1
|
Zhang Y, Liu X, Zhu L, Zhou Z, Cui Y, Zhou CX, Li TJ. Notch activation promotes bone metastasis via SPARC inhibition in adenoid cystic carcinoma. Oral Dis 2024; 30:1220-1233. [PMID: 36951790 DOI: 10.1111/odi.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/29/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
OBJECTIVES We aimed to investigate bone metastasis induced by Notch signalling pathway dysregulation and to demonstrate that SPARC is a potential therapeutic target in adenoid cystic carcinoma (AdCC) with Notch dysregulation. MATERIALS AND METHODS This retrospective study enrolled 144 AdCC patients. RNA-sequencing and enrichment analyses were performed using 32 AdCC samples. Osteonectin/SPARC and the Notch activation indicator Notch intracellular domain (NICD) were detected using immunohistochemistry. Cell proliferation and migration assays were conducted using stably NICD over-expressing cells. The effect of SPARC on osteoclast differentiation in NICD cells was investigated using western blotting, quantitative reverse transcription PCR, tartrate-resistant acid phosphatase staining and resorption assays. RESULTS RNA-sequencing analysis showed that genes down-regulated in Notch-mutant AdCCs, such as SPARC, were enriched in ossification and osteoblast differentiation. Most (75/110, 68.2%) Notch1-wild-type AdCCs showed SPARC over-expression, whereas 30 out of 34 (88.2%) Notch1-mutant tumours showed low SPARC expression. SPARC over-expression was then found negatively to be correlated with NICD expression in 144 AdCCs. NICD over-expression promoted cell growth, migration and osteoclast differentiation, which could be partly reversed by exogenous SPARC. CONCLUSIONS Notch activation in AdCC contributes to bone metastasis through SPARC inhibition. The study results suggest that SPARC may represent a prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Xiaoxiao Liu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Zheng Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Yajuan Cui
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Chuan-Xiang Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Tie-Jun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| |
Collapse
|
2
|
Zhang Y, Liu X, Zhou CX, Li TJ. Notch activation leads to loss of myoepithelial differentiation and poor outcome in solid adenoid cystic carcinoma. Oral Dis 2020; 26:1677-1686. [PMID: 32531852 DOI: 10.1111/odi.13480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/28/2020] [Accepted: 06/01/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We aimed to investigate Notch pathway dysregulation in solid adenoid cystic carcinoma (AdCC) and to define the association of Notch activation with cell differentiation and prognosis in AdCCs. MATERIALS AND METHODS Notch1 mutations were detected from 125 AdCCs (62 cribriform-tubular; 63 solid). RNA-seq was performed in 16 AdCCs (6 Notch-mutant; 10 wild type). Notch activation indicator NICD and myoepithelial marker p63 were detected using immunohistochemistry and double-labelling immunofluorescence. The effect of exogenous NICD overexpression on p63 expression and cell proliferation was investigated using Western blotting and live-cell imaging. RESULTS We identified 33 Notch1 activating mutations in 27 AdCCs including 26 solid and 1 cribriform-tubular subtypes. Six tumours harboured more than one Notch1 mutation, and 18 Notch1 mutations were novel. Most (47/63, 74.6%) solid AdCCs showed NICD overexpression, whereas 61 of 62 (98.4%) cribriform-tubular tumours were negative. NICD and p63 exhibited mutually exclusive expression, and exogenous NICD overexpression promoted cell proliferation and decreased p63 expression. NICD overexpression and Notch mutations were poor indicators for overall survival and metastasis, especially bone metastasis. CONCLUSIONS Dysregulated Notch signalling plays a critical role in AdCC severity. Notch activation may contribute to loss of myoepithelial differentiation as well as high proliferation and metastasis rates in solid AdCC.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xiaoxiao Liu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Chuan-Xiang Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Tie-Jun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, PR China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| |
Collapse
|
3
|
Turac G, Duruksu G, Karaoz E. The Effect of Recombinant Tyrosine Hydroxylase Expression on the Neurogenic Differentiation Potency of Mesenchymal Stem Cells. Neurospine 2018; 15:42-53. [PMID: 29656620 PMCID: PMC5944638 DOI: 10.14245/ns.1836010.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 11/27/2022] Open
Abstract
Objective Tyrosine hydroxylase (TH) is a rate-limiting enzyme in dopamine synthesis, making the enhancement of its activity a target for ensuring sufficient dopamine levels. Rat bone marrow mesenchymal stem cells (rBM-MSCs) are known to synthesize TH after differentiating into neuronal cells through chemical induction, but the effect of its ectopic expression on these cells has not yet been determined. This study investigated the effects of ectopic recombinant TH expression on the stemness characteristics of rBM-MSCs.
