1
|
Godlewska M, Banga PJ. Thyroid peroxidase as a dual active site enzyme: Focus on biosynthesis, hormonogenesis and thyroid disorders of autoimmunity and cancer. Biochimie 2019; 160:34-45. [DOI: 10.1016/j.biochi.2019.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
|
2
|
Fortunato RS, Ferreira ACF, Hecht F, Dupuy C, Carvalho DP. Sexual dimorphism and thyroid dysfunction: a matter of oxidative stress? J Endocrinol 2014; 221:R31-40. [PMID: 24578296 DOI: 10.1530/joe-13-0588] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thyroid diseases, such as autoimmune disease and benign and malignant nodules, are more prevalent in women than in men, but the mechanisms involved in this sex difference is still poorly defined. H₂O₂ is produced at high levels in the thyroid gland and regulates parameters such as cell proliferation, migration, survival, and death; an imbalance in the cellular oxidant-antioxidant system in the thyroid may contribute to the greater incidence of thyroid disease among women. Recently, we demonstrated the existence of a sexual dimorphism in the thyrocyte redox balance, characterized by higher H₂O₂ production, due to higher NOX4 and Poldip2 expression, and weakened enzymatic antioxidant defense in the thyroid of adult female rats compared with male rats. In addition, 17β-estradiol administration increased NOX4 mRNA expression and H₂O₂ production in thyroid PCCL3 cells. In this review, we discuss the possible involvement of oxidative stress in estrogen-related thyroid pathophysiology. Our current hypothesis suggests that a redox imbalance elicited by estrogen could be involved in the sex differences found in the prevalence of thyroid dysfunctions.
Collapse
Affiliation(s)
- Rodrigo S Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS - Bloco G - Subsolo - Sala G0-031, Cidade Universitária - Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil Laboratory of Endocrine Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil Mixed Unity of Research (UMR) 8200 - Genomes and Cancer, The Gustave Roussy Institute of Integrated Cancer Research, Villejuif F-94805, France
| | | | | | | | | |
Collapse
|
3
|
Liu M, Zhao L, Gao Y, Huang Y, Lu G, Guo X. Epitope recognition patterns of thyroglobulin antibody in sera from patients with Hashimoto's thyroiditis on different thyroid functional status. Clin Exp Immunol 2013; 170:283-90. [PMID: 23121669 DOI: 10.1111/j.1365-2249.2012.04666.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Thyroglobulin antibody (TgAb) is a diagnostic serological marker of Hashimoto's thyroiditis (HT). The pathogenesis of HT progression from euthyroidism to hypothyroidism is still not clear. Epitope recognition patterns of TgAb have been shown to be different in individuals who are euthyroid or who have clinical disease. The aim of our study was to investigate the role of thyroglobulin (Tg) epitope specificities in HT progression. Sera from 107 patients with newly diagnosed HT were collected and divided into three groups: patients with hypothyroidism (H, n = 39), subclinical hypothyroidism (sH, n = 31) and euthyroidism (Eu, n = 37). A panel of Tg murine monoclonal antibodies (mAb: PB2, 5E6, 1D4, 5F9, Tg6) and a hircine pAb (N15) were employed as the probe antibodies to define the antigenic determinants recognized by HT sera on competitive enzyme-linked immunosorbent assays (ELISAs). Eight of 39 sera samples in H and seven of 31 in sH inhibited PB2 binding, respectively, whereas none did in Eu. The ratio of sera samples, inhibiting PB2 binding in Eu, was significantly lower than that in H (P = 0.011) and in sH (P = 0.008). For N15, five of 39 sera samples in H, six of 31 in sH and 15 of 37 in Eu inhibited its binding, respectively. The ratio of sera samples, inhibiting N15 binding in Eu, was significantly higher than that in H (P = 0.013). Our study demonstrated that HT patients in different thyroid functional status exhibited different Tg epitope recognition patterns. Epitope patterns of TgAb might be used as a prediction marker of HT progression.
