1
|
Gresle MM, Butzkueven H, Perreau VM, Jonas A, Xiao J, Thiem S, Holmes FE, Doherty W, Soo PY, Binder MD, Akkermann R, Jokubaitis VG, Cate HS, Marriott MP, Gundlach AL, Wynick D, Kilpatrick TJ. Galanin is an autocrine myelin and oligodendrocyte trophic signal induced by leukemia inhibitory factor. Glia 2015; 63:1005-20. [PMID: 25639936 DOI: 10.1002/glia.22798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/08/2015] [Indexed: 12/12/2022]
Abstract
In order to further investigate the molecular mechanisms that regulate oligodendrocyte (OC) survival, we utilized microarrays to characterize changes in OC gene expression after exposure to the cytokines neurotrophin3, insulin, or leukemia inhibitory factor (LIF) in vitro. We identified and validated the induction and secretion of the neuropeptide galanin in OCs, specifically in response to LIF. We next established that galanin is an OC survival factor and showed that autocrine or paracrine galanin secretion mediates LIF-induced OC survival in vitro. We also revealed that galanin is up-regulated in OCs in the cuprizone model of central demyelination, and that oligodendroglial galanin expression is significantly regulated by endogenous LIF in this context. We also showed that knock-out of galanin reduces OC survival and exacerbates callosal demyelination in the cuprizone model. These findings suggest a potential role for the use of galanin agonists in the treatment of human demyelinating diseases.
Collapse
Affiliation(s)
- Melissa M Gresle
- Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Australia; Department of Medicine, University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Sivka U, Snoj A, Palandačić A, Sušnik Bajec S. Identification of candidate genes involved in marble color pattern formation in genus Salmo. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:244-9. [PMID: 23850874 DOI: 10.1016/j.cbd.2013.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
Salmonids are known for their variety in skin color and color patterning, which depends on reaction-diffusion mechanism or/and cell-cell interaction. One of the visually most prominent characteristics found in the genus Salmo is the marble color pattern, distinctive for marble trout (Salmo marmoratus). In order to identify and characterize genes potentially involved in skin coloration and color pattern formation in marble trout, a salmonid 32K cDNA microarray was applied to compare skin transcriptome profiles from marble trout, brown trout (Salmo trutta), and marble trout×brown trout hybrids exhibiting the marble color pattern. Microarray results were validated by qRT-PCR and revealed four differentially expressed informative genes (hdac1, vps18, dct and scg2a) involved in animal pigmentation. hdac1 and dct were associated with the wnt signaling pathway, vps18 was involved in melanosome biogenesis and scg2a was observed to act as physiological factor in skin pigmentation and thus could be regarded as a helper protein in prohormone Pomc packaging. We propose that the formation of the marble color pattern is at least partially based upon a reaction-diffusion mechanism and depends upon wnt signaling pathway.
Collapse
Affiliation(s)
- U Sivka
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, SI-1230 Domžale, Slovenia.
| | | | | | | |
Collapse
|
3
|
Røsjø H, Stridsberg M, Florholmen G, Stensløkken KO, Ottesen AH, Sjaastad I, Husberg C, Dahl MB, Øie E, Louch WE, Omland T, Christensen G. Secretogranin II; a protein increased in the myocardium and circulation in heart failure with cardioprotective properties. PLoS One 2012; 7:e37401. [PMID: 22655045 PMCID: PMC3360055 DOI: 10.1371/journal.pone.0037401] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/19/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Several beneficial effects have been demonstrated for secretogranin II (SgII) in non-cardiac tissue. As cardiac production of chromogranin A and B, two related proteins, is increased in heart failure (HF), we hypothesized that SgII could play a role in cardiovascular pathophysiology. METHODOLOGY/PRINCIPAL FINDINGS SgII production was characterized in a post-myocardial infarction heart failure (HF) mouse model, functional properties explored in experimental models, and circulating levels measured in mice and patients with stable HF of moderate severity. SgII mRNA levels were 10.5 fold upregulated in the left ventricle (LV) of animals with myocardial infarction and HF (p<0.001 vs. sham-operated animals). SgII protein levels were also increased in the LV, but not in other organs investigated. SgII was produced in several cell types in the myocardium and cardiomyocyte synthesis of SgII was potently induced by transforming growth factor-β and norepinephrine stimulation in vitro. Processing of SgII to shorter peptides was enhanced in the failing myocardium due to increased levels of the proteases PC1/3 and PC2 and circulating SgII levels were increased in mice with HF. Examining a pathophysiological role of SgII in the initial phase of post-infarction HF, the SgII fragment secretoneurin reduced myocardial ischemia-reperfusion injury and cardiomyocyte apoptosis by 30% and rapidly increased cardiomyocyte Erk1/2 and Stat3 phosphorylation. SgII levels were also higher in patients with stable, chronic HF compared to age- and gender-matched control subjects: median 0.16 (Q1-3 0.14-0.18) vs. 0.12 (0.10-0.14) nmol/L, p<0.001. CONCLUSIONS We demonstrate increased myocardial SgII production and processing in the LV in animals with myocardial infarction and HF, which could be beneficial as the SgII fragment secretoneurin protects from ischemia-reperfusion injury and cardiomyocyte apoptosis. Circulating SgII levels are also increased in patients with chronic, stable HF and may represent a new cardiac biomarker.