Methods After cloning, a cell line with stable TH expression was maintained, and the proliferation, the gene expression profile, and differentiation potential of rBM-MSCs were analyzed. Analysis of the cells showed an increment in the proliferation rate that could be reversed by the neutralization of TH.
Results The constitutive expression of TH in rBM-MSCs was successfully implemented, without significantly affecting their osteogenic and adipogenic differentiation potential. TH expression improved the expression of other neuronal markers, such as glial fibrillary acidic protein, β-tubulin, nestin, and c-Fos, confirming the neurogenic differentiation capacity of the stem cells. The expression of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) significantly increased after the chemical induction of neurogenic differentiation.
Conclusion In this study, the expression of recombinant TH improved the neuroprotective effect of MSCs by upregulating the expression of BDNF and CNTF. Although the neuronal markers were upregulated, the expression of recombinant TH alone in rBM-MSCs was not sufficient for MSCs to differentiate into neurogenic cell lines.
Collapse
Affiliation(s)
- Gizem Turac
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey.,Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Gokhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, İzmit, Kocaeli, Turkey.,Department of Stem Cell, Institute of Health Sciences, Kocaeli University, İzmit, Kocaeli, Turkey
| | - Erdal Karaoz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research and Manufacturing, İstanbul, Turkey.,Department of Histology & Embryology, İstinye University, Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
4
|
Li Z, Li AD, Xu L, Bai DW, Hou KZ, Zheng HC, Qu XJ, Liu YP. SPARC expression in gastric cancer predicts poor prognosis: Results from a clinical cohort, pooled analysis and GSEA assay. Oncotarget 2018; 7:70211-70222. [PMID: 28053291 PMCID: PMC5342547 DOI: 10.18632/oncotarget.12191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
Background The prognostic role of Secreted Protein Acidic and Rich in Cysteine (SPARC) in gastric cancer (GC) remains controversial. We investigated the clinical significance, the survival relevance, and potential function of SPARC in GC with resected samples, online gene set GSE62254, and cell line SGC7901. Results High immunostaining of SPARC significantly correlated with tumor differentiation (P = 0.004), and independently predicted shorter overall survival (OS) (HR = 1.446, P = 0.022), based on the current IHC evaluation. The accuracy of the results was further validated with 1000 times bootstrapping and the time-dependent receiver-operating characteristics (ROC) curves. The meta-analysis (pooled HR = 1.60, 95% CI: 1.01−2.53) confirmed SPARC as the predictor for reduced OS in GC. Moreover, the association between enhanced SPARC expression and Adriamycin (Adr) sensitivity was revealed by GSEA, and then confirmed by comparative cellular experiments, such as the protein level analysis of SGC7901and SGC7901/Adr cell line. Materials and Methods Immunohistochemistry (IHC) method was used to detect SPARC expression in 137 GC cases. Meta-analysis was performed based on 5 studies published in English on PubMed up to March 2016. GSEA was performed using online data set GSE62254 and GC-related functional gene sets derived from molecular signatures database (MSigDB). Western Blot was carried out to compare protein-level differences between gastric carcinoma SGC7901 cell line and Adr resistant SGC7901/Adr cell line. MTT assay was done to confirm the induction of SPARC on Adr sensitivity Conclusions Increased SPARC expression in GC led to a worse clinical outcome of patients and might induce Adr sensitivity of GC cells.
Collapse
Affiliation(s)
- Zhi Li
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province
| | - Ao-Di Li
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province
| | - Lu Xu
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province
| | - De-Wei Bai
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, Liaoning Province, China.,Department of Cell Biological Treatment Ward, Dalian Centre Hospital, Dalian, Liaoning Province, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province
| | - Hua-Chuan Zheng
- Life Science Institute of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, Liaoning Province, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province
| |
Collapse
|
5
|
Costa V, Carina V, Fontana S, De Luca A, Monteleone F, Pagani S, Sartori M, Setti S, Faldini C, Alessandro R, Fini M, Giavaresi G. Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation. J Cell Physiol 2017. [PMID: 28621452 DOI: 10.1002/jcp.26058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) as an adjuvant therapy in in vitro and in vivo bone engineering has proven to be extremely useful. The present study aimed at investigating the effect of 30 mW/cm2 LIPUS stimulation on commercially available human mesenchymal stem cells (hMSCs) cultured in basal or osteogenic medium at different experimental time points (7, 14, 21 days). The hypothesis was that LIPUS would improve the osteogenic differentiation of hMSC and guarantying the maintenance of osteogenic committed fraction, as demonstrated by cell vitality and proteomic analysis. LIPUS stimulation (a) regulated the balance between osteoblast commitment and differentiation by specific networks (activations of RhoA/ROCK signaling and upregulation of Ribosome constituent/Protein metabolic process, Glycolysis/Gluconeogenesis, RNA metabolic process/Splicing and Tubulins); (b) allowed the maintenance of a few percentage of osteoblast precursors (21 days CD73+/CD90+: 6%; OCT-3/4+/NANOG+/SOX2+: 10%); (c) induced the activation of osteogenic specific pathways shown by gene expression (early: ALPL, COL1A1, late: RUNX2, BGLAP, MAPK1/6) and related protein release (COL1a1, OPN, OC), in particular in the presence of osteogenic soluble factors able to mimic bone microenvironment. To summarize, LIPUS might be able to improve the osteogenic commitment of hMSCs in vitro, and, at the same time, enhance their osteogenic differentiation.
