta-arrestin, nor do they undergo rapid desensitization. By measuring the internalization of labeled GnRH agonists, previous studies have reported that mammalian type I GnRH receptors undergo slow agonist-dependent internalization. In the present study, we have measured the internalization of epitope-tagged GnRH receptors, both in the absence and presence of GnRH stimulation. We demonstrate that mammalian type I GnRH receptors exhibit a low level of constitutive agonist-independent internalization. Stimulation with GnRH agonist did not significantly enhance the level of receptor internalization above the constitutive level. In contrast, the catfish GnRH and rat TRH receptors, which have cytoplasmic carboxyl-terminal tails, displayed similar levels of constitutive agonist-independent internalization but underwent robust agonist-dependent internalization, as did chimeras of the mammalian type I GnRH receptor with the cytoplasmic carboxyl-terminal tails of the catfish GnRH receptor or the rat TRH receptor. When the carboxyl-terminal Tyr325 and Leu328 residues of the mammalian type I GnRH receptor were replaced with alanines, these two mutant receptors underwent significantly impaired internalization, suggesting a function for the Tyr-X-X-Leu sequence in mediating the constitutive agonist-independent internalization of mammalian type I GnRH receptors. These findings provide further support for the underlying notion that the absence of the cytoplasmic carboxyl-terminal tail of the mammalian type I GnRH receptors has been selected for during evolution to prevent rapid receptor desensitization and internalization to allow protracted GnRH signaling in mammals.
Collapse
Affiliation(s)
- Adam J Pawson
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
7
|
Millar RP, Pawson AJ, Morgan K, Rissman EF, Lu ZL. Diversity of actions of GnRHs mediated by ligand-induced selective signaling. Front Neuroendocrinol 2008; 29:17-35. [PMID: 17976709 PMCID: PMC2667102 DOI: 10.1016/j.yfrne.2007.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/27/2022]
Abstract
Geoffrey Wingfield Harris' demonstration of hypothalamic hormones regulating pituitary function led to their structural identification and therapeutic utilization in a wide spectrum of diseases. Amongst these, Gonadotropin Releasing Hormone (GnRH) and its analogs are widely employed in modulating gonadotropin and sex steroid secretion to treat infertility, precocious puberty and many hormone-dependent diseases including endometriosis, uterine fibroids and prostatic cancer. While these effects are all mediated via modulation of the pituitary gonadotrope GnRH receptor and the G(q) signaling pathway, it has become increasingly apparent that GnRH regulates many extrapituitary cells in the nervous system and periphery. This review focuses on two such examples, namely GnRH analog effects on reproductive behaviors and GnRH analog effects on the inhibition of cancer cell growth. For both effects the relative activities of a range of GnRH analogs is distinctly different from their effects on the pituitary gonadotrope and different signaling pathways are utilized. As there is only a single functional GnRH receptor type in man we have proposed that the GnRH receptor can assume different conformations which have different selectivity for GnRH analogs and intracellular signaling proteins complexes. This ligand-induced selective-signaling recruits certain pathways while by-passing others and has implications in developing more selective GnRH analogs for highly specific therapeutic intervention.