Collapse
Affiliation(s)
- M Liu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
4
|
Godlewska M, Czarnocka B, Gora M. Localization of key amino acid residues in the dominant conformational epitopes on thyroid peroxidase recognized by mouse monoclonal antibodies. Autoimmunity 2012; 45:476-84. [DOI: 10.3109/08916934.2012.682667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Wilbe M, Sundberg K, Hansen IR, Strandberg E, Nachreiner RF, Hedhammar A, Kennedy LJ, Andersson G, Björnerfeldt S. Increased genetic risk or protection for canine autoimmune lymphocytic thyroiditis in Giant Schnauzers depends on DLA class II genotype. ACTA ACUST UNITED AC 2010; 75:712-9. [PMID: 20210920 DOI: 10.1111/j.1399-0039.2010.01449.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dogs represent an excellent comparative model for autoimmune thyroiditis as several dog breeds develop canine lymphocytic thyroiditis (CLT), which is clinically similar to Hashimoto's thyroiditis in human. We obtained evidence that dog leukocyte antigen (DLA) class II genotype function as either genetic risk factor that predisposes for CLT or as protective factor against the disease. Genetic diversity at their DLA-DRB1, -DQA1, and -DQB1 loci were defined and potential association to major histocompatibility complex II haplotypes and alleles was analyzed. Giant Schnauzers carrying the DLA-DRB1*01201/DQA1*00101/DQB1*00201 haplotype showed an increased risk (odds ratio of 6.5) for developing CLT. The same risk haplotype has, to date, been observed in three different breeds affected by this disease, Giant Schnauzer, Dobermann, and Labrador Retriever, indicating that it is a common genetic risk factor in a variety of breeds affected by this disease. Importantly, protection for development of the disease was found in dogs carrying the DLA-DRB1*01301/DQA1*00301/DQB1*00501 haplotype (odds ratio of 0.3).
Collapse
Affiliation(s)
- M Wilbe
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Human recombinant anti-thyroperoxidase autoantibodies: in vitro cytotoxic activity on papillary thyroid cancer expressing TPO. Br J Cancer 2010; 102:852-61. [PMID: 20145622 PMCID: PMC2833240 DOI: 10.1038/sj.bjc.6605464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Thyroid cancers are difficult to treat due to their limited responsiveness to chemo- and radiotherapy. There is thus a great interest in and a need for alternative therapeutic approaches. Results: We studied the cytotoxic activity of anti-thyroperoxidase autoantibodies (anti-TPO aAbs, expressed in baculovirus/insect cell (B4) and CHO cells (B4′) or purified from patients' sera) against a papillary thyroid cancer (NPA) cell line. Anti-TPO aAbs from patients' sera led to a partial destruction of NPA cell line by complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) and exhibited an anti-proliferative activity. Comparison of the cytotoxic activity of anti-TPO aAbs shows that B4′ induced an anti-proliferative effect and a better ADCC than B4, but a lower one than anti-TPO aAbs from patients' sera. Antibody-dependent cell-mediated cytotoxicity was increased when human peripheral blood mononuclear cells were used as effector cells, suggesting that FcγRs, CD64, CD32 and CD16 are involved. Indeed, anti-TPO aAbs from patients' sera, but not B4 and B4′, exhibited CDC activity. Conclusions: These data indicate that anti-TPO aAbs display moderate ADCC and anti-proliferative activities on NPA cells; IgG glycosylation appears to be important for cytotoxic activity and ADCC efficiency depends on FcγR-bearing cells. Finally, recombinant human anti-TPO aAbs cannot yet be considered as an optimal tool for the development of a novel therapeutic approach for thyroid cancer.
