1
|
Keller BN, Snyder AE, Coker CR, Aguilar EA, O’Brien MK, Bingaman SS, Arnold AC, Hajnal A, Silberman Y. Vagus nerve damage increases alcohol intake and preference in a nonpreferring rat line: Relationship to vagal regulation of the hypothalamic-pituitary-adrenal axis. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:488-498. [PMID: 38311347 PMCID: PMC10939901 DOI: 10.1111/acer.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Clinical and preclinical research indicates that gastric weight loss surgeries, such as Roux-en-Y gastric bypass surgery, can induce alcohol use disorder (AUD). While numerous mechanisms have been proposed for these effects, one relatively unexplored potential mechanism is physical damage to the gastric branch of the vagus nerve, which can occur during bypass surgery. Therefore, we hypothesized that direct damage to the gastric branch of the vagus nerve, without altering other aspects of gastric anatomy, could result in increased alcohol intake. METHODS To test this hypothesis, we compared alcohol intake and preference in multiple models in male Sprague-Dawley rats that received selective gastric branch vagotomy (VX) with rats who underwent sham surgery. Because the vagus nerve regulates hypothalamic-pituitary-adrenal (HPA) axis function, and alterations to HPA function are critical to the escalation of non-dependent alcohol intake, we also tested the hypothesis that gastric VX increases HPA function. RESULTS We found that VX increases alcohol intake and preference in the every-other-day, two-bottle choice test and increases preference for 1 g/kg alcohol in the conditioned place preference test. The effects were selective for alcohol, as sucrose intake and preference were not altered by VX. We also found that VX increases corticotropin releasing factor (CRF) mRNA in the paraventricular nucleus of the hypothalamus (PVN), increases putative PVN CRF neuronal action potential firing, and increases corticosterone levels. CONCLUSIONS Overall, these findings suggest that the vagus nerve may play a critical role in regulating HPA axis function via modulation of PVN CRF mRNA expression and putative PVN CRF neuronal activity. Furthermore, disruptions to vagal regulation of HPA axis function may increase alcohol intake and preference.
Collapse
Affiliation(s)
- Bailey N. Keller
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Angela E. Snyder
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Caitlin R. Coker
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Elizabeth A. Aguilar
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Mary K. O’Brien
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Sarah S. Bingaman
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Amy C. Arnold
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Andras Hajnal
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Yuval Silberman
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| |
Collapse
|
2
|
Kiuchi M, Uno T, Hasegawa T, Koyama K, Horiuchi M. Influence of short-term hypoxic exposure on spatial learning and memory function and brain-derived neurotrophic factor in rats-A practical implication to human's lost way. Front Behav Neurosci 2024; 18:1330596. [PMID: 38380151 PMCID: PMC10876868 DOI: 10.3389/fnbeh.2024.1330596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
The present study aimed to investigate the effects of a short period of normobaric hypoxic exposure on spatial learning and memory, and brain-derived neurotrophic factor (BDNF) levels in the rat hippocampus. Hypoxic conditions were set at 12.5% O2. We compared all variables between normoxic trials (Norm), after 24 h (Hypo-24 h), and after 72 h of hypoxic exposure (Hypo-72 h). Spatial learning and memory were evaluated by using a water-finding task in an open field. Time to find water drinking fountains was significantly extended in Hypo 24 h (36.2 ± 21.9 s) compared to those in Norm (17.9 ± 12.8 s; P < 0.05), whereas no statistical differences between Norm and Hypo-72 h (22.7 ± 12.3 s). Moreover, hippocampal BDNF level in Hypo-24 h was significantly lower compared to Norm (189.4 ± 28.4 vs. 224.9 ± 47.7 ng/g wet tissue, P < 0.05), whereas no statistically differences in those between Norm and Hypo-72 h (228.1 ± 39.8 ng/g wet tissue). No significant differences in the changes in corticosterone and adrenocorticotropic hormone levels were observed across the three conditions. When data from Hypo-24 h and Hypo-72 h of hypoxia were pooled, there was a marginal negative relationship between the time to find drinking fountains and BDNF (P < 0.1), and was a significant negative relationship between the locomotor activities and BDNF (P < 0.05). These results suggest that acute hypoxic exposure (24 h) may impair spatial learning and memory; however, it recovered after 72 h of hypoxic exposure. These changes in spatial learning and memory may be associated with changes in the hippocampal BDNF levels in rats.
