1
|
Milyutina YP, Arutjunyan AV, Korenevsky AV, Selkov SA, Kogan IY. Neurotrophins: are they involved in immune tolerance in pregnancy? Am J Reprod Immunol 2023; 89:e13694. [PMID: 36792972 DOI: 10.1111/aji.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
In this review, an attempt was made to substantiate the possibility for neurotrophins to be involved in the development of immune tolerance based on data accumulated on neurotrophin content and receptor expression in the trophoblast and immune cells, in particular, in natural killer cells. Numerous research results are reviewed to show that the expression and localization of neurotrophins along with their high-affinity tyrosine kinase receptors and low-affinity p75NTR receptor in the mother-placenta-fetus system indicate the important role of neurotrophins as binding molecules in regulating the crosstalk between the nervous, endocrine, and immune systems in pregnancy. An imbalance between these systems can occur with tumor growth and pathological processes observed in pregnancy complications and fetal development anomalies.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Alexander V Arutjunyan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Andrey V Korenevsky
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Sergey A Selkov
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| |
Collapse
|
2
|
Cao J, Li H, Tang H, Gu X, Wang Y, Guan D, Du J, Fan Y. Stiff Extracellular Matrix Promotes Invasive Behaviors of Trophoblast Cells. Bioengineering (Basel) 2023; 10:bioengineering10030384. [PMID: 36978775 PMCID: PMC10045595 DOI: 10.3390/bioengineering10030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The effect of extracellular matrix (ECM) stiffness on embryonic trophoblast cells invasion during mammalian embryo implantation remains largely unknown. In this study, we investigated the effects of ECM stiffness on various aspects of human trophoblast cell behaviors during cell-ECM interactions. The mechanical microenvironment of the uterus was simulated by fabricating polyacrylamide (PA) hydrogels with different levels of stiffness. The human choriocarcinoma (JAR) cell lineage was used as the trophoblast model. We found that the spreading area of JAR cells, the formation of focal adhesions, and the polymerization of the F-actin cytoskeleton were all facilitated with increased ECM stiffness. Significantly, JAR cells also exhibited durotactic behavior on ECM with a gradient stiffness. Meanwhile, stiffness of the ECM affects the invasion of multicellular JAR spheroids. These results demonstrated that human trophoblast cells are mechanically sensitive, while the mechanical properties of the uterine microenvironment could play an important role in the implantation process.
Collapse
Affiliation(s)
- Jialing Cao
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Institute of Nanotechnology for Single Cell Analysis, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Sino-French Engineer School, Beihang University, Beijing 100083, China
| | - Hangyu Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Tang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Institute of Nanotechnology for Single Cell Analysis, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xuenan Gu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Institute of Nanotechnology for Single Cell Analysis, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Institute of Nanotechnology for Single Cell Analysis, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Institute of Nanotechnology for Single Cell Analysis, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
3
|
Blockade of stromal cell-derived factor-1 signaling disturbs the invasiveness of human extravillous trophoblast cells. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
4
|
Meakin C, Kim C, Lampert T, Aleksunes LM. High-throughput screening of toxicants that modulate extravillous trophoblast migration. Toxicol Lett 2023; 375:1-7. [PMID: 36535517 PMCID: PMC9877196 DOI: 10.1016/j.toxlet.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Migration and subsequent invasion of extravillous trophoblasts into the uterus is essential for proper formation of the placenta. Disruption of these processes may result in poor pregnancy outcomes including preeclampsia, placenta accreta, fetal growth restriction, or fetal death. Currently, there are several methods for quantifying cell migration and invasion in vitro, each with limitations. Therefore, we developed a novel, high-throughput method to screen chemicals for their ability to alter human trophoblast migration. Human HTR8/SVneo trophoblast cells were cultured in Oris™ cell migration plates containing stopper barriers. After EVT cells attached and chemicals were added to media, stoppers were removed thereby creating a cell-free detection zone for migration. Entry of trophoblasts into this zone was monitored through imaging every 6 h and used to calculate a relative cell density. Chemicals known to increase (epidermal growth factor) and decrease (pertussis toxin and cadmium) trophoblast migration were used to validate this in vitro method. Next, a panel of environmental chemicals including bisphenols, mycoestrogens, and flame retardants, were screened for their ability to alter trophoblast invasion. In conclusion, a real-time method to track extravillous trophoblast migration offers potential for screening contaminants as placental toxicants.
Collapse
Affiliation(s)
- Cassandra Meakin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Christine Kim
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | | | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
5
|
Possible transfer of lncRNA H19-derived miRNA miR-675-3p to adjacent H19-non-expressing trophoblast cells in near-term mouse placenta. Histochem Cell Biol 2022; 159:363-375. [PMID: 36484822 DOI: 10.1007/s00418-022-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
LncRNA H19 serves as a regulatory RNA in mouse placental development. However, there is little information available on the in situ expression of H19 in the late-gestation mouse placenta. In this study, we performed quantitative polymerase chain reaction (qPCR) and in situ hybridization (ISH) analyses of lncRNA H19 and its exon 1-derived miRNA miR-675-3p to identify cell types expressing these non-coding RNAs in the mouse placenta during mid-to-late gestation. By qPCR analysis, we confirmed that H19 was highly expressed during mid-to-late gestation (E10.5-E18.5) and that H19-derived miRNA miR-675-3p was remarkably upregulated in the E18.5 placenta. ISH analysis revealed trophoblast cell type-specific expression of lncRNA H19 and miR-675-3p during later stages of gestation. In the junctional zone and decidua of late-gestation placenta, H19 was expressed in trophoblast giant cells and glycogen trophoblast cells; however, H19 was absent in spongiotrophoblast cells. In the labyrinth and chorionic plate, H19 was present in sinusoidal mononuclear trophoblast giant cells, fetal vascular endothelial cells, and basal chorionic trophoblast cells, but not in syncytiotrophoblasts. As expected, these lncRNA H19-expressing cells exhibited miR-675-3p in the E18.5 placenta. Intriguingly, miR-675-3p was also present in H19-negative spongiotrophoblast cells and syncytiotrophoblasts, implying the possible transfer of miR-675-3p from H19-exprssing cells to adjacent H19-non-expressing trophoblast cells. These findings suggest that the mouse placenta expresses lncRNA H19 in a trophoblast cell type-specific fashion during later stages of gestation.
Collapse
|
6
|
Qu H, Khalil RA. Role of ADAM and ADAMTS Disintegrin and Metalloproteinases in Normal Pregnancy and Preeclampsia. Biochem Pharmacol 2022; 206:115266. [PMID: 36191626 DOI: 10.1016/j.bcp.2022.115266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Normal pregnancy (NP) involves intricate processes starting with egg fertilization, proceeding to embryo implantation, placentation and gestation, and culminating in parturition. These pregnancy-related processes require marked uteroplacental and vascular remodeling by proteolytic enzymes and metalloproteinases. A disintegrin and metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) are members of the zinc-dependent family of proteinases with highly conserved protein structure and sequence homology, which include a pro-domain, and a metalloproteinase, disintegrin and cysteine-rich domain. In NP, ADAMs and ADAMTS regulate sperm-egg fusion, embryo implantation, trophoblast invasion, placental angiogenesis and spiral arteries remodeling through their ectodomain proteolysis of cell surface cytokines, cadherins and growth factors as well as their adhesion with integrins and cell-cell junction proteins. Preeclampsia (PE) is a serious complication of pregnancy characterized by new-onset hypertension (HTN) in pregnancy (HTN-Preg) at or after 20 weeks of gestation, with or without proteinuria. Insufficient trophoblast invasion of the uterine wall, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia/hypoxia are major initiating events in the pathogenesis of PE. Placental ischemia/hypoxia increase the release of reactive oxygen species (ROS), which lead to aberrant expression/activity of certain ADAMs and ADAMTS. In PE, abnormal expression/activity of specific ADAMs and ADAMTS that function as proteolytic sheddases could alter proangiogenic and growth factors, and promote the release of antiangiogenic factors and inflammatory cytokines into the placenta and maternal circulation leading to generalized inflammation, endothelial cell injury and HTN-Preg, renal injury and proteinuria, and further decreases in uteroplacental blood flow, exaggeration of placental ischemia, and consequently fetal growth restriction. Identifying the role of ADAMs and ADAMTS in NP and PE has led to a better understanding of the underlying molecular and vascular pathways, and advanced the potential for novel biomarkers for prediction and early detection, and new approaches for the management of PE.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA.