Collapse
Affiliation(s)
- Helge Røsjø
- Division of Medicine, Akershus University Hospital, Lørenskog, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Guillemot J, Thouënnon E, Guérin M, Vallet-Erdtmann V, Ravni A, Montéro-Hadjadje M, Lefebvre H, Klein M, Muresan M, Seidah NG, Anouar Y, Yon L. Differential expression and processing of secretogranin II in relation to the status of pheochromocytoma: implications for the production of the tumoral marker EM66. J Mol Endocrinol 2012; 48:115-27. [PMID: 22217803 DOI: 10.1530/jme-11-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously demonstrated that measurement of tissue concentrations of the secretogranin II (SgII or SCG2 as listed in the HUGO database)-derived peptide EM66 may help to discriminate between benign and malignant pheochromocytomas and that EM66 represents a sensitive plasma marker of pheochromocytomas. Here, we investigated the gene expression and protein production of SgII in 13 normal adrenal glands, and 35 benign and 16 malignant pheochromocytomas with the goal to examine the molecular mechanisms leading to the marked variations in the expression of EM66 in tumoral chromaffin tissue. EM66 peptide levels were 16-fold higher in benign than in malignant pheochromocytomas and had an area under the receiver-operating characteristic curve of 0.95 for the distinction of benign and malignant tumors. Q-PCR experiments indicated that the SgII gene was significantly underexpressed in malignant tumors compared with benign tumors. Western blot analysis using antisera directed against SgII and SgII-derived fragments revealed lower SgII protein and SgII-processing products in malignant tumors. Western blot also showed that low p-cAMP-responsive element-binding (CREB) concentrations seemed to be associated with the malignant status. In addition, the prohormone convertase PC1 and PC2 genes and proteins were overexpressed in benign pheochromocytomas compared with malignant pheochromocytomas. Low concentrations of EM66 found in malignant tumors are associated with reduced expression and production of SgII and SgII-derived peptides that could be ascribed to a decrease in SgII gene transcription, probably linked to p-CREB down-regulation, and to lower PC levels. These findings highlight the mechanisms leading to lower concentrations of EM66 in malignant pheochromocytoma and strengthen the notion that this peptide is a suitable marker of this neuroendocrine tumor.
Collapse
Affiliation(s)
- J Guillemot
- Institut National de la Santé et de la Recherche Médicale Unité 982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Rouen University, Institute for Research and Innovation in Biomedicine, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Vázquez-Martínez R, Díaz-Ruiz A, Almabouada F, Rabanal-Ruiz Y, Gracia-Navarro F, Malagón MM. Revisiting the regulated secretory pathway: from frogs to human. Gen Comp Endocrinol 2012; 175:1-9. [PMID: 21907200 DOI: 10.1016/j.ygcen.2011.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 01/01/2023]
Abstract
The regulated secretory pathway is a hallmark of endocrine and neuroendocrine cells. This process comprises different sequential steps, including ER-associated protein synthesis, ER-to-Golgi protein transport, Golgi-associated posttranslational modification, sorting and packing of secretory proteins into carrier granules, cytoskeleton-based granule transport towards the plasma membrane and tethering, docking and fusion of granules with specialized releasing zones in the plasma membrane. Each one of these steps is tightly regulated by a large number of factors that function in a spatially and temporarily coordinated fashion. During the past three decades, much effort has been devoted to characterize the precise role of the yet-known proteins participating in the different steps of this process and to identify new regulatory factors in order to obtain a unifying picture of the secretory pathway. In spite of this and given the enormous complexity of the process, certain steps are not fully understood yet and many players remain to be identified. In this review, we offer a summary of the current knowledge on the main molecular mechanisms that govern and ensure the correct release of secretory proteins. In addition, we have integrated the advance on the field made possible by studies carried out in non-mammalian vertebrates, which, although not very numerous, have substantially contributed to acquire a mechanistic understanding of the regulated secretory pathway.