Collapse
Affiliation(s)
- Viviana Costa
- Rizzoli Orthopedic Institute, Innovative Technological Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Valeria Carina
- Rizzoli Orthopedic Institute, Innovative Technological Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Simona Fontana
- Biology and Genetics Unit, Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| | - Angela De Luca
- Rizzoli Orthopedic Institute, Innovative Technological Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy
| | - Francesca Monteleone
- Biology and Genetics Unit, Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| | - Stefania Pagani
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - Maria Sartori
- Rizzoli Orthopedic Institute, Laboratory BITTA, Bologna, Italy
| | | | - Cesare Faldini
- Rizzoli Orthopedic Institute, 2nd Orthopaedic and Traumatologic Clinic, Bologna, Italy
| | - Riccardo Alessandro
- Biology and Genetics Unit, Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| | - Milena Fini
- Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy.,Rizzoli Orthopedic Institute, Laboratory BITTA, Bologna, Italy
| | - Gianluca Giavaresi
- Rizzoli Orthopedic Institute, Innovative Technological Platforms for Tissue Engineering, Theranostic and Oncology, Palermo, Italy.,Rizzoli Orthopedic Institute, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
6
|
LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol 2016; 418:227-41. [PMID: 27565024 PMCID: PMC5144577 DOI: 10.1016/j.ydbio.2016.08.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
The Notch signaling cascade is an evolutionarily ancient system that allows cells to interact with their microenvironmental neighbors through direct cell-cell interactions, thereby directing a variety of developmental processes. Recent research is discovering that Notch signaling is also responsive to a broad variety of stimuli beyond cell-cell interactions, including: ECM composition, crosstalk with other signaling systems, shear stress, hypoxia, and hyperglycemia. Given this emerging understanding of Notch responsiveness to microenvironmental conditions, it appears that the classical view of Notch as a mechanism enabling cell-cell interactions, is only a part of a broader function to integrate microenvironmental cues. In this review, we summarize and discuss published data supporting the idea that the full function of Notch signaling is to serve as an integrator of microenvironmental signals thus allowing cells to sense and respond to a multitude of conditions around them.
Collapse
Affiliation(s)
- Bryce LaFoya
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Jordan A Munroe
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Masum M Mia
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Michael A Detweiler
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Jacob J Crow
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Travis Wood
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Steven Roth
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Bikram Sharma
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Allan R Albig
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
7
|
Dole NS, Kapinas K, Kessler CB, Yee SP, Adams DJ, Pereira RC, Delany AM. A single nucleotide polymorphism in osteonectin 3' untranslated region regulates bone volume and is targeted by miR-433. J Bone Miner Res 2015; 30:723-32. [PMID: 25262637 PMCID: PMC4376624 DOI: 10.1002/jbmr.2378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/09/2014] [Accepted: 09/19/2014] [Indexed: 12/14/2022]
Abstract
Osteonectin/SPARC is one of the most abundant noncollagenous extracellular matrix proteins in bone, regulating collagen fiber assembly and promoting osteoblast differentiation. Osteonectin-null and haploinsufficient mice have low-turnover osteopenia, indicating that osteonectin contributes to normal bone formation. In male idiopathic osteoporosis patients, osteonectin 3' untranslated region (UTR) single-nucleotide polymorphism (SNP) haplotypes that differed only at SNP1599 (rs1054204) were previously associated with bone mass. Haplotype A (containing SNP1599G) was more frequent in severely affected patients, whereas haplotype B (containing SNP1599C) was more frequent in less affected patients and healthy controls. We hypothesized that SNP1599 contributes to variability in bone mass by modulating osteonectin levels. Osteonectin 3' UTR reporter constructs demonstrated that haplotype A has a repressive effect on gene expression compared with B. We found that SNP1599G contributed to an miR-433 binding site, and miR-433 inhibitor relieved repression of the haplotype A, but not B, 3' UTR reporter construct. We tested our hypothesis in vivo, using a knock-in approach to replace the mouse osteonectin 3' UTR with human haplotype A or B 3' UTR. Compared with haplotype A mice, bone osteonectin levels were higher in haplotype B mice. B mice displayed higher bone formation rate and gained more trabecular bone with age. When parathyroid hormone was administered intermittently, haplotype B mice gained more cortical bone area than A mice. Cultured marrow stromal cells from B mice deposited more mineralized matrix and had higher osteocalcin mRNA compared with A mice, demonstrating a cell-autonomous effect on differentiation. Altogether, SNP1599 differentially regulates osteonectin expression and contributes to variability in bone mass, by a mechanism that may involve differential targeting by miR-433. This work validates the findings of the previous candidate gene study, and it assigns a physiological function to a common osteonectin allele, providing support for its role in the complex trait of skeletal phenotype. © 2014 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Neha S Dole