| |
Collapse
|
7
|
Li Y, Zhong L, Lee CL, Chiu PCN, Chen M. Identification of Adrenomedullin-Induced S-Nitrosylated Proteins in JEG-3 Placental Cells. Reprod Sci 2021; 29:1296-1304. [PMID: 34462873 PMCID: PMC8907116 DOI: 10.1007/s43032-021-00663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
Extravillous cytotrophoblast (EVCT) is responsible for trophoblast invasion, which is important during placentation. Dysregulation of the process leads to pregnancy complications. S-nitrosylation of proteins is associated with cell invasion in many cell types. Adrenomedullin (ADM), a polypeptide expressed abundantly in the first-trimester placentas, induces EVCT invasion by upregulation of protein S-nitrosylation. This study aimed to identify the S-nitrosylated proteins induced by ADM in the JEG-3 placental cells. By using affinity chromatography followed by mass spectrometric analysis, tubulin, enolase, eukaryotic translation initiation factor 4A1, actin, annexin II (ANX II), and glyceraldehyde 3-phosphate dehydrogenaseprotein-1 were found to be S-nitrosylated by ADM. In vitro treatment with ADM or S-Nitrosoglutathione (GSNO) significantly increased the ANX II surface expression, but not its total expression in the JEG-3 cells. Translocation of ANX II to cell surface has been reported to act as a cell surface receptor to plasmin, plasminogen, and tissue plasminogen activator (tPA), thereby stimulating cell invasion and migration. However, in this study, ADM-induced surface expression of ANX II in the JEG-3 cells was not associated with changes in the secretory and membrane-bound tPA activities. Future studies are required to understand the roles of surface expression of S-nitrosylated ANX II on trophoblast functions. To conclude, this study provided evidences that ADM regulated the nitric oxide signaling pathway and modulated trophoblast invasion.
Collapse
Affiliation(s)
- Yingting Li
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, China
| | - Liuying Zhong
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, China
| | - Cheuk-Lun Lee
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Philip C N Chiu
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. .,Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Min Chen
- Department of Obstetrics and Gynecology, Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, China.
| |
Collapse
|
8
|
Lala PK, Nandi P, Hadi A, Halari C. A crossroad between placental and tumor biology: What have we learnt? Placenta 2021; 116:12-30. [PMID: 33958236 DOI: 10.1016/j.placenta.2021.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023]
Abstract
Placenta in certain species including the human has evolved as a highly invasive tumor-like organ invading the uterus aned its vasculature to derive oxygen and nutrients for the fetus and exchange waste products. While several excellent reviews have been written comparing hemochorial placentation with tumors, no comprehensive review is available dealing with mechanistic insights into what makes them different, and what tumor biologists can learn from placental biologists, and vice versa. In this review, we analyze the structure-function relationship of the human placenta, emphasizing the functional need of the spatio-temporally orchestrated trophoblast invasiveness for fetal development and growth, and pathological consequences of aberrant invasiveness for fetal and maternal health. We then analyze similarities and differences between the placenta and invasive tumors in terms of hallmarks of cancer, some key molecules regulating their invasive functions, and how placental cancers (choriocarcinomas) or other cancers become refractory or even addicted to these invasion-restraining molecules. We cite in vitro models of human trophoblast and choriocarcinoma cell lines utilized to study mechanisms in normal placental development as well as those responsible for tumor progression. We discuss the pathobiology of hyper-invasive placentas and show thattrophoblastic neoplasias are a unique and heterogeneous class of tumors. We delve into the questions as to why metastasis from other organs rarely occurs at the placental site and whether pregnancy makes the mother more or less vulnerable to cancer-related morbidity/mortality. We attempt to compare trophoblast stem cells and cancer stem cells. Finally, we leave the readers with some thoughts as foods of future investigations.
Collapse
Affiliation(s)
- Peeyush K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada; Associate Scientist, Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada N6C2V5.
| | - Pinki Nandi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada.
| | - Ali Hadi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada.
| | - Chidambra Halari
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
9
|
Savcı Y, Kırbaş OK, Bozkurt BT, Abdik EA, Taşlı PN, Şahin F, Abdik H. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct 2021; 12:5144-5156. [PMID: 33977960 DOI: 10.1039/d0fo02953j] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Due to the prevalence of individuals suffering from chronic wounds, developing safe and effective wound care agents are one of the more prominent fields of research in biology. However, wound healing is a complex, multi-stage biological process, involving multiple sequences of biological responses from different types of cells, secreted mediators, and extracellular matrix elements. Plants have a long history of use in the treatment of wounds. Plant-derived extracellular vesicles, which are secreted nano vesicle messengers responsible for intercellular communications, show promise as a new, biotechnological wound-care agent. In this study, we assessed the wound healing potential of extracellular vesicles isolated from grapefruits - a plant with well-known anti-inflammatory and wound healing properties. Grapefruit extracellular vesicles (GEVs) increased cell viability and cell migration while reducing intracellular ROS production in a dose-dependent manner in HaCaT cells. Expression of proliferation and migration-related genes were raised by GEV treatment in a dose dependent manner. Additionally, GEV treatment increased the tube formation capabilities of treated HUVEC cells. These findings suggest that GEVs can be used as plant-derived wound healing agents, and have shown potential as a biotechnological agent for wound healing. Further development and study of plant-derived extracellular vesicles may lead to the realization of their full potential.
Collapse
Affiliation(s)
- Yağız Savcı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Batuhan Turhan Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| |
Collapse
|
10
|
Wang N, Yang Q, Gu Y, Zhen X, Shi Y, Gu W, Wang J, He Y, Wang J. MNSFβ Promotes the Proliferation and Migration of Human Extravillous Trophoblast Cells and the Villus Expression Level of MNSFβ Is Decreased in Recurrent Miscarriage Patients. Gynecol Obstet Invest 2020; 86:27-39. [PMID: 33326956 DOI: 10.1159/000506309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/31/2020] [Indexed: 11/19/2022]
Abstract
AIMS The invasion of extravillous trophoblast (EVT) cells into maternal decidua is essential for the establishment and maintenance of pregnancy. Derangement of EVT cell invasion might cause pregnancy complications including recurrent miscarriage (RM). We previously reported that deficiency of monoclonal nonspecific suppressor factor beta (MNSFβ) led to the early pregnancy failure in mice and the decidual MNSFβ expression level in RM patients was significantly decreased, but the underlying molecular mechanism of the role that MNSFβ played at the maternal-fetal interface remains unclear. Thus, in the present study, we determined effects of downregulated MNSFβ expression on human EVT cell activities. METHODS The MNSFβ expression in first-trimester human decidual and placental villus tissues was detected, respectively, by immunofluorescence or immunohistochemical analyses. The MNSFβ expression level in the immortalized first-trimester human EVT cell line HTR8/SVneo was downregulated by transfecting the small interfering RNA against MNSFβ and upregulated by transfecting the recombinant pDsRed-MNSFβ plasmids. The proliferation, migration, invasion, and apoptosis activities of HTR8/SVneo cells were, respectively, determined by cytometry assay, scratch test, transwell assay, and FITC/PI staining. The expression levels of P53, RhoA, Bcl-2, Bax, and MMP-9 in HTR8/SVneo cells, as well as the expression levels of MNSFβ and RhoA in placental villi of RM patients and physically normal pregnant women (NP), were examined by Western blot analysis. RESULTS MNSFβ protein signals were observed in first-trimester human villus and extravillous trophoblast cells. The downregulated MNSFβ expression significantly attenuated the proliferation, migration, and invasion abilities of HTR8/SVneo cells, accompanied with the obviously decreased expression levels of P53, RhoA, Bcl-2, Bax, and MMP-9, whereas the upregulated MNSFβ expression in HTR8/SVneo cells represented the inverse effects. Furthermore, expression levels of MNSFβ and RhoA in first-trimester human placental villus tissues of RM patients were significantly decreased compared to that of NP women. CONCLUSION These data suggested that MNSFβ promotes proliferation and migration of human EVT cells, probably via the P53 signaling pathway, and the deficiency of MNSFβ in placental villi might lead to early pregnancy loss by reducing proliferation and invasion activities of EVTs.