Collapse
|
7
|
Abstract
Thyroid peroxidase (TPO) evokes high-affinity, IgG-class autoantibodies [TPO autoantibodies (TPOAbs)] and TPO-specific T cells that are markers of thyroid infiltration or implicated in thyroid destruction, respectively. A diverse repertoire of human monoclonal TPOAbs, unparalleled in other autoimmune diseases, provides invaluable probes for investigating antibody epitopes. Human TPOAbs recognize an immunodominant region comprising overlapping A and B domains on conformationally intact TPO. Amino acids recognized by TPOAbs are located in the regions with homology to myeloperoxidase (MPO) and the complement control protein (CCP) but not in the epidermal growth factor (EGF)-like region. T cells recognize epitopes in the MPO-like region but not in the CCP- or EGF-like regions in humans. Monoclonal human TPOAbs modulate processing of TPO protein to provide peptides for some T cells. A human T cell clone expressed transgenically in mice induces lymphocytic infiltration and hypothyroidism. This T cell's epitope is only generated by thyrocyte processing of endogenous TPO. Further, intact TPO expressed in vivo is also required for induction of TPOAbs in mice that resemble human autoantibodies. Overall, some TPO-specific T cells and the majority of autoantibodies in humans develop in response to TPO presented by thyroid cells, rather than to TPO released by damaged thyrocytes.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Autoimmune Disease Unit, Cedars-Sinai Medical Center and UCLA Medical School, Los Angeles, California, USA.
| | | |
Collapse
|
8
|
Lima LP, Barros IA, Lisbôa PC, Araújo RL, Silva ACM, Rosenthal D, Ferreira ACF, Carvalho DP. Estrogen effects on thyroid iodide uptake and thyroperoxidase activity in normal and ovariectomized rats. Steroids 2006; 71:653-9. [PMID: 16762383 DOI: 10.1016/j.steroids.2006.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 03/09/2006] [Accepted: 03/13/2006] [Indexed: 11/20/2022]
Abstract
Sex steroids interfere with the pituitary-thyroid axis function, although the reports have been controversial and no conclusive data is available. Some previous reports indicate that estradiol might also regulate thyroid function through a direct action on the thyrocytes. In this report, we examined the effects of low and high doses of estradiol administered to control and ovariectomized adult female rats and to pre-pubertal females. We demonstrate that estradiol administration to both intact adult and pre-pubertal females causes a significant increase in the relative thyroid weight. Serum T3 is significantly decreased in ovariectomized rats, and is normalized by estrogen replacement. Neither doses of estrogen produced a significant change in serum TSH and total T4 in ovariectomized, adult intact and pre-pubertal rats. The highest, supraphysiological, estradiol dose produced a significant increase in thyroid iodide uptake in ovariectomized and in pre-pubertal rats, but not in control adult females. Thyroperoxidase activity was significantly higher in intact adult rats treated with both estradiol doses and in ovariectomized rats treated with the highest estradiol dose. Since serum TSH levels were not significantly changed, we suggest a direct action of estradiol on the thyroid gland, which depends on the age and on the previous gonad status of the animal.
Collapse
Affiliation(s)
- Lívia P Lima
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ng HP, Kung AWC. Induction of autoimmune thyroiditis and hypothyroidism by immunization of immunoactive T cell epitope of thyroid peroxidase. Endocrinology 2006; 147:3085-92. [PMID: 16527849 DOI: 10.1210/en.2005-1130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune thyroiditis (AT) is characterized by a continuous inflammatory self-destructive process that eventually leads to chronic progressive dysfunction of the thyroid. In a previously established experimental AT model, C57bl/6 mice immunized with recombinant mouse thyroid peroxidase (TPO) (rmTPO) developed lymphocytic thyroiditis and anti-TPO antibody but not chronic hypothyroidism. To determine the immunodominant epitope(s) of TPO, T cell proliferation assays were performed in which rmTPO-primed lymph nodes cells were reacted with recombinant mTPO fragments or short overlapping synthetic TPO peptides. Within residue 405-849, peptide 540-559 gave the maximum proliferation response with a stimulation index more than 12. Mice immunized with peptide 540-559 developed antibody against rmTPO and native mouse TPO protein, lymphocytic thyroiditis, and hypothyroidism. In conclusion, this study demonstrated that TPO is the autoantigen for the development of lymphocyte thyroiditis and thyroid dysfunction, and peptide 540-559 is the immunodominant T cell epitope of TPO. Identification of T cell epitopes of TPO may enable the development of immunotherapy to prevent chronic hypothyroidism in AT.