Collapse
Affiliation(s)
- Masataka Kiuchi
- Graduate School Department of Interdisciplinary Research, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Tadashi Uno
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
| | - Tatsuya Hasegawa
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
| | - Katsuhiro Koyama
- Faculty of Sport Science, Yamanashi Gakuin University, Kofu, Yamanashi, Japan
| | - Masahiro Horiuchi
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
- Faculty of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Kanoya, Kagoshima, Japan
| |
Collapse
|
3
|
Three Water Restriction Schedules Used in Rodent Behavioral Tasks Transiently Impair Growth and Differentially Evoke a Stress Hormone Response without Causing Dehydration. eNeuro 2021; 8:ENEURO.0424-21.2021. [PMID: 34815297 PMCID: PMC8672445 DOI: 10.1523/eneuro.0424-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Water restriction is commonly used to motivate rodents to perform behavioral tasks; however, its effects on hydration and stress hormone levels are unknown. Here, we report daily body weight and bi-weekly packed red blood cell volume and corticosterone (CORT) in adult male rats across 80 days for three commonly used water restriction schedules. We also assessed renal adaptation to water restriction using postmortem histologic evaluation of renal medulla. A control group received ad libitum water. After one week of water restriction, rats on all restriction schedules resumed similar levels of growth relative to the control group. Normal hydration was observed, and water restriction did not drive renal adaptation. An intermittent restriction schedule was associated with an increase in CORT relative to the control group. However, intermittent restriction evokes a stress response which could affect behavioral and neurobiological results. Our results also suggest that stable motivation in behavioral tasks may only be achieved after one week of restriction.
Collapse
|
4
|
Ash H, Smith TE, Knight S, Buchanan-Smith HM. Measuring physiological stress in the common marmoset (Callithrix jacchus): Validation of a salivary cortisol collection and assay technique. Physiol Behav 2017; 185:14-22. [PMID: 29248632 DOI: 10.1016/j.physbeh.2017.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/23/2017] [Accepted: 12/14/2017] [Indexed: 11/26/2022]
Abstract
Cortisol levels are often used as a physiological measure of the stress response in captive primates, with non-invasive measures of this being an important step in welfare assessment. We report a method of collecting saliva samples voluntarily from unrestrained captive common marmosets (Callithrix jacchus), and validate an enzyme-linked immunosorbent assay (ELISA) technique previously unused in this species. Saliva samples were collected from marmosets housed in pairs in a UK laboratory. The assay showed parallelism, precision, accuracy and sensitivity, meeting the criteria typically used to investigate the effectiveness of new analytical techniques. Use of Salimetrics® Oral Swabs considerably increased the amount of cortisol recovered in comparison with previous studies using cotton buds. However, while use of banana on the swabs can encourage chewing, it may influence results. Although increases in cortisol levels have traditionally been interpreted as an indicator of stress in primates, there are many factors that affect the hypothalamic-pituitary-adrenal axis, with some studies showing decreases in cortisol levels post-stressor. Following a likely stressful event (capture for weighing), we also found cortisol levels significantly decreased, possibly due to social buffering or 'blunting' of the HPA axis. Order of weighing also had an effect. The method therefore provided an effective non-invasive means of assessing acute changes in cortisol level that may be more useful than previous methods, improving our ability to study physiological aspects of welfare in primates. We discuss methodological considerations, as well as implications of using cortisol as a measure of stress.
Collapse
Affiliation(s)
- Hayley Ash
- Behaviour and Evolution Research Group, Scottish Primate Research Group, Psychology, Faculty of Natural Sciences, University of Stirling, Scotland, UK.