Collapse
Affiliation(s)
- Nan Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Qian Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Yan Gu
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xingxing Zhen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Yan Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Wenwen Gu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Jianmei Wang
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yaping He
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China,
| | - Jian Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Rampersaud AM, Dunk CE, Lye SJ, Renaud SJ. Palmitic acid induces inflammation in placental trophoblasts and impairs their migration toward smooth muscle cells through plasminogen activator inhibitor-1. Mol Hum Reprod 2020; 26:850-865. [PMID: 32898274 DOI: 10.1093/molehr/gaaa061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
A critical component of early human placental development includes migration of extravillous trophoblasts (EVTs) into the decidua. EVTs migrate toward and displace vascular smooth muscle cells (SMCs) surrounding several uterine structures, including spiral arteries. Shallow trophoblast invasion features in several pregnancy complications including preeclampsia. Maternal obesity is a risk factor for placental dysfunction, suggesting that factors within an obese environment may impair early placental development. Herein, we tested the hypothesis that palmitic acid, a saturated fatty acid circulating at high levels in obese women, induces an inflammatory response in EVTs that hinders their capacity to migrate toward SMCs. We found that SMCs and SMC-conditioned media stimulated migration and invasion of an EVT-like cell line, HTR8/SVneo. Palmitic acid impaired EVT migration and invasion toward SMCs, and induced expression of several vasoactive and inflammatory mediators in EVTs, including endothelin, interleukin (IL)-6, IL-8 and PAI1. PAI1 was increased in plasma of women with early-onset preeclampsia, and PAI1-deficient EVTs were protected from the anti-migratory effects of palmitic acid. Using first trimester placental explants, palmitic acid exposure decreased EVT invasion through Matrigel. Our findings reveal that palmitic acid induces an inflammatory response in EVTs and attenuates their migration through a mechanism involving PAI1. High levels of palmitic acid in pathophysiological situations like obesity may impair early placental development and predispose to placental dysfunction.
Collapse
Affiliation(s)
- Amanda M Rampersaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Caroline E Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
12
|
Zhu P, Yu H, Zhou K, Bai Y, Qi R, Zhang S. 3,3'-Diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE 2 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:113. [PMID: 32546278 PMCID: PMC7298755 DOI: 10.1186/s13046-020-01618-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive tumors in the world. Aryl hydrocarbon receptor (AHR) has been reported to promote tumor metastasis and epithelial-mesenchymal transition (EMT) is a vital process of conferring cancer cells capabilities of migration and invasion. However, the mechanism by which modulation of AHR can inhibit tumor metastasis remains unknown. Thus, we aim to investigate the underlying mechanism regarding reversing EMT process of ESCC through modulation of AHR. METHODS We used AHR selective modulator 3,3'-diindolylmethane (DIM) to treat ESCC cell lines TE1 and KYSE150 so as to examine alterations of migration and invasion by wound healing and Transwell assay. Western blotting (WB) and qPCR were performed to detect relative genes and proteins changes regarding EMT process. Cell transfection was utilized for confirming pathways involved in DIM-induced reversal of EMT and in vivo assay was conducted for verification of the underlying mechanism. Co-IP assay was conducted for detecting protein-protein interactions. RESULTS AHR was overexpressed in ESCC and modulation of AHR by DIM could inhibit migration and invasion as well as downregulate mesenchymal cell markers β-Catenin, Vimentin and Slug and upregulate epithelial cell marker Claudin-1. Meanwhile, synergically overexpression of AHR, RhoA and ROCK1 correlated with poor clinical outcomes. DIM could inhibit COX2/PGE2 pathway by targeting AHR, and COX2 selective inhibitor Celecoxib could suppress EMT and metastasis. Results of PGE2 treatment were opposite to that of Celecoxib. Meanwhile, blockade of RhoA/ROCK1 pathway also exerted prohibitive effects on EMT and metastasis. WB results showed COX2/PGE2 pathway could be regulated by RhoA/ROCK1 pathway and DIM could inhibit RhoA/ROCK1 pathway through modulation of AHR. In vivo assay verified the results in vitro. Co-IP results showed DIM could modulate AHR to reverse EMT directly through inhibition of interaction between AHR and EGFR (epidermal growth factor receptor) so as to block RhoA/ROCK1-mediated COX2/PGE2 pathway which was connected by NF-κB. CONCLUSIONS In brief, modulation of AHR by DIM can reverse EMT process and inhibit metastasis of ESCC through repressing RhoA/ROCK1-mediated COX2/PGE2 pathway.
Collapse
Affiliation(s)
- Peiyao Zhu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Huayun Yu
- Department of Gynecology and Obstetrics, Clinical Medical School, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, China
| | - Kun Zhou
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Yu Bai
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China.
| | - Shuguang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
13
|
Stage-specific feed intake restriction differentially regulates placental traits and proteome of goats. Br J Nutr 2019; 119:1119-1132. [PMID: 29759106 DOI: 10.1017/s0007114518000727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A total of twenty-four healthy twin-bearing Liuyang black goats were allocated to two trials. In Trial 1, twelve goats received either the control diet (CG, n 6, 100 % feed) or restricted diet (RG, n 6, 60 % feed of CG) from gestation days 26 to 65 after synchronisation. In Trial 2, the remaining goats were randomly and equally divided into two treatments: CG and RG from days 95 to 125 of gestation. Placental traits, fetal weight, serum parameters, nitric oxide (NO), angiogenesis gene expression and cotyledon proteome were measured at the end of each trial. In early pregnancy, the total and relative weights of placenta, uterine caruncle and cotyledon, as well as fetus, were increased (P<0·05) in RG. The NO content in maternal serum was also increased (P<0·05) in RG. In all, fifty differentially expressed proteins were identified in cotyledon. The up-regulated proteins are related to proliferation and fission of trophoblast cell and the placenta angiogenesis. During the late pregnancy trial, placental weight was increased (P<0·05) in RG, but weight of the fetus was decreased (P<0·05). The capillary density in the cotyledon was also decreased (P<0·01). A total of fifty-eight proteins were differentially expressed in cotyledon. The up-regulated proteins in RG are related to placenta formation, blood flow regulation and embryonic development. These results indicated that feed intake restriction during gestation influenced the placental and fetal development in a stage-dependent manner. These findings have important implications for developing novel nutrient management strategies in goat production.
Collapse
|
14
|
Read JE, Cabrera-Sharp V, Offord V, Mirczuk SM, Allen SP, Fowkes RC, de Mestre AM. Dynamic changes in gene expression and signalling during trophoblast development in the horse. Reproduction 2018; 156:313-330. [PMID: 30306765 PMCID: PMC6170800 DOI: 10.1530/rep-18-0270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Equine chorionic girdle trophoblast cells play important endocrine and immune functions critical in supporting pregnancy. Very little is known about the genes and pathways that regulate chorionic girdle trophoblast development. Our aim was to identify genes and signalling pathways active in vivo in equine chorionic girdle trophoblast within a critical 7-days window. We exploited the late implantation of the equine conceptus to obtain trophoblast tissue. An Agilent equine 44K microarray was performed using RNA extracted from chorionic girdle and chorion (control) from equine pregnancy days 27, 30, 31 and 34 (n = 5), corresponding to the initiation of chorionic girdle trophoblast proliferation, differentiation and migration. Data were analysed using R packages limma and maSigPro, Ingenuity Pathway Analysis and DAVID and verified using qRT-PCR, promoter analysis, western blotting and migration assays. Microarray analysis showed gene expression (absolute log FC >2, FDR-adjusted P < 0.05) was rapidly and specifically induced in the chorionic girdle between days 27 and 34 (compared to day 27, day 30 = 116, day 31 = 317, day 34 = 781 genes). Pathway analysis identified 35 pathways modulated during chorionic girdle development (e.g. FGF, integrin, Rho GTPases, MAPK) including pathways that have limited description in mammalian trophoblast (e.g. IL-9, CD40 and CD28 signalling). Rho A and ERK/MAPK activity was confirmed as was a role for transcription factor ELF5 in regulation of the CGB promoter. The purity and accessibility of chorionic girdle trophoblast proved to be a powerful resource to identify candidate genes and pathways involved in early equine placental development.