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The Prostanoid EP4 Receptor and Its Signaling Pathway. Pharmacol Rev 2013; 65:1010-52. [DOI: 10.1124/pr.112.007195] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
9
|
Wang T, Lee MH, Choi E, Pardo-Villamizar CA, Lee SB, Yang IH, Calabresi PA, Nath A. Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1.3 channel. PLoS One 2012; 7:e43950. [PMID: 22952817 PMCID: PMC3430617 DOI: 10.1371/journal.pone.0043950] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence supports a critical role of T cells in neurodegeneration associated with acute and subacute brain inflammatory disorders. Granzyme B (GrB), released by activated T cells, is a cytotoxic proteinase which may induce perforin-independent neurotoxicity. Here, we studied the mechanism of perforin-independent GrB toxicity by treating primary cultured human neuronal cells with recombinant GrB. GrBactivated the protease-activated receptor (PAR)-1 receptor on the neuronal cell surface leading to decreased intracellular cyclic AMP levels. This was followed by increased expression and translocation of the voltage gated potassium channel, Kv1.3 to the neuronal cell membrane. Similar expression of Kv1.3 was also seen in neurons of the cerebral cortex adjacent to active inflammatory lesions in patients with multiple sclerosis. Kv1.3 expression was followed by activation of Notch-1 resulting in neurotoxicity. Blocking PAR-1, Kv1.3 or Notch-1 activation using specific pharmacological inhibitors or siRNAs prevented GrB-induced neurotoxicity. Furthermore, clofazimine protected against GrB-induced neurotoxicity in rat hippocampus, in vivo. These observations indicate that GrB released from T cells induced neurotoxicity by interacting with the membrane bound Gi-coupled PAR-1 receptor and subsequently activated Kv1.3 and Notch-1. These pathways provide novel targets to treat T cell-mediated neuroinflammatory disorders. Kv1.3 is of particular interest since it is expressed on the cell surface, only under pathological circumstances, and early in the cascade of events making it an attractive therapeutic target.
Collapse
Affiliation(s)
- Tongguang Wang
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elliot Choi
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Sung Bin Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - In Hong Yang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Singapore Institute for Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Avindra Nath
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kapinas K, Lowther KM, Kessler CB, Tilbury K, Lieberman JR, Tirnauer JS, Campagnola P, Delany AM. Bone matrix osteonectin limits prostate cancer cell growth and survival. Matrix Biol 2012; 31:299-307. [PMID: 22525512 DOI: 10.1016/j.matbio.2012.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 02/23/2012] [Accepted: 03/23/2012] [Indexed: 11/29/2022]
Abstract
There is considerable interest in understanding prostate cancer metastasis to bone and the interaction of these cells with the bone microenvironment. Osteonectin/SPARC/BM-40 is a collagen binding matricellular protein that is enriched in bone. Its expression is increased in prostate cancer metastases, and it stimulates the migration of prostate carcinoma cells. However, the presence of osteonectin in cancer cells and the stroma may limit prostate tumor development and progression. To determine how bone matrix osteonectin affects the behavior of prostate cancer cells, we modeled prostate cancer cell-bone interactions using the human prostate cancer cell line PC-3, and mineralized matrices synthesized by wild type and osteonectin-null osteoblasts in vitro. We developed this in vitro system because the structural complexity of collagen matrices in vivo is not mimicked by reconstituted collagen scaffolds or by more complex substrates, like basement membrane extracts. Second harmonic generation imaging demonstrated that the wild type matrices had thick collagen fibers organized into longitudinal bundles, whereas osteonectin-null matrices had thinner fibers in random networks. Importantly, a mouse model of prostate cancer metastases to bone showed a collagen fiber phenotype similar to the wild type matrix synthesized in vitro. When PC-3 cells were grown on the wild type matrices, they displayed decreased cell proliferation, increased cell spreading, and decreased resistance to radiation-induced cell death, compared to cells grown on osteonectin-null matrix. Our data support the idea that osteonectin can suppress prostate cancer pathogenesis, expanding this concept to the microenvironment of skeletal metastases.