| | - Tessa E Smith
- Department of Biology, University of Chester, Parkgate Road, Chester, England, UK
| | - Simon Knight
- Biomedical Sciences, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire, UK
| | - Hannah M Buchanan-Smith
- Behaviour and Evolution Research Group, Scottish Primate Research Group, Psychology, Faculty of Natural Sciences, University of Stirling, Scotland, UK
| |
Collapse
|
5
|
Kovács L, Kézér FL, Kulcsár-Huszenicza M, Ruff F, Szenci O, Jurkovich V. Hypothalamic-pituitary-adrenal and cardiac autonomic responses to transrectal examination differ with behavioral reactivity in dairy cows. J Dairy Sci 2016; 99:7444-7457. [PMID: 27394950 DOI: 10.3168/jds.2015-10454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/31/2016] [Indexed: 01/21/2023]
Abstract
Behavior, hypothalamic-pituitary-adrenal axis, and cardiac autonomic nervous system (ANS) activity were evaluated in response to transrectal examination in nonlactating Holstein-Friesian cows with different behavioral reactivity. According to behavioral reactions shown to the procedure of fixing the heart rate (HR) monitors, the 20 cows with the highest and the 20 cows with the lowest behavioral reactivity were involved in the study (high responder, n=20; and low responder, n=20, respectively). Activity of the ANS was assessed by HR and HR variability parameters. Blood and saliva were collected at 5 min before (baseline) and 0, 5 10, 15, 20, 30, 40, 60, and 120 min after the examination to determine cortisol concentrations. The examination lasted for 5 min. Cardiac parameters included HR, the root mean square of successive differences between the consecutive interbeat intervals, the high frequency (HF) component of heart rate variability, and the ratio between the low frequency (LF) and HF parameter (LF/HF). Following the examination, peak plasma and saliva cortisol levels and the amplitude of the plasma and saliva cortisol response were higher in high responder cows than in low responders. Areas under the plasma and saliva cortisol response curves were greater in high responder cows. Plasma and salivary cortisol levels correlated significantly at baseline (r=0.91), right after examination (r=0.98), and at peak levels (r=0.96). Area under the HR response curve was higher in low responder cows; however, maximum HR and the amplitude of the HR response showed no differences between groups. Minimum values of both parameters calculated for the examination were higher in high responders. Following the examination, response parameters of root mean square of successive differences and HF did not differ between groups. The maximum and the amplitude of LF/HF response and area under the LF/HF response curve were lower in low responder cows, suggesting a lower sympathetic activation of the ANS. Although changes in behaviors indicated that the procedure was painful for the animals, no differences were observed either in vocalization or in attendant behavior between groups during the examination. Our results demonstrate that behaviorally more reactive animals exhibit increased plasma and salivary cortisol concentrations and higher cardiac autonomic responsiveness to transrectal examination than less reactive cows. Salivary cortisol may substitute for plasma cortisol when assessing response of cattle to stress.
Collapse
Affiliation(s)
- L Kovács
- MTA-SZIE Large Animal Clinical Research Group, Üllő-Dóra major 2225, Hungary; Institute of Animal Husbandry, Faculty of Agricultural and Environmental Science, Szent István University, Páter Károly utca 1, Gödöllő 2100, Hungary.
| | - F L Kézér
- MTA-SZIE Large Animal Clinical Research Group, Üllő-Dóra major 2225, Hungary; Institute of Animal Husbandry, Faculty of Agricultural and Environmental Science, Szent István University, Páter Károly utca 1, Gödöllő 2100, Hungary
| | - M Kulcsár-Huszenicza
- Department and Clinics of Reproduction, Faculty of Veterinary Science, Szent István University, István utca 2, Budapest 1078, Hungary
| | - F Ruff
- Department of Methodology, Hungarian Central Statistical Office, Budapest, Keleti Károly utca 5-7. H-1024, Hungary
| | - O Szenci
- Institute of Animal Husbandry, Faculty of Agricultural and Environmental Science, Szent István University, Páter Károly utca 1, Gödöllő 2100, Hungary
| | - V Jurkovich
- Department of Animal Hygiene, Herd Health and Veterinary Ethology, Faculty of Veterinary Science, Szent István University, István utca 2, Budapest 1078, Hungary
| |
Collapse
|
6
|
Laalaoui A, Fèvre-Montange M, Ahboucha S, Gamrani H. Proopiomelanocortin in the arcuate nucleus of the rodent Meriones shawi: effects of dehydration. Acta Histochem 2011; 113:369-74. [PMID: 20447683 DOI: 10.1016/j.acthis.2010.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/24/2022]
Abstract
Proopiomelanocortin (POMC) is a 36kDa glycoprotein implicated in homeostatic balance. We used in situ hybridization histochemistry coupled with quantitative autoradiography to determine the anatomical distribution of POMC mRNA-expressing neurons in the arcuate nucleus (AN) and to examine the effects of prolonged dehydration on POMC gene expression in a semi-desert rodent, Meriones shawi (Shaw's Jird). In the hypothalamus of control animals, POMC mRNA-expressing neurons were exclusively localized in the AN and they showed a differential distribution and density along its rostro-caudal subdivisions. In dehydrated animals, water deprivation caused a decrease in POMC mRNA labeling in the AN. These results suggest that dehydration stress can induce negative regulation of POMC gene expression in this species. A comparative study of weight variation between control and dehydrated animals showed a weight loss followed by stabilization of weight during prolonged dehydration.