Collapse
Affiliation(s)
- Robert P Millar
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | | | |
Collapse
|
8
|
Navratil AM, Farmerie TA, Bogerd J, Nett TM, Clay CM. Differential impact of intracellular carboxyl terminal domains on lipid raft localization of the murine gonadotropin-releasing hormone receptor. Biol Reprod 2005; 74:788-97. [PMID: 16371589 DOI: 10.1095/biolreprod.105.048157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mammalian type I GNRH receptor (GNRHR) is unique among G protein-coupled receptors (GPCRs) because of the absence of an intracellular C-terminus. Previously, we have found that the murine GNRHR is constitutively localized to low-density membrane microdomains termed lipid rafts. As such, association of the GNRHR with lipid rafts may reflect both a loss (C-terminus) and a gain (raft association address) of structural characteristics. To address this, we fused either the full-length C-terminus from the nonraft-associated LH receptor (LHCGR; GNRHR-LF) or a truncated (t631) LHCGR C-terminus to the GNRHR. These chimeric receptors are trafficked to the plasma membrane, bind ligand, and display increased agonist-induced receptor internalization, but they do not partition into lipid rafts. Thus, a heterologous C-terminus from a nonraft-associated GPCR redirects localization of the GNRHR to nonraft domains. In contrast to the murine GNRHR, the catfish GNRHR (cfGNRHR) possesses an intracellular C-terminus. We found that the cfGNRHR was localized to lipid rafts and that the cfGNRHR C-terminus did not alter raft localization of the mammalian receptor. Consistent with placement in different lipid microenvironments within the plasma membrane, fluorescence recovery after photobleaching revealed different lateral diffusion phenotypes of the raft-associated GNRHR and cfGNRHR versus the nonraft-associated GNRHR-LF fusion protein. We conclude that whereas an intracellular C-terminus is capable of redirecting the GNRHR to nonraft compartments, this is not a generalized feature of GPCR C-terminal tails. Thus, constitutive raft localization of the GNRHR is not simply a result of the loss of an intracellular C-terminus.
Collapse
Affiliation(s)
- Amy M Navratil
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Advances in our understanding of the complexity of GnRH actions at the pituitary and the various mechanisms involved in mediating differential LH and FSH biosynthesis and secretion at the gonadotrope, are continually emerging. In this review, we summarise recent studies pertaining to GnRH and GnRH receptor phylogeny, the divergent signalling and trafficking pathways initiated and utilised by GnRH and its receptor, and the pathways that mediate gonadotropin secretion from the gonadotrope.
Collapse
Affiliation(s)
- Adam J Pawson
- Human Reproductive Sciences Unit, Medical Research Council, The University of Edinburgh Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | | |
Collapse
|
10
|
Hapgood JP, Sadie H, van Biljon W, Ronacher K. Regulation of expression of mammalian gonadotrophin-releasing hormone receptor genes. J Neuroendocrinol 2005; 17:619-38. [PMID: 16159375 DOI: 10.1111/j.1365-2826.2005.01353.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH), acting via its cognate GnRH receptor (GnRHR), is the primary regulator of mammalian reproductive function, and hence GnRH analogues are extensively used in the treatment of hormone-dependent diseases, as well as for assisted reproductive techniques. In addition to its established endocrine role in gonadotrophin regulation in the pituitary, evidence is rapidly accumulating to support the expression and functional roles for two forms of GnRHR (GnRHR I and GnRHR II) in multiple and diverse extra-pituitary mammalian tissues and cells. These findings, together with findings indicating that mutations of the GnRHR are linked to the disease hypogonadotrophic hypogonadism and that GnRHRs play a direct role in neuronal migration and reproductive cancers, have presented new therapeutic targets and intensified research into the structure, function and mechanisms of regulation of expression of GnRHR genes. The present review focuses on the current knowledge on tissue-specific and hormonal regulation of transcription of mammalian GnRH receptor genes. Emerging insights, such as the discovery of diverse regulatory mechanisms in pituitary and extra-pituitary cell types, nonclassical mechanisms of steroid regulation, the use of composite elements for cell-specific expression, the increasing profile of hormones involved in regulation, the complexity of kinase pathways that target the GnRHR I gene, as well as species-differences, are highlighted. Although further research is necessary to understand the mechanisms of regulation of expression of GnRHR I and GnRHR II genes, the GnRHR is emerging as a potential target gene for facilitating cross-talk between neuroendocrine, immune and stress-response systems in multiple tissues via autocrine, paracrine and endocrine signalling.
Collapse
Affiliation(s)
- J P Hapgood
- Department of Biochemistry, University of Stellenbosch, Matieland, South Africa.
| | | | | | | |
Collapse
|