Collapse
Affiliation(s)
- Rafael Vázquez-Martínez
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica, University of Córdoba, 14014-Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
6
|
Immunohistochemical Localization of Manserin, a Novel Neuropeptide Derived from Secretogranin II, in Rat Adrenal Gland, and its Upregulation by Physical Stress. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9203-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Zhao E, Zhang D, Basak A, Trudeau VL. New insights into granin-derived peptides: evolution and endocrine roles. Gen Comp Endocrinol 2009; 164:161-74. [PMID: 19523383 DOI: 10.1016/j.ygcen.2009.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/31/2008] [Accepted: 01/20/2009] [Indexed: 11/22/2022]
Abstract
The granin protein family is composed of two chromogranin and five secretogranin members that are acidic, heat-stable proteins in secretory granules in cells of the nervous and endocrine systems. We report that there is little evidence for evolutionary relationships among the granins except for the chromogranin group. The main granin members, including chromogranin A and B, and secretogranin II are moderately conserved in the vertebrates. Several small bioactive peptides can be generated by proteolysis from those homologous domains existing within the granin precursors, reflecting the conservation of biological activities in different vertebrates. In this context, we focus on reviewing the distribution and function of the major granin-derived peptides, including vasostatin, bovine CgB(1-41) and secretoneurin in vertebrate endocrine systems, especially those associated with growth, glucose metabolism and reproduction.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
8
|
Nunzi MG, Mugnaini E. Aspects of the neuroendocrine cerebellum: expression of secretogranin II, chromogranin A and chromogranin B in mouse cerebellar unipolar brush cells. Neuroscience 2009; 162:673-87. [PMID: 19217926 DOI: 10.1016/j.neuroscience.2009.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/07/2009] [Accepted: 02/07/2009] [Indexed: 11/26/2022]
Abstract
Morphologically distinct neuron classes can be subdivided in sublineages by differential chemical phenotypes that correlate with functional diversity. Here we show by immunocytochemistry that chromogranin A (CgA) chromogranin B (CgB) and secretogranin II (SgII), the principal granins situated in neuronal secretory granules and large dense-core vesicles, are widely but differentially expressed in cells of the mouse cerebellum and terminals of cerebellar afferents. While CgA and CgB were nearly panneuronal, SgII was more restricted in distribution. The cells most intensely immunoreactive for SgII were a class of small, excitatory interneurons enriched in the granular layer of the vestibulocerebellum, the unipolar brush cells (UBCs), although larger neurons likely to be a subset of the Golgi-Lugaro-globular cell population were also distinctly immunopositive; by contrast, Purkinje cells and granule cells were, at best, faintly stained and, stellate, basket cells were unstained. SgII was also present in subsets of mossy fibers, climbing fibers and varicose fibers. Neurons in the cerebellar nuclei and inferior olive were distinctly positive for the three granins. Double-labeling with subset-specific cell class markers indicated that, while both CgA and CgB were present in most UBCs, SgII immunoreactivity was present in the calretinin (CR)-expressing subset, but lacked in metabotropic glutamate receptor 1alpha (mGluR1alpha)-expressing UBCs. Thus, we have identified an additional cell class marker, SgII, which serves to study subtype properties in the UBC population. The abundance of SgII in only one of the two known subsets of UBCs is remarkable, as its expression in other neurons of the cortex was moderate or altogether lacking. The data suggest that the CR-positive UBCs represent a unique neuroendocrine component of the mammalian cerebellar cortex, presumably endowed with transynaptically regulated autocrine or paracrine action/s. Because of the well-known organization of the cerebellar system, several of its neuron classes may represent valuable cellular models to analyze granin functions in situ, in acute slices and in dissociated cell and organotypic slice cultures.