Collapse
|
7
|
Beerling W, Koolhaas JM, Ahnaou A, Bouwknecht JA, de Boer SF, Meerlo P, Drinkenburg WHIM. Physiological and hormonal responses to novelty exposure in rats are mainly related to ongoing behavioral activity. Physiol Behav 2011; 103:412-20. [PMID: 21406199 DOI: 10.1016/j.physbeh.2011.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
Stress research has been dominated by a circular type of reasoning that occurrence of a stress response is bad. Consequently, the stimulus is often interpreted as stressful in terms of aversiveness involving uncontrollability and unpredictability, which may have maladaptive and pathological consequences. However, the hypothalamic-pituitary-adrenal (HPA) axis and sympathico-adrenomedullary (SAM) system are not only activated in response of the organism to challenges, but also prepare and support the body for behavior. Therefore, a considerable part of the physiological and hormonal responses to a certain situation can be a direct reflection of the metabolic requirements for the normal ongoing behavioral activity, rather than of the stressful nature. In order to clarify this, behavioral, physiological, hormonal and electroencephalographic (EEG) responses to novel cage exposure were studied in male Sprague-Dawley rats. Forced confrontation with a novel cage has been interpreted as a psychological and aversive stressor. However, this interpretation is simply based on the occurrence of a stress response. This study aimed at detailed analysis of the time course of the novelty-induced responses. Different parameters were measured simultaneously in freely moving rats, which allowed correlational comparisons. Hereto, radio telemetry using a small implantable transmitter combined with permanent catheters and an automated blood sampling system was used. A camera placed above the cage allowed behavioral observations. The results show that novelty exposure induced significant increases in locomotor activity, heart rate, blood pressure and plasma corticosterone together with a complete lack of sleep as compared to the undisturbed control situation. The latency to reach significance and the duration of responses varied across parameters but all had recovered within 30min after termination of novelty. The behavioral activity (locomotor activity and EEG wakefulness duration) response pattern was significantly correlated with that of heart rate, blood pressure and plasma corticosterone. Behavioral observations showed mainly explorative behavior in response to novelty. Therefore, the present results indicate that the novelty-induced physiological and hormonal responses are closely related to the ongoing, mainly explorative behavioral activity induced by novelty. An interpretation in terms of metabolic support of ongoing behavior seems to be more appropriate than the frequently used stress interpretation. The present study also emphasizes the added value of simultaneous assessment of behavioral, physiological and hormonal parameters under controlled, non-confounding conditions.
Collapse
Affiliation(s)
- W Beerling
- Department of Neuroscience, Janssen Research & Development, a division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | | | | | | | | | | | | |
Collapse
|
8
|
Koolhaas JM, Bartolomucci A, Buwalda B, de Boer SF, Flügge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G, Sgoifo A, Steimer T, Stiedl O, van Dijk G, Wöhr M, Fuchs E. Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev 2011; 35:1291-301. [PMID: 21316391 DOI: 10.1016/j.neubiorev.2011.02.003] [Citation(s) in RCA: 870] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 02/04/2011] [Accepted: 02/05/2011] [Indexed: 01/17/2023]
Abstract
With the steadily increasing number of publications in the field of stress research it has become evident that the conventional usage of the stress concept bears considerable problems. The use of the term 'stress' to conditions ranging from even the mildest challenging stimulation to severely aversive conditions, is in our view inappropriate. Review of the literature reveals that the physiological 'stress' response to appetitive, rewarding stimuli that are often not considered to be stressors can be as large as the response to negative stimuli. Analysis of the physiological response during exercise supports the view that the magnitude of the neuroendocrine response reflects the metabolic and physiological demands required for behavioural activity. We propose that the term 'stress' should be restricted to conditions where an environmental demand exceeds the natural regulatory capacity of an organism, in particular situations that include unpredictability and uncontrollability. Physiologically, stress seems to be characterized by either the absence of an anticipatory response (unpredictable) or a reduced recovery (uncontrollable) of the neuroendocrine reaction. The consequences of this restricted definition for stress research and the interpretation of results in terms of the adaptive and/or maladaptive nature of the response are discussed.
Collapse
Affiliation(s)
- J M Koolhaas
- Department Behavioral Physiology, Center for Behavior and Neurosciences, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|