Collapse
Affiliation(s)
- Kristina Kapinas
- Center for Molecular Medicine, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes. Blood 2011; 117:3596-608. [PMID: 21245480 DOI: 10.1182/blood-2010-08-301556] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Burkitt lymphoma (BL) is classified into 3 clinical subsets: endemic, sporadic, and immunodeficiency-associated BL. So far, possible differences in their gene expression profiles (GEPs) have not been investigated. We studied GEPs of BL subtypes, other B-cell lymphomas, and B lymphocytes; first, we found that BL is a unique molecular entity, distinct from other B-cell malignancies. Indeed, by unsupervised analysis all BLs clearly clustered apart of other lymphomas. Second, we found that BL subtypes presented slight differences in GEPs. Particularly, they differed for genes involved in cell cycle control, B-cell receptor signaling, and tumor necrosis factor/nuclear factor κB pathways. Notably, by reverse engineering, we found that endemic and sporadic BLs diverged for genes dependent on RBL2 activity. Furthermore, we found that all BLs were intimately related to germinal center cells, differing from them for molecules involved in cell proliferation, immune response, and signal transduction. Finally, to validate GEP, we applied immunohistochemistry to a large panel of cases and showed that RBL2 can cooperate with MYC in inducing a neoplastic phenotype in vitro and in vivo. In conclusion, our study provided substantial insights on the pathobiology of BLs, by offering novel evidences that may be relevant for its classification and possibly future treatment.
Collapse
|
12
|
Periostin associates with Notch1 precursor to maintain Notch1 expression under a stress condition in mouse cells. PLoS One 2010; 5:e12234. [PMID: 20805882 PMCID: PMC2923609 DOI: 10.1371/journal.pone.0012234] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 07/16/2010] [Indexed: 02/07/2023] Open
Abstract
Background Matricellular proteins, including periostin, modulate cell-matrix interactions and cell functions by acting outside of cells. Methods and Findings In this study, however, we reported that periostin physically associates with the Notch1 precursor at its EGF repeats in the inside of cells. Moreover, by using the periodontal ligament of molar from periostin-deficient adult mice (Pn−/− molar PDL), which is a constitutively mechanically stressed tissue, we found that periostin maintained the site-1 cleaved 120-kDa transmembrane domain of Notch1 (N1™) level without regulating Notch1 mRNA expression. N1™ maintenance in vitro was also observed under such a stress condition as heat and H2O2 treatment in periostin overexpressed cells. Furthermore, we found that the expression of a downstream effector of Notch signaling, Bcl-xL was decreased in the Pn−/− molar PDL, and in the molar movement, cell death was enhanced in the pressure side of Pn−/− molar PDL. Conclusion These results suggest the possibility that periostin inhibits cell death through up-regulation of Bcl-xL expression by maintaining the Notch1 protein level under the stress condition, which is caused by its physical association with the Notch1 precursor.
Collapse
|
13
|
Abstract
SPARC (secreted protein acidic and rich in cysteine, also known as osteonectin or BM-40) is a widely expressed profibrotic protein with pleiotropic roles, which have been studied in a variety of conditions. Notably, SPARC is linked to human obesity; SPARC derived from adipose tissue is associated with insulin resistance and secretion of SPARC by adipose tissue is increased by insulin and the adipokine leptin. Furthermore, SPARC is associated with diabetes complications such as diabetic retinopathy and nephropathy, conditions that are ameliorated in the Sparc-knockout mouse model. As a regulator of the extracellular matrix, SPARC also contributes to adipose-tissue fibrosis. Evidence suggests that adipose tissue becomes increasingly fibrotic in obesity. Fibrosis of subcutaneous adipose tissue may restrict accumulation of triglycerides in this type of tissue. These triglycerides are, therefore, diverted and deposited as ectopic lipids in other tissues such as the liver or as intramyocellular lipids in skeletal muscle, which predisposes to insulin resistance. Hence, SPARC may represent a novel and important link between obesity and diabetes mellitus. This Review is focused on whether SPARC could be a key player in the pathology of obesity and its related metabolic complications.