Collapse
Affiliation(s)
- Jordan E Read
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Victoria Cabrera-Sharp
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Victoria Offord
- Research Support OfficeThe Royal Veterinary College, London, UK
| | - Samantha M Mirczuk
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Steve P Allen
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Robert C Fowkes
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| | - Amanda M de Mestre
- Department of Comparative Biomedical SciencesThe Royal Veterinary College, Hertfordshire, UK
| |
Collapse
|
15
|
Vailes MT, McCoski SR, Wooldridge LK, Reese ST, Pohler KG, Roper DA, Mercadante VR, Ealy AD. Post-transfer outcomes in cultured bovine embryos supplemented with epidermal growth factor, fibroblast growth factor 2, and insulin-like growth factor 1. Theriogenology 2018; 124:1-8. [PMID: 30317067 DOI: 10.1016/j.theriogenology.2018.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/28/2018] [Accepted: 09/23/2018] [Indexed: 01/24/2023]
Abstract
This work examined the downstream fetal and placental outcomes of introducing a cocktail of uterine-derived growth factors during bovine embryo culture. Abattoir-derived bovine oocytes were matured and fertilized in vitro. On day 4 post-fertilization, ≥ 8-cell embryos were harvested, pooled and exposed to an embryokine mix, termed EFI, which contained recombinant human epidermal growth factor (10 ng/ml), bovine fibroblast growth factor-2 (10 ng/ml) and human insulin-like growth factor 1 (50 ng/ml) or to a carrier-only control treatment (CON). On day 7, individual, transfer-quality embryos were transferred to recipients. Timed ovulation was completed in mature, non-suckled commercial beef cows. Cows either were artificial inseminated (AI) or received an embryo (ET) on day 7 post-estrus (n = 23-31 cows/treatment over 4 replicate studies). The percentage of grade 1 and 2 morulae and blastocysts was greater (P < 0.05) for EFI-treated embryos than CON. The percentage of pregnant cows diagnosed by transrectal ultrasonography did not differ among the AI and ET groups on days 28, 42 and 56 post-estrus. There also were no differences in the ratio of male to female fetuses determined on day 60 post-estrus by transrectal ultrasonography. On day 21 post-estrus, the relative abundance of three interferon-stimulated gene (ISG) transcripts in peripheral leukocytes were not different based on AI/ET group or the sex of the conceptus. Circulating pregnancy-associated glycoprotein (PAG) concentrations differed (P < 0.05) among days. Also, a difference in PAG concentrations (P < 0.05) were detected between male and female pregnancies in the CON-ET group but not in the AI or EFI-ET groups. Crown-rump length was not affected by AI/ET group on day 42 but were less (P < 0.05) in the CON and EFI-ET groups than the AI group on day 56. These findings implicate EFI supplementation as a means for improving transferable embryo production in a bovine IVP system, but it is not clear if this treatment improves embryo competency after ET.
Collapse
Affiliation(s)
- McCauley T Vailes
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sarah R McCoski
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Lydia K Wooldridge
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sydney T Reese
- Department of Animal Sciences, Texas A&M University, College Station, TX, USA
| | - Ky G Pohler
- Department of Animal Sciences, Texas A&M University, College Station, TX, USA
| | - David A Roper
- Department of Animal Sciences & Veterinary Technology, Tarleton State University, Stephenville, TX, USA
| | - Vitor R Mercadante
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Alan D Ealy
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Rho A Regulates Epidermal Growth Factor-Induced Human Osteosarcoma MG63 Cell Migration. Int J Mol Sci 2018; 19:ijms19051437. [PMID: 29751634 PMCID: PMC5983621 DOI: 10.3390/ijms19051437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma, the most common primary bone tumor, occurs most frequently in children and adolescents and has a 5-year survival rate, which is unsatisfactory. As epidermal growth factor receptor (EGFR) positively correlates with TNM (tumor-node-metastasis) stage in osteosarcoma, EGFR may play an important role in its progression. The purpose of this study was to explore potential mechanisms underlying this correlation. We found that EGF promotes MG63 cell migration and invasion as well as stress fiber formation via Rho A activation and that these effects can be reversed by inhibiting Rho A expression. In addition, molecules downstream of Rho A, including ROCK1, LIMK2, and Cofilin, are activated by EGF in MG63 cells, leading to actin stress fiber formation and cell migration. Moreover, inhibition of ROCK1, LIMK2, or Cofilin in MG63 cells using known inhibitors or short hairpin RNA (shRNA) prevents actin stress fiber formation and cell migration. Thus, we conclude that Rho A/ROCK1/LIMK2/Cofilin signaling mediates actin microfilament formation in MG63 cells upon EGFR activation. This novel pathway provides a promising target for preventing osteosarcoma progression and for treating this cancer.
Collapse
|
17
|
Blázquez R, Sánchez-Margallo FM, Álvarez V, Matilla E, Hernández N, Marinaro F, Gómez-Serrano M, Jorge I, Casado JG, Macías-García B. Murine embryos exposed to human endometrial MSCs-derived extracellular vesicles exhibit higher VEGF/PDGF AA release, increased blastomere count and hatching rates. PLoS One 2018; 13:e0196080. [PMID: 29684038 PMCID: PMC5912768 DOI: 10.1371/journal.pone.0196080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Endometrial Mesenchymal Stromal Cells (endMSCs) are multipotent cells with immunomodulatory and pro-regenerative activity which is mainly mediated by a paracrine effect. The exosomes released by MSCs have become a promising therapeutic tool for the treatment of immune-mediated diseases. More specifically, extracellular vesicles derived from endMSCs (EV-endMSCs) have demonstrated a cardioprotective effect through the release of anti-apoptotic and pro-angiogenic factors. Here we hypothesize that EV-endMSCs may be used as a co-adjuvant to improve in vitro fertilization outcomes and embryo quality. Firstly, endMSCs and EV-endMSCs were isolated and phenotypically characterized for in vitro assays. Then, in vitro studies were performed on murine embryos co-cultured with EV-endMSCs at different concentrations. Our results firstly demonstrated a significant increase on the total blastomere count of expanded murine blastocysts. Moreover, EV-endMSCs triggered the release of pro-angiogenic molecules from embryos demonstrating an EV-endMSCs concentration-dependent increase of VEGF and PDGF-AA. The release of VEGF and PDGF-AA by the embryos may indicate that the beneficial effect of EV-endMSCs could be mediating not only an increase in the blastocyst’s total cell number, but also may promote endometrial angiogenesis, vascularization, differentiation and tissue remodeling. In summary, these results could be relevant for assisted reproduction being the first report describing the beneficial effect of human EV-endMSCs on embryo development.
Collapse
Affiliation(s)
- Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Elvira Matilla
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Nuria Hernández
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier G. Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- * E-mail:
| | - Beatriz Macías-García
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
18
|
Rao H, Bai Y, Zhang F, Li Q, Zhuang B, Luo X, Qi H. The role of SATB1 in HTR8/SVneo cells and pathological mechanism of preeclampsia. J Matern Fetal Neonatal Med 2018; 32:2069-2078. [PMID: 29307244 DOI: 10.1080/14767058.2018.1425387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Special AT-rich sequence binding protein 1 (SATB1) play potential roles in invasion and metastasis of tumor cells, and involves in human placental and fetal development. The objective of this study is to explore the role of SATB1 in migration and invasion of trophoblast and the potential mechanism. METHODS Human placental tissues from first trimester, second trimester, term, and preeclampsia (PE) pregnancies were used to detect the expression and subcellular location of SATB1 and β-catenin. The human trophoblast cell line HTR8/SVneo, which was treated with hypoxia/re-oxygenation (H/R), lithium chloride (LiCl) or SATB1-siRNA to investigate the role of SATB1 and β-catenin signaling in human trophoblast function. RESULTS We observed that SATB1 specifically localized within trophoblast cells of placenta tissues. Gradually reduced expression of SATB1 was observed during gestation, and lower expression were detected in placenta of PE compared with normal pregnancy. Moreover, the expression of SATB1 was decreased in H/R-treated HTR8/Svneo cells and villous explants. The Wnt/β-catenin signaling pathway interacted with SATB1 expression and H/R treatment resulted in Wnt pathway inhibition in trophoblast, while lithium chloride (LiCl) treatment enhanced H/R-exposed HTR8/SVneo migration and invasion. Knockdown of SATB1 significantly reduced the level of β-catenin and the migratory and invasive abilities of trophoblast. CONCLUSIONS Our data suggested that oxidative stress reduced SATB1 leading to inhibition of Wnt/β-catenin, and participate in the subdued migration and invasion of trophoblast, which indicated a potential pathological mechanism of PE.