Collapse
Affiliation(s)
- M G Nunzi
- Department of Cell and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Searle 5-474, 320 East Superior Street, Chicago, IL 60611, USA.
| | | |
Collapse
|
9
|
Montero-Hadjadje M, Elias S, Chevalier L, Benard M, Tanguy Y, Turquier V, Galas L, Yon L, Malagon MM, Driouich A, Gasman S, Anouar Y. Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: role of conserved N- and C-terminal peptides. J Biol Chem 2009; 284:12420-31. [PMID: 19179339 DOI: 10.1074/jbc.m805607200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromogranin A (CgA) has been proposed to play a major role in the formation of dense-core secretory granules (DCGs) in neuroendocrine cells. Here, we took advantage of unique features of the frog CgA (fCgA) to assess the role of this granin and its potential functional determinants in hormone sorting during DCG biogenesis. Expression of fCgA in the constitutively secreting COS-7 cells induced the formation of mobile vesicular structures, which contained cotransfected peptide hormones. The fCgA and the hormones coexpressed in the newly formed vesicles could be released in a regulated manner. The N- and C-terminal regions of fCgA, which exhibit remarkable sequence conservation with their mammalian counterparts were found to be essential for the formation of the mobile DCG-like structures in COS-7 cells. Expression of fCgA in the corticotrope AtT20 cells increased pro-opiomelanocortin levels in DCGs, whereas the expression of N- and C-terminal deletion mutants provoked retention of the hormone in the Golgi area. Furthermore, fCgA, but not its truncated forms, promoted pro-opiomelanocortin sorting to the regulated secretory pathway. These data demonstrate that CgA has the intrinsic capacity to induce the formation of mobile secretory granules and to promote the sorting and release of peptide hormones. The conserved terminal peptides are instrumental for these activities of CgA.
Collapse
Affiliation(s)
- Maité Montero-Hadjadje
- Equipe Associée 4310 Neuronal and Neuroendocrine Differentiation and Communication, INSERM U413, European Institute for Peptide Research (IFRMP 23), France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y. Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 2008; 192:309-24. [PMID: 18005393 DOI: 10.1111/j.1748-1716.2007.01806.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chromogranins/secretogranins or granins are a class of acidic, secretory proteins that occur in endocrine, neuroendocrine, and neuronal cells. Granins are the precursors of several bioactive peptides and may be involved in secretory granule formation and neurotransmitter/hormone release. Characterization and analysis of chromogranin A (CgA), chromogranin B (CgB), and secretogranin II (SgII) in distant vertebrate species confirmed that CgA and CgB belong to related monophyletic groups, probably evolving from a common ancestral precursor, while SgII sequences constitute a distinct monophyletic group. In particular, selective sequences within these proteins, bounded by potential processing sites, have been remarkably conserved during evolution. Peptides named vasostatin, secretolytin and secretoneurin, which occur in these regions, have been shown to exert various biological activities. These conserved domains may also be involved in the formation of secretory granules in different vertebrates. Other peptides such as catestatin and pancreastatin may have appeared late during evolution. The function of granins as propeptide precursors and granulogenic factors is discussed in the light of recent data obtained in various model species and using knockout mice strains.
Collapse
Affiliation(s)
- M Montero-Hadjadje
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
11
|
Cruz-Garcia D, Vazquez-Martinez R, Peinado JR, Anouar Y, Tonon MC, Vaudry H, Castaño JP, Malagon MM. Identification and characterization of two novel (neuro)endocrine long coiled-coil proteins. FEBS Lett 2007; 581:3149-56. [PMID: 17572408 DOI: 10.1016/j.febslet.2007.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 05/25/2007] [Accepted: 06/05/2007] [Indexed: 11/17/2022]
Abstract
We have identified a novel vertebrate-specific gene by applying a Differential Display method on two distinct subtypes of pituitary melanotropes showing divergent secretory phenotypes of hypo- and hypersecretion. A paralogue of this gene was also identified. The existence of a long coiled-coil domain and a C-terminal transmembrane domain in the sequences, together with the Golgi distribution of the proteins in transfected cells, suggest that they can be considered as new members of the golgin family of proteins. Both genes were primarily expressed in (neuro)endocrine tissues in vertebrates thus supporting a role for these proteins in the regulated secretory pathway.
Collapse
Affiliation(s)
- D Cruz-Garcia
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|