Collapse
Affiliation(s)
- Katarina Kos
- Department of Diabetes and Vascular Medicine, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter EX2 5DW, UK.
| | | |
Collapse
|
14
|
Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone 2010; 46:281-5. [PMID: 19679213 PMCID: PMC3073451 DOI: 10.1016/j.bone.2009.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/31/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Recently there has been increased interest in the regulatory interactions between osteoblasts and cells in the surrounding bone marrow microenvironment. The proximity of hematopoietic stem cells (HSCs) with osteoblastic cells first suggested regulatory interactions, and recent data have highlighted the role of osteoblastic cells in providing a HSC niche. Reports have indicated that direct contact is necessary to mediate the osteoblastic effects and that these effects could be mediated through Notch activation. Notch signaling is important throughout development and also appears to play a critical role in cellular maturation and differentiation of osteoblastic cells and hematopoietic cells as disregulation can lead to bone loss and leukemias, respectively. In this review we discuss the current understanding of Notch signaling and how it functions in hematopoiesis, osteoblastic cells, and the interactions between HSC and their osteoblastic niche.
Collapse
Affiliation(s)
- Jonathan M Weber
- Endocrine Division, Wilmot Cancer Center, Department of Medicine and Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | |
Collapse
|
15
|
Zhang TH, Liu HC, Liao GQ, Liang YJ, Chu M, Wan CQ, Liang LZ, Zheng GS. Detection of Notch signaling molecules in cemento-ossifying fibroma of the jaws. J Oral Pathol Med 2009; 39:263-8. [PMID: 20040020 DOI: 10.1111/j.1600-0714.2009.00842.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the roles of Notch signaling in the oncogenesis and cytodifferentiation of cemento-ossifying fibroma, the expressions of Notch receptors and ligands were detected in COF and normal jaw bones. MATERIALS AND METHODS The expressions of Notch1, Notch3, Jagged1, and Jagged2 were detected by reverse transcriptase polymerase chain reaction and immunohistochemistry respectively in 16 cases of normal bone tissues and 12 cases of COF of the jaws. RESULTS The mRNAs expressions of Notch1, Notch3, Jagged1, and Jagged2 were detected in all specimens. The expression levels of mRNAs in COF were higher than those in normal bones. In COF, Notch proteins staining were showed extensively distribution in fibroblasts and osteoblasts. In normal bone tissue, Notch proteins were expressed in osteoblasts, whereas proteins staining were weaker than those in COF, but no detection in fibroblast-like bone marrow stroma cells. The expressions of Notch receptors and ligands were not detected in cementum-like products or bone matrices. CONCLUSION Our data suggest that Notch signaling may participate in controlling cell differentiation and proliferation in normal bone and COF of the jaws. Notch signaling disorder may be a molecular incident in COF occurrence and development.
Collapse
Affiliation(s)
- Tong-Han Zhang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Delany AM, Hankenson KD. Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J Cell Commun Signal 2009; 3:227-38. [PMID: 19862642 PMCID: PMC2778593 DOI: 10.1007/s12079-009-0076-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 10/01/2009] [Indexed: 12/31/2022] Open
Abstract
Thrombospondin-2 (TSP2) and osteonectin/BM-40/SPARC are matricellular proteins that are highly expressed by bone cells. Mice deficient in either of these proteins show phenotypic alterations in the skeleton, and these phenotypes are most pronounced under conditions of altered bone remodeling. For example, TSP2-null mice have higher cortical bone volume and are resistant to bone loss associated with ovariectomy, whereas SPARC-null mice have decreased trabecular bone volume and fail to demonstrate an increase in bone mineral density in response to a bone-anabolic parathyroid hormone treatment regimen. In vitro, marrow stromal cell (MSC) osteoprogenitors from TSP2-null mice have increased proliferation but delayed formation of mineralized matrix. Similarly, in cultures of SPARC-null MSCs, osteoblastic differentiation and mineralized matrix formation are decreased. Overall, both TSP2 and SPARC positively influence osteoblastic differentiation. Intriguingly, both of these matricellular proteins appear to impact MSC fate through mechanisms that could involve the Notch signaling system. This review provides an overview of the role of TSP2 and SPARC in regulating bone structure, function, and remodeling, as determined by both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Anne M. Delany
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT USA
| | - Kurt David Hankenson
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 311 Hill Pavilion, 380 S. University Ave, Philadelphia, PA 19104-4539 USA
| |
Collapse
|
17
|
Kapinas K, Kessler CB, Delany AM. miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 2009; 108:216-24. [PMID: 19565563 PMCID: PMC2888144 DOI: 10.1002/jcb.22243] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The matricellular protein osteonectin, secreted protein acidic and rich in cysteine (SPARC, BM-40), is the most abundant non-collagenous matrix protein in bone. Matricellular proteins play a fundamental role in the skeleton as regulators of bone remodeling. In the skeleton, osteonectin is essential for the maintenance of bone mass and for balancing bone formation and resorption in response to parathyroid hormone (PTH). It promotes osteoblast differentiation and cell survival. Mechanisms regulating the expression of osteonectin in the skeleton and in other tissues remain poorly understood. We found that the proximal region of the mouse osteonectin 3' untranslated region (UTR) contains a well-conserved, dominant regulatory motif that interacts with microRNAs (miRs)-29a and -29c. Transfection of osteoblastic cells with miR-29a inhibitors increased osteonectin protein levels, whereas transfection of miR-29a precursor RNA decreased osteonectin. miR-29a and -29c were increased during osteoblastic differentiation in vitro. The up-regulation of these miRNAs correlated with decreased osteonectin protein during the matrix maturation and mineralization phases of late differentiation. In contrast, osteonectin transcript levels remained relatively constant during this process, implying repression of translation. Treatment of osteoblasts with LiCl induced miR-29a and -29c expression and decreased osteonectin synthesis. When cells were treated with Dickkopf-1 (Dkk-1), miR-29a and -29c expression was repressed. These data suggest that canonical Wnt signaling, which is increased during osteoblastic differentiation, induces expression of miR-29. Osteonectin and miR-29 are co-expressed in extra-skeletal tissues, and the post-transcriptional mechanisms regulating osteonectin in osteoblasts are likely to be active in other cell systems.