Collapse
Affiliation(s)
- Haiying Rao
- a Department of Obstetrics and Gynecology , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine , Chongqing Medical University , Chongqing , China
| | - Yuxiang Bai
- a Department of Obstetrics and Gynecology , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine , Chongqing Medical University , Chongqing , China
| | - Fumei Zhang
- a Department of Obstetrics and Gynecology , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine , Chongqing Medical University , Chongqing , China
| | - Qingshu Li
- a Department of Obstetrics and Gynecology , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine , Chongqing Medical University , Chongqing , China
| | - Baimei Zhuang
- a Department of Obstetrics and Gynecology , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Xin Luo
- a Department of Obstetrics and Gynecology , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine , Chongqing Medical University , Chongqing , China
| | - Hongbo Qi
- a Department of Obstetrics and Gynecology , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine , Chongqing Medical University , Chongqing , China
| |
Collapse
|
19
|
RhoB/ROCK mediates oxygen–glucose deprivation-stimulated syncytiotrophoblast microparticle shedding in preeclampsia. Cell Tissue Res 2016; 366:411-425. [DOI: 10.1007/s00441-016-2436-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/12/2016] [Indexed: 02/06/2023]
|
20
|
E Davies J, Pollheimer J, Yong HEJ, Kokkinos MI, Kalionis B, Knöfler M, Murthi P. Epithelial-mesenchymal transition during extravillous trophoblast differentiation. Cell Adh Migr 2016; 10:310-21. [PMID: 27070187 DOI: 10.1080/19336918.2016.1170258] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A successful pregnancy depends on the intricate and timely interactions of maternal and fetal cells. Placental extravillous cytotrophoblast invasion involves a cellular transition from an epithelial to mesenchymal phenotype. Villous cytotrophoblasts undergo a partial epithelial to mesenchymal transition (EMT) when differentiating into extravillous cytotrophoblasts and gain the capacity to migrate and invade. This review summarizes our current knowledge regarding known regulators of EMT in the human placenta, including the inducers of EMT, upstream transcription factors that control EMT and the downstream effectors, cell adhesion molecules and their differential expression and functions in pregnancy pathologies, preeclampsia (PE) and fetal growth restriction (FGR). The review also describes the research strategies that were used for the identification of the functional role of EMT targets in vitro. A better understanding of molecular pathways driven by placental EMT and further elucidation of signaling pathways underlying the developmental programs may offer novel strategies of targeted therapy for improving feto-placental growth in placental pathologies including PE and FGR.
Collapse
Affiliation(s)
- Jessica E Davies
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Jürgen Pollheimer
- c Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Hannah E J Yong
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Maria I Kokkinos
- b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Bill Kalionis
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia
| | - Martin Knöfler
- c Department of Obstetrics and Fetal-Maternal Medicine , Reproductive Biology Unit, Medical University of Vienna , Vienna , Austria
| | - Padma Murthi
- a Department of Obstetrics and Gynecology , The University of Melbourne , Parkville , Victoria , Australia.,b Department of Maternal-Fetal Medicine Pregnancy Research Centre , The Royal Women's Hospital , Parkville , Victoria , Australia.,d Department of Medicine , School of Clinical Sciences, Monash University , Clayton , Victoria , Australia
| |
Collapse
|
21
|
Granulocyte colony-stimulating factor (G-CSF) upregulates β1 integrin and increases migration of human trophoblast Swan 71 cells via PI3K and MAPK activation. Exp Cell Res 2016; 342:125-34. [PMID: 26992288 DOI: 10.1016/j.yexcr.2016.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 11/22/2022]
Abstract
Multiple cytokines and growth factors expressed at the fetal-maternal interface are involved in the regulation of trophoblast functions and placental growth, but the role of G-CSF has not been completely established. Based on our previous study showing that G-CSF increases the activity of matrix metalloproteinase-2 and the release of vascular endothelial growth factor in Swan 71 human trophoblast cells, in this work we explore the possible contribution of G-CSF to cell migration and the G-CSF-triggered signaling pathway. We found that G-CSF induced morphological changes on actin cytoskeleton consistent with a migratory cell phenotype. G-CSF also up-regulated the expression levels of β1 integrin and promoted Swan 71 cell migration. By using selective pharmacological inhibitors and dominant negative mutants we showed that PI3K, Erk 1/2 and p38 pathways are required for promoting Swan 71 cell motility. It was also demonstrated that PI3K behaved as an upstream regulator of Erk 1/2 and p38 MAPK. In addition, the increase of β1 integrin expression was dependent on PI3K activation. In conclusion, our results indicate that G-CSF stimulates β1 integrin expression and Swan 71 cell migration by activating PI3K and MAPK signaling pathways, suggesting that G-CSF should be considered as an additional regulatory factor that contributes to a successful embryo implantation and to the placenta development.
Collapse
|
22
|
Zhang J, Li T, Ji W, Yu Y, Tan T. Rho GDIalpha Modulates Rabbit Trophoblast Stem Cell Survival and Migration. Biol Reprod 2015; 93:144. [PMID: 26559677 DOI: 10.1095/biolreprod.115.132019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/29/2015] [Indexed: 01/07/2023] Open
Abstract
Trophoblast stem cells differentiate into different trophoblast cell populations that are indispensable for successful pregnancy through interactions with the maternal uterine decidua. Rho GTPases play an important role in the regulation of trophoblast stem cell (TSC) self-renewal and differentiation; however, the role of Rho GDP-dissociation inhibitors (Rho GDIs) remains unclear. Here we report that overexpression of Rho GDIalpha resulted in rapid apoptosis of TSCs, while its knockdown promoted proliferation. Moreover, Rho GDIalpha knockdown also enhanced TSC invasion. Collectively, these results establish a potential mechanism whereby TSCs can balance growth and apoptosis, and thus ensure normal fetal development.
Collapse
Affiliation(s)
- Jinjuan Zhang
- Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan, China
| | - Tianjie Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan, China
| | - Yang Yu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China National Engineering Research Center of Biomedicine and Animal Science, Kunming, Yunnan, China
| |
Collapse
|
23
|
Tumur Z, Katebzadeh S, Guerra C, Bhushan L, Alkam T, Henson BS. RhoC mediates epidermal growth factor-stimulated migration and invasion in head and neck squamous cell carcinoma. Neoplasia 2015; 17:141-51. [PMID: 25622907 PMCID: PMC4309735 DOI: 10.1016/j.neo.2014.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/22/2014] [Accepted: 12/04/2014] [Indexed: 01/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in head and neck squamous cell carcinoma (HNSCC) where it has been shown to promote tumor cell invasion upon phosphorylation. One mechanism by which EGFR promotes tumor progression is by activating signal cascades that lead to loss of E-cadherin, a transmembrane glycoprotein of the cell-cell adherence junctions; however mediators of these signaling cascades are not fully understood. One such mediator, RhoC, is activated upon a number of external stimuli, such as epidermal growth factor (EGF), but its role as a mediator of EGF-stimulated migration and invasion has not been elucidated in HNSCC. In the present study, we investigate the role of RhoC as a mediator of EGF-stimulated migration and invasion in HNSCC. We show that upon EGF stimulation, EGFR and RhoC were strongly activated in HNSCC. This resulted in activation of the phosphatidylinositol 3-Kinase Akt pathway (PI3K-Akt), phosphorylation of GSK-3β at the Ser9 residue, and subsequent down regulation of E-cadherin cell surface expression resulting in increased tumor cell invasion. Knockdown of RhoC restored E-cadherin expression and inhibited EGF-stimulated migration and invasion. This is the first report in HNSCC demonstrating the role RhoC plays in mediating EGF-stimulated migration and invasion by down-regulating the PI3K-Akt pathway and E-cadherin expression. RhoC may serve as a treatment target for HNSCC.