Collapse
Affiliation(s)
- H P Ng
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | |
Collapse
|
10
|
Rebuffat SA, Bresson D, Nguyen B, Péraldi-Roux S. The key residues in the immunodominant region 353–363 of human thyroid peroxidase were identified. Int Immunol 2006; 18:1091-9. [PMID: 16735377 DOI: 10.1093/intimm/dxl042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Auto-antibodies (aAbs) to thyroid peroxidase (TPO) interact with a restricted immunodominant region (IDR) divided into two overlapping regions A and B. Among the five major regions structuring the IDR/B, regions 210-225, 353-363, 549-563, 713-720 and 766-775, region 353-363 constitutes an important anchor point for the binding of TPO-specific aAbs in sera from Hashimoto's and Graves' patients. We combined site-directed mutagenesis and expression of TPO mutants in stably transfected CHO cells to precisely define the critical residues in that region. By using flow cytometry and ELISA, we identified four amino acid residues, H353, D358, S359 and R361, that contribute to the interaction between human TPO and anti-TPO aAbs. This identification of these contributing amino acid residues in the IDR allowed us to more precisely depict contours of the IDR.
Collapse
Affiliation(s)
- Sandra A Rebuffat
- CNRS UMR 5160, Faculté de Pharmacie, 34093 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
11
|
Ruf J, Carayon P. Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys 2005; 445:269-77. [PMID: 16098474 DOI: 10.1016/j.abb.2005.06.023] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/16/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Thyroperoxidase (TPO) is the enzyme involved in thyroid hormone synthesis. Although many studies have been carried out on TPO since it was first identified as being the thyroid microsomal antigen involved in autoimmune thyroid disease, previous authors have focused more on the immunological than on the biochemical aspects of TPO during the last few years. Here, we review the latest contributions in the field of TPO research and provide a large reference list of original publications. Given this promising background, scientists and clinicians will certainly continue in the future to investigate the mechanisms whereby TPO contributes to hormone synthesis and constitutes an important autoantigen involved in autoimmune thyroid disease, and the circumstances under which the normal physiological function of this enzyme takes on a pathological role.
Collapse
Affiliation(s)
- Jean Ruf
- INSERM Unit U555, Faculté de Médecine Timone, Université de la Méditerranée, Marseille, France.
| | | |
Collapse
|
12
|
Bresson D, Rebuffat SA, Péraldi-Roux S. Localization of the immunodominant region on human thyroid peroxidase in autoimmune thyroid diseases: an update. JOURNAL OF AUTOIMMUNE DISEASES 2005; 2:2. [PMID: 15769293 PMCID: PMC1084359 DOI: 10.1186/1740-2557-2-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 03/15/2005] [Indexed: 11/10/2022]
Abstract
Recent studies in the field of autoimmune thyroid diseases have largely focused on the delineation of B-cell auto-epitopes recognized by the main autoantigens to improve our understanding of how these molecules are seen by the immune system. Among these autoantigens which are targeted by autoantibodies during the development of autoimmune thyroid diseases, thyroid peroxidase is a major player. Indeed, high amounts of anti-thyroid peroxidase autoantibodies are found in the sera of patients suffering from Graves' disease and Hashimoto's thyroiditis, respectively hyper and hypothyroidism. Since anti-thyroid peroxidase autoantibodies from patients'sera mainly recognize a discontinuous immunodominant region on thyroid peroxidase and due to the complexity of the three dimensional structure of human thyroid peroxidase, numerous investigations have been necessary to closely localize this immunodominant region. The aim of the present review is to summarize the current knowledge regarding the localization of the immunodominant region recognized by human thyroid peroxidase-specific autoantibodies generated during the development of autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Damien Bresson
- CNRS UMR 5160, Centre de Pharmacologie et Biotechnologie pour la Santé, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
- La Jolla Institute for Allergy and Immunology, Department of Developmental Immunology-3, 10355 Science Center Drive, San Diego, CA 92121, USA
| | - Sandra A Rebuffat
- CNRS UMR 5160, Centre de Pharmacologie et Biotechnologie pour la Santé, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | - Sylvie Péraldi-Roux
- CNRS UMR 5160, Centre de Pharmacologie et Biotechnologie pour la Santé, Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| |
Collapse
|