Collapse
Affiliation(s)
- Kristina Kapinas
- Center for Molecular Medicine, University of Connecticut Health Center, 263 Farmington Ave, Farmington, Connecticut 06030
| | - Catherine B. Kessler
- Center for Molecular Medicine, University of Connecticut Health Center, 263 Farmington Ave, Farmington, Connecticut 06030
| | - Anne M. Delany
- Center for Molecular Medicine, University of Connecticut Health Center, 263 Farmington Ave, Farmington, Connecticut 06030
| |
Collapse
|
18
|
Villanova FE, Andrade E, Leal E, Andrade PM, Borra RC, Troncone LRP, Magalhães L, Leite KRM, Paranhos M, Claro J, Srougi M. Erection induced by Tx2-6 toxin of Phoneutria nigriventer spider: expression profile of genes in the nitric oxide pathway of penile tissue of mice. Toxicon 2009; 54:793-801. [PMID: 19524607 DOI: 10.1016/j.toxicon.2009.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/01/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
The peptides Tx2-5 and Tx2-6, isolated from the whole venom of "armed-spider"Phoneutria nigriventer venom, are directly linked with the induction of persistent and painful erection in the penis of mammals. The erection induced by Tx2-6 has been associated with the activation of nitric oxide synthases. There is a scarcity of studies focusing on the outcome of Tx2-6 at the molecular level, by this reason we evaluated the gene profile activity of this toxin at the nitric oxide (NO) pathway. After microarray analyses on cavernous tissue of mice inoculated with Tx2-6 we found that only 10.4% (10/96) of these genes were differentially expressed, showing a limited effect of the toxin on the NO pathway. We found the genes sparc, ednrb, junb, cdkn1a, bcl2, ccl5, abcc1 over-expressed and the genes sod1, s100a10 and fth1 under-expressed after inoculation of Tx2-6. The differential expressions of sparc and ednrb genes were further confirmed using real-time PCR. Interestingly, ednrb activates the L-arginine/NO/cGMP pathway that is involved in the relaxation of the cavernous body. Therefore the priapism induced by Tx2-6 is a consequence of a highly specific interference of this neurotoxin with the NO pathway.