Collapse
Affiliation(s)
- Zohra Tumur
- From the College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854 USA
| | - Shahbaz Katebzadeh
- From the College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854 USA
| | - Carlos Guerra
- From the College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854 USA
| | - Lokesh Bhushan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854 USA
| | - Tursun Alkam
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854 USA
| | - Bradley S Henson
- From the College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854 USA.
| |
Collapse
|
24
|
Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015; 25:556-66. [DOI: 10.1016/j.tcb.2015.06.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
|
25
|
Selenium Attenuates HPV-18 Associated Apoptosis in Embryo-Derived Trophoblastic Cells but Not Inner Cell Mass In Vitro. Int J Reprod Med 2015; 2015:562567. [PMID: 26345191 PMCID: PMC4539449 DOI: 10.1155/2015/562567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 11/17/2022] Open
Abstract
Objectives. Human papillomaviruses (HPV) are associated with cell cycle arrest. This study focused on antioxidant selenomethionine (SeMet) inhibition of HPV-mediated necrosis. The objectives were to determine HPV-18 effects on embryonic cells and to evaluate SeMet in blocking HPV-18 effects. Methods. Fertilized mouse embryos were cultured for 5 days to implanted trophoblasts and exposed to either control medium (group 1), HPV-18 (group 2), combined HPV-18 and 0.5 µM SeMet (group 3), or combined HPV-18 and 5.0 µM SeMet (group 4). After 48 hrs, trophoblast integrity and, apoptosis/necrosis were assessed using morphometric and dual-stain fluorescence assays, respectively. Results. HPV-18 exposed trophoblasts nuclei (253.8 ± 28.5 sq·µ) were 29% smaller than controls (355.6 ± 35.9 sq·µ). Supplementation with 0.5 and 5.0 µM SeMet prevented nuclear shrinkage after HPV-18 exposure. HPV-18 infected trophoblasts remained larger with SeMet supplementation. HPV-18 decreased cell viability by 44% but SeMet supplementation sustained cell viability. Apoptosis was lower when SeMet was present. HPV-18 decreased inner cell mass (ICM) viability by over 60%. Conclusions. HPV-18 decreased nuclear size and trophoblast viability but these effects were attenuated by the antioxidant SeMet. SeMet blocked HPV-18 associated apoptosis process in trophoblasts but not ICM cells suggesting involvement of different oxidative stress pathways.
Collapse
|
26
|
Zhuang B, Luo X, Rao H, Li Q, Shan N, Liu X, Qi H. Oxidative stress-induced C/EBPβ inhibits β-catenin signaling molecule involving in the pathology of preeclampsia. Placenta 2015; 36:839-46. [PMID: 26166436 DOI: 10.1016/j.placenta.2015.06.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Oxidative stress-induced trophoblast cell dysfunction is a major pathology in preeclampsia (PE). Recently, CCAAT/enhancer binding protein beta (C/EBPβ) has been investigated as a tumor suppressor that participates in tumor invasion. However, the function of C/EBPβ in trophoblast cells remains unknown. Our study was designed to detect the expression of C/EBPβ in the preeclamptic placenta and to identify the underlying mechanisms of oxidative stress. METHODS Human placental tissues with PE were collected. The expression of C/EBPβ and β-catenin were detected. Human first trimester extravillous trophoblast cell (HTR8/SVneo) line exposed to hypoxia/reoxygenation (H/R) was employed as an oxidative stress model in vitro to investigate the effects of C/EBPβ on invasion and the expression of β-catenin. Moreover, first trimester-derived placental villous explants were used to verify the effects of C/EBPβ and β-catenin in placentation. RESULTS In preeclamptic placentas, C/EBPβ was overexpressed and β-catenin was decreased. In addition, C/EBPβ was found to have increased expression in H/R-treated HTR8/SVneo cells and villous explants. C/EBPβ knockdown and β-catenin activation could significantly promote the invasion of HTR8/SVneo cells, enhance the outgrowth and migration in villous explants and inhibit the excessive generation of intracellular ROS. These findings might be related to the increased activities of MMP-2/9 and the decreased expression of TIMP-1/2. Meanwhile, C/EBPβ knockdown remarkably increased the expression of β-catenin. DISCUSSION We hypothesize that the oxidative stress-induced overexpression of C/EBPβ might influence the activity of MMPs by regulating the Wnt/β-catenin signaling pathway to affect the invasion of trophoblast cells, which then participate in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- B Zhuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixue Road, Yuzhong District, Chongqing 400016, China
| | - X Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixue Road, Yuzhong District, Chongqing 400016, China
| | - H Rao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixue Road, Yuzhong District, Chongqing 400016, China
| | - Q Li
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixue Road, Yuzhong District, Chongqing 400016, China
| | - N Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixue Road, Yuzhong District, Chongqing 400016, China
| | - X Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixue Road, Yuzhong District, Chongqing 400016, China
| | - H Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Yixue Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
27
|
Ospina-Prieto S, Chaiwangyen W, Pastuschek J, Schleussner E, Markert UR, Morales-Prieto DM. STAT5 is Activated by Epidermal Growth Factor and Induces Proliferation and Invasion in Trophoblastic Cells. Reprod Sci 2015; 22:1358-66. [PMID: 25862676 DOI: 10.1177/1933719115578923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epidermal growth factor (EGF) is expressed by decidual and trophoblast cells and influences manifold cellular functions during embryo implantation. Thus far, signaling of EGF via Signal Transducer and Activator of Transcription 5 (STAT5) has been only partially investigated. STAT5 stimulates proliferation and cell cycle progression in several cell types. Its dysregulation is associated with pregnancy. The aim of this study was to investigate STAT5 activation and function mediated by EGF in 2 trophoblastic cell lines, namely, HTR8/SVneo and JAR. Additionally, expression of STAT5B messenger RNA (mRNA) in trophoblast models has been compared to that of primary cells isolated from term placentas. Our results demonstrate the highest STAT5B mRNA expression in isolated trophoblast cells, lower expression in HTR8/SVneo cells, and the significantly lowest in JAR cells. Moreover, EGF-mediated STAT5 activation increases cell proliferation and viability in both cell lines. The STAT5 knockdown results in significant decrease in cell viability induced by EGF. Only in HTR8/SVneo cells, invasion decreases after STAT5 silencing and this effect cannot be rescued by further addition of EGF. These results demonstrate that STAT5 activated by EGF constitutes an important cascade for the regulation of cell proliferation and invasion in trophoblast cells.
Collapse
Affiliation(s)
| | - Wittaya Chaiwangyen
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Jana Pastuschek
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Ekkehard Schleussner
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Udo R Markert
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| | - Diana M Morales-Prieto
- Department of Obstetrics, University Hospital Jena, Placenta-Lab, Bachstraße, Jena, Germany
| |
Collapse
|
28
|
Chen SS, Block BS, Chan PJ. Pentoxifylline attenuates HPV-16 associated necrosis in placental trophoblasts. Arch Gynecol Obstet 2014; 291:647-52. [DOI: 10.1007/s00404-014-3471-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
29
|
Fichter CD, Gudernatsch V, Przypadlo CM, Follo M, Schmidt G, Werner M, Lassmann S. ErbB targeting inhibitors repress cell migration of esophageal squamous cell carcinoma and adenocarcinoma cells by distinct signaling pathways. J Mol Med (Berl) 2014; 92:1209-23. [PMID: 25091467 DOI: 10.1007/s00109-014-1187-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/22/2014] [Accepted: 06/29/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED ErbB family receptor tyrosine kinases (ErbBs) play a role in cell adhesion and migration and are frequently overexpressed in esophageal squamous cell carcinomas (ESCCs) or esophageal adenocarcinomas (EACs). Targeting ErbBs by tyrosine kinase inhibitors (TKIs) may therefore limit esophageal cancer cell migration. Here, we studied the impact of TKIs on ErbB dimerization, cell signaling pathways, and cell migration in three esophageal cell lines: OE21 (ESCC), OE33 (EAC), and Het-1A (non-neoplastic esophageal epithelium). In OE21 cells, the TKIs erlotinib, gefitinib, and lapatinib slightly affected epidermal growth factor receptor EGFR/EGFR, but not EGFR/HER2 dimerization as detected by in situ proximity ligation assay (in situ PLA). Still, TKIs inhibited ERK1/2, Akt, STAT3, and RhoA activity in OE21 cells, as assessed by Western blot, antibody arrays, and Rho GTPase effector pull-down assays. This was accompanied by reduced OE21 cell migration, induction of focal adhesions, and actin cytoskeleton reorganization, as shown by Oris™ migration assay and focal adhesion kinase (FAK)/phalloidin staining. In contrast, in OE33 cells, only lapatinib decreased STAT5, Src family kinase (SFK), and FAK activity as well as β-catenin expression. This impeded cell migration and induced morphological changes in OE33 cells. No alterations were seen for the non-neoplastic Het-1A cells. Thus, we identified the ErbB signaling network as regulator of esophageal cancer cell's actin cytoskeleton, focal adhesions, and cell migration. ErbB targeted TKIs therefore also limit ESCC and EAC cell motility and migration. KEY MESSAGE Clinical tyrosine kinase inhibitors (TKIs) reduce esophageal cancer cell migration. Loss of cell migration is linked to reduced Akt, ERK1/2, STAT (3 or 5), FAK, SFKs, and RhoA activity. Clinical TKIs act via distinct signaling in the two main histotypes of esophageal cancer.
Collapse
Affiliation(s)
- Christiane D Fichter
- Department of Pathology, University Medical Center, Breisacherstrasse 115A, 79106, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Verena Gudernatsch
- Department of Pathology, University Medical Center, Breisacherstrasse 115A, 79106, Freiburg, Germany
| | - Camilla M Przypadlo
- Department of Pathology, University Medical Center, Breisacherstrasse 115A, 79106, Freiburg, Germany
| | - Marie Follo
- Department of Haematology and Oncology Core Facility, University Medical Center, Freiburg, Germany
| | - Gudula Schmidt
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Department of Pathology, University Medical Center, Breisacherstrasse 115A, 79106, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, University Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Silke Lassmann
- Department of Pathology, University Medical Center, Breisacherstrasse 115A, 79106, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg, University Medical Center, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
30
|
Biadasiewicz K, Fock V, Dekan S, Proestling K, Velicky P, Haider S, Knöfler M, Fröhlich C, Pollheimer J. Extravillous trophoblast-associated ADAM12 exerts pro-invasive properties, including induction of integrin beta 1-mediated cellular spreading. Biol Reprod 2014; 90:101. [PMID: 24695627 DOI: 10.1095/biolreprod.113.115279] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
ADAM12, consisting of a membrane-bound (ADAM12L) and a secreted (ADAM12S) form, is expressed exclusively in regenerating and developing tissue as well as in certain cancer types. Strong ADAM12 expression levels have been noticed in the human placenta, and deregulated ADAM12S levels were associated with various pregnancy-related disorders including pre-eclampsia and intrauterine growth restriction. However, the role of ADAM12 in trophoblast motility has not been investigated so far. Hence, the present study aimed to investigate the specific function of the protease by using different primary trophoblast cell models. Immunofluorescence and Western blot analyses of first trimester placental tissue and differentiating primary first trimester cytotrophoblasts (CTBs) indicated strong upregulation of both of the ADAM12 isoforms during extravillous trophoblast differentiation. Functional assays involving short interfering RNA (siRNA)-mediated knockdown studies in primary CTBs and first trimester explant cultures revealed a significant repression of trophoblast motility upon partial loss of ADAM12. Conversely, isoform-specific overexpression in the ADAM12-negative trophoblast cell line SGHPL-5 enhanced the invasive capacity of these cells. We further confirmed proteolytic activity of trophoblast-derived ADAM12S by demonstrating its potential to degrade insulin-like growth factor-binding protein 3. Finally, we suggest that ADAM12S exerts its pro-migratory function in trophoblasts by inducing integrin beta 1-mediated cellular spreading.
Collapse
Affiliation(s)
- Katarzyna Biadasiewicz
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Valerie Fock
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Sabine Dekan
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | | | - Philipp Velicky
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Sandra Haider
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Martin Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - Camilla Fröhlich
- Department of Biomedical Sciences and Biotech Research & Innovation Centre, University of Copenhagen, Denmark
| | - Jürgen Pollheimer
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria
| |
Collapse
|
31
|
Zhang C, Ge X, Lok K, Zhao L, Yin M, Wang ZJ. RhoC involved in the migration of neural stem/progenitor cells. Cell Mol Neurobiol 2014; 34:409-17. [PMID: 24414340 DOI: 10.1007/s10571-014-0026-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 01/01/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is characterized by deposition of beta-amyloid peptides (Aβ) and progressive loss of neurons. Neural stem/progenitor cells (NSPCs) can proliferate and produce immature neurons even in the brain of AD patients. However, Aβ42 significantly decreased the expression of RhoC in NSPCs during the co-incubation (P < 0.01). Treating with RhoC siRNA prevented membrane from protrusion and led to a significant reduction in cell migration in responses to SDF-1. Compared with wild-type mice, the numbers of RhoC-immunoreactive cells in hippocampus and cortex were significantly down-regulated in APP/PS1 mice aged 9 months. The results suggest that Aβ42 down-regulates the expression of RhoC in NSPCs in vitro and in vivo; down-regulated RhoC expression results in decreased migration of NSPCs.
Collapse
Affiliation(s)
- Can Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | | | | | | | | | | |
Collapse
|
32
|
Kwon A, Lee HL, Woo KM, Ryoo HM, Baek JH. SMURF1 plays a role in EGF-induced breast cancer cell migration and invasion. Mol Cells 2013; 36:548-55. [PMID: 24241683 PMCID: PMC3887964 DOI: 10.1007/s10059-013-0233-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 01/02/2023] Open
Abstract
Epidermal growth factor (EGF) is a well-known growth factor that induces cancer cell migration and invasion. Previous studies have shown that SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase, regulates cell motility by inducing RhoA degradation. Therefore, we examined the role of SMURF1 in EGF-induced cell migration and invasion using MDA-MB-231 cells, a human breast cancer cell line. EGF increased SMURF1 expression at both the mRNA and protein levels. All ErbB family members were expressed in MDA-MB-231 cells and receptor tyrosine kinase inhibitors specific for the EGF receptor (EGFR) or ErbB2 blocked the EGF-mediated induction of SMURF1 expression. Within the signaling pathways examined, ERK1/2 and protein kinase C activity were required for EGF-induced SMURF1 expression. The overexpression of constitutively active MEK1 increased the SMURF1 to levels similar to those induced by EGF. SMURF1 induction by EGF treatment or by the overexpression of MEK1 or SMURF1 resulted in enhanced cell migration and invasion, whereas SMURF1 knockdown suppressed EGF- or MEK1-induced cell migration and invasion. EGF treatment or SMURF1 overexpression decreased the endogenous RhoA protein levels. The overexpression of constitutively active RhoA prevented EGF- or SMURF1-induced cell migration and invasion. These results suggest that EGFinduced SMURF1 plays a role in breast cancer cell migration and invasion through the downregulation of RhoA.
Collapse
Affiliation(s)
- Arang Kwon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Hye-Lim Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| |
Collapse
|
33
|
Boscher C, Nabi IR. Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Mol Biol Cell 2013; 24:2134-45. [PMID: 23657817 PMCID: PMC3694797 DOI: 10.1091/mbc.e13-02-0095] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Galectin-3 binding to N-glycans promotes EGF receptor signaling to integrin in mammary cancer cells. This leads to phospho-caveolin-1–, Src-, and ILK-dependent activation of RhoA, resulting in actin reorganization in circular dorsal ruffles, cell migration, and fibronectin remodeling. In murine mammary epithelial cancer cells, galectin-3 binding to β1,6-acetylglucosaminyltransferase V (Mgat5)–modified N-glycans restricts epidermal growth factor (EGF) receptor mobility in the plasma membrane and acts synergistically with phospho-caveolin-1 to promote integrin-dependent matrix remodeling and cell migration. We show that EGF signaling to RhoA is galectin-3 and phospho-caveolin-1 dependent and promotes the formation of transient, actin-rich, circular dorsal ruffles (CDRs), cell migration, and fibronectin fibrillogenesis via Src- and integrin-linked kinase (ILK)–dependent signaling. ILK, Src, and galectin-3 also mediate EGF stimulation of caveolin-1 phosphorylation. Direct activation of integrin with Mn2+ induces galectin-3, ILK, and Src-dependent RhoA activation and caveolin-1 phosphorylation. This suggests that in response to EGF, galectin-3 enables outside-in integrin signaling stimulating phospho-caveolin-1–dependent RhoA activation, actin reorganization in CDRs, cell migration, and fibronectin remodeling. Similarly, caveolin-1/galectin-3–dependent EGF signaling induces motility, peripheral actin ruffling, and RhoA activation in MDA-MB-231 human breast carcinoma cells, but not HeLa cells. These studies define a galectin-3/phospho-caveolin-1/RhoA signaling module that mediates integrin signaling downstream of growth factor activation, leading to actin and matrix remodeling and tumor cell migration in metastatic cancer cells.