Collapse
Affiliation(s)
- Fabiola E Villanova
- Laboratory of Medical Investigation-LIM55, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Agrawal S, Archer C, Schaffer DV. Computational models of the Notch network elucidate mechanisms of context-dependent signaling. PLoS Comput Biol 2009; 5:e1000390. [PMID: 19468305 PMCID: PMC2680760 DOI: 10.1371/journal.pcbi.1000390] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 04/17/2009] [Indexed: 11/23/2022] Open
Abstract
The Notch signaling pathway controls numerous cell fate decisions during development and adulthood through diverse mechanisms. Thus, whereas it functions as an oscillator during somitogenesis, it can mediate an all-or-none cell fate switch to influence pattern formation in various tissues during development. Furthermore, while in some contexts continuous Notch signaling is required, in others a transient Notch signal is sufficient to influence cell fate decisions. However, the signaling mechanisms that underlie these diverse behaviors in different cellular contexts have not been understood. Notch1 along with two downstream transcription factors hes1 and RBP-Jk forms an intricate network of positive and negative feedback loops, and we have implemented a systems biology approach to computationally study this gene regulation network. Our results indicate that the system exhibits bistability and is capable of switching states at a critical level of Notch signaling initiated by its ligand Delta in a particular range of parameter values. In this mode, transient activation of Delta is also capable of inducing prolonged high expression of Hes1, mimicking the “ON” state depending on the intensity and duration of the signal. Furthermore, this system is highly sensitive to certain model parameters and can transition from functioning as a bistable switch to an oscillator by tuning a single parameter value. This parameter, the transcriptional repression constant of hes1, can thus qualitatively govern the behavior of the signaling network. In addition, we find that the system is able to dampen and reduce the effects of biological noise that arise from stochastic effects in gene expression for systems that respond quickly to Notch signaling. This work thus helps our understanding of an important cell fate control system and begins to elucidate how this context dependent signaling system can be modulated in different cellular settings to exhibit entirely different behaviors. The Notch signaling pathway is an evolutionarily conserved signaling system that is involved in various cell fate decisions, both during development of an organism and during adulthood. While the same core circuit functions in various different cellular contexts, it has experimentally been shown to elicit varied behaviors and responses. On the one hand, it functions as a cellular oscillator critical for somitogenesis, whereas in other situations, it can function as a cell fate switch to pattern developing tissue, for example in the Drosophila eye. Furthermore, malfunctioning of Notch signaling is implicated in various cancers. To better understand the underlying mechanisms that allow the network to function distinctly in different contexts, we have mathematically modeled the behavior of the Notch network, encompassing the Notch gene along with two of its downstream effector transcription factors, which together form a network of positive and negative feedback loops. Our results indicate that the qualitative and quantitative behavior of the system can readily be tuned based on key parameters to reflect its multiple roles. Furthermore, our results provide insights into alterations in the signaling system that lead to malfunction and hence disease, which could be used to identify potential drug targets for therapy.
Collapse
Affiliation(s)
- Smita Agrawal
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Colin Archer
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - David V. Schaffer
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Machado do Reis L, Kessler CB, Adams DJ, Lorenzo J, Jorgetti V, Delany AM. Accentuated osteoclastic response to parathyroid hormone undermines bone mass acquisition in osteonectin-null mice. Bone 2008; 43:264-273. [PMID: 18499553 PMCID: PMC2604811 DOI: 10.1016/j.bone.2008.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 03/25/2008] [Accepted: 03/28/2008] [Indexed: 12/24/2022]
Abstract
Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone. In the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 microg/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin-/- mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH.
Collapse
Affiliation(s)
| | | | | | - Joseph Lorenzo
- University of Connecticut Heath Center, Farmington, CT, USA
| | | | - Anne M Delany
- University of Connecticut Heath Center, Farmington, CT, USA.
| |
Collapse
|
21
|
Delany AM, McMahon DJ, Powell JS, Greenberg DA, Kurland ES. Osteonectin/SPARC polymorphisms in Caucasian men with idiopathic osteoporosis. Osteoporos Int 2008; 19:969-78. [PMID: 18084690 PMCID: PMC2888145 DOI: 10.1007/s00198-007-0523-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 10/29/2007] [Indexed: 11/26/2022]
Abstract
UNLABELLED Animal models suggest a role for osteonectin/SPARC in determination of bone mass. We found haplotypes consisting of three single nucleotide polymorphisms (SNPs) in the 3' untranslated region (UTR) of the osteonectin gene are associated with bone density in Caucasian men with idiopathic osteoporosis. INTRODUCTION Osteonectin is a matricellular protein regulating matrix assembly, osteoblast differentiation, and survival. Animal studies indicate that osteonectin is essential for normal bone mass. The 3' UTR is a regulatory region controlling mRNA stability, trafficking, and translation, and we determined whether osteonectin 3' UTR haplotypes could be associated with bone mass and/or idiopathic osteoporosis. METHODS Single strand conformation polymorphism and allele-specific PCR analysis were used to assess alleles at osteonectin cDNA bases 1046, 1599, and 1970, using genomic DNA from middle-aged Caucasian men with idiopathic, low turnover osteoporosis (n = 56) and matched controls (n = 59). Bone density was measured by DXA at spine, hip and radius. Allele and haplotype frequencies were analyzed by Chi square analysis and Fisher's exact test. RESULTS Five common osteonectin 3' UTR haplotypes were identified. The frequency of one haplotype (1046C-1599C-1970T) was higher in controls compared with patients, and this haplotype was also associated with higher bone densities at multiple sites in patients. In contrast, a second haplotype (1046C-1599G-1970T) was associated with lower bone densities in patients at multiple sites. CONCLUSIONS Osteonectin regulates skeletal remodeling and bone mass in animals, and haplotypes in the 3' UTR of this gene are associated with bone density in Caucasian men with idiopathic osteoporosis.
Collapse
Affiliation(s)
- A M Delany
- Center for Molecular Medicine, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | | | | | | | | |
Collapse
|