Collapse
Affiliation(s)
- Cecile Boscher
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
34
|
Marzinke MA, Choi CH, Chen L, Shih IM, Chan DW, Zhang H. Proteomic analysis of temporally stimulated ovarian cancer cells for biomarker discovery. Mol Cell Proteomics 2013; 12:356-68. [PMID: 23172893 PMCID: PMC3567859 DOI: 10.1074/mcp.m112.019521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 11/03/2012] [Indexed: 11/06/2022] Open
Abstract
While ovarian cancer remains the most lethal gynecological malignancy in the United States, there are no biomarkers available that are able to predict therapeutic responses to ovarian malignancies. One major hurdle in the identification of useful biomarkers has been the ability to obtain enough ovarian cancer cells from primary tissues diagnosed in the early stages of serous carcinomas, the most deadly subtype of ovarian tumor. In order to detect ovarian cancer in a state of hyperproliferation, we analyzed the implications of molecular signaling cascades in the ovarian cancer cell line OVCAR3 in a temporal manner, using a mass-spectrometry-based proteomics approach. OVCAR3 cells were treated with EGF(1), and the time course of cell progression was monitored based on Akt phosphorylation and growth dynamics. EGF-stimulated Akt phosphorylation was detected at 12 h post-treatment, but an effect on proliferation was not observed until 48 h post-exposure. Growth-stimulated cellular lysates were analyzed for protein profiles between treatment groups and across time points using iTRAQ labeling and mass spectrometry. The protein response to EGF treatment was identified via iTRAQ analysis in EGF-stimulated lysates relative to vehicle-treated specimens across the treatment time course. Validation studies were performed on one of the differentially regulated proteins, lysosomal-associated membrane protein 1 (LAMP-1), in human tissue lysates and ovarian tumor tissue sections. Further, tissue microarray analysis was performed to demarcate LAMP-1 expression across different stages of epithelial ovarian cancers. These data support the use of this approach for the efficient identification of tissue-based markers in tumor development related to specific signaling pathways. LAMP-1 is a promising biomarker for studies of the progression of EGF-stimulated ovarian cancers and might be useful in predicting treatment responses involving tyrosine kinase inhibitors or EGF receptor monoclonal antibodies.
Collapse
Affiliation(s)
- Mark A. Marzinke
- From the ‡Department of Pathology, Johns Hopkins University, Baltimore, MD 21231
| | - Caitlin H. Choi
- From the ‡Department of Pathology, Johns Hopkins University, Baltimore, MD 21231
| | - Li Chen
- From the ‡Department of Pathology, Johns Hopkins University, Baltimore, MD 21231
| | - Ie-Ming Shih
- From the ‡Department of Pathology, Johns Hopkins University, Baltimore, MD 21231
| | - Daniel W. Chan
- From the ‡Department of Pathology, Johns Hopkins University, Baltimore, MD 21231
| | - Hui Zhang
- From the ‡Department of Pathology, Johns Hopkins University, Baltimore, MD 21231
| |
Collapse
|
35
|
Poole NM, Nyindodo-Ogari L, Kramer C, Coons LB, Cole JA. Effects of tick saliva on the migratory and invasive activity of Saos-2 osteosarcoma and MDA-MB-231 breast cancer cells. Ticks Tick Borne Dis 2012; 4:120-7. [PMID: 23168047 DOI: 10.1016/j.ttbdis.2012.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 01/29/2023]
Abstract
In previous studies we showed that tick saliva modulates the migratory activity of cells involved in the wound healing response. Since cell migration is a prerequisite for tumor invasion and metastasis, we examined the effects of tick saliva on the migratory and invasive activity of Saos-2 osteosarcoma and MDA-MB-231 (MB-231) breast cancer cells and the potential signaling pathways that may be affected. Saliva inhibited basal and agonist-induced Saos-2 and MB-231 migration and invasion through a matrigel-coated filter. In the Saos-2 cells, saliva suppressed epidermal growth factor (EGF)-activation of Akt/Protein Kinase B, however, only basal extracellular signal-regulated kinase (ERK) activity was affected in MB-231 cells. EGF receptor (EGFR) overexpression masked the effect of saliva on MB-231 cells, but its ability to inhibit MB-231 migration was enhanced by the EGFR inhibitor PD 168393 and MEK inhibitor U0126. Our data indicate that the mechanisms ticks have evolved to regulate the wound healing response have generalized effects on the migratory and invasive activities of metastatic cancer cells.
Collapse
Affiliation(s)
- Nina M Poole
- Department of Biological Sciences, The University of Memphis, Memphis, 239 Ellington Hall, 3700 Walker Avenue, TN 38152, USA.
| | | | | | | | | |
Collapse
|
36
|
Anitua E, Sanchez M, De la Fuente M, Zalduendo MM, Orive G. Plasma rich in growth factors (PRGF-Endoret) stimulates tendon and synovial fibroblasts migration and improves the biological properties of hyaluronic acid. Knee Surg Sports Traumatol Arthrosc 2012; 20:1657-65. [PMID: 21987365 DOI: 10.1007/s00167-011-1697-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
Abstract
PURPOSE Cell migration plays an essential role in development, wound healing, and tissue regeneration. Plasma rich in growth factors (PRGF-Endoret) technology offers a potential source of growth factors involved in tissue regeneration. Here, we evaluate the potential of PRGF-Endoret over tendon cells and synovial fibroblasts migration and study whether the combination of this autologous technology with hyaluronic acid (HA) improves the effect and potential of the biomaterials over the motility of both types of fibroblasts. METHODS Migration of primary tendon cells and synovial fibroblasts after culturing with either PRGF or PPGF (plasma poor in growth factors) at different doses was evaluated. Furthermore, the migratory capacity induced by the combination of PPGF and PRGF with HA was tested. RESULTS PPGF stimulated migration of both types of cells but this effect was significantly higher when PRGF was used. Tendon cells showed an increase of 212% in migratory ability when HA was combined with PPGF and of 335% in the case of HA + PRGF treatment compared with HA alone. CONCLUSIONS PRGF-Endoret stimulates migration of tendon cells and synovial fibroblasts and improves the biological properties of HA.
Collapse
Affiliation(s)
- E Anitua
- Private Practice in Implantology and Oral Rehabilitation in Vitoria, Vitoria, Spain.
| | | | | | | | | |
Collapse
|
37
|
Wallace AE, Fraser R, Cartwright JE. Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum Reprod Update 2012; 18:458-71. [PMID: 22523109 DOI: 10.1093/humupd/dms015] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND During pregnancy, maternal uterine spiral arteries (SAs) are remodelled from minimal-flow, high-resistance vessels into larger diameter vessels with low resistance and high flow. Fetal extravillous trophoblasts (EVT) have important roles in this process. Decidual natural killer cells (dNK cells) are the major maternal immune component of the decidua and accumulate around SAs before trophoblast invasion. A role for dNK cells in vessel remodelling is beginning to be elucidated. This review examines the overlapping and dissimilar mechanisms used by EVT and dNK cells in this process and how this may mirror another example of tissue remodelling, namely cancer development. METHODS The published literature was searched using Pubmed focusing on EVT, dNK cells and SA remodelling. Additional papers discussing cancer development are also included. RESULTS Similarities exist between actions carried out by dNK cells and EVT. Both interact with vascular cells lining the SA, as well as with each other, to promote transformation of the SA. EVT differentiation has previously been likened to the epithelial-mesenchymal transition in cancer cells, and we discuss how dNK-EVT interactions at the maternal-fetal interface can also be compared with the roles of immune cells in cancer. CONCLUSIONS The combined role that dNK cells and EVT play in SA remodelling suggests that these interactions could be described as a partnership. The investigation of pregnancy as a multicellular system involving both fetal and maternal components, as well as comparisons to similar examples of tissue remodelling, will further identify the key mechanisms in SA remodelling that are required for a successful pregnancy.
Collapse
Affiliation(s)
- Alison E Wallace
- Reproductive and Cardiovascular Disease Research Group, Division of Biomedical Sciences, St George's University of London, London, UK.
| | | | | |
Collapse
|
38
|
RhoE is regulated by cyclic AMP and promotes fusion of human BeWo choriocarcinoma cells. PLoS One 2012; 7:e30453. [PMID: 22272352 PMCID: PMC3260294 DOI: 10.1371/journal.pone.0030453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
Fusion of placental villous cytotrophoblasts with the overlying syncytiotrophoblast is essential for the maintenance of successful pregnancy, and disturbances in this process have been implicated in pathological conditions such as pre-eclampsia and intra-uterine growth retardation. In this study we examined the role of the Rho GTPase family member RhoE in trophoblast differentiation and fusion using the BeWo choriocarcinoma cell line, a model of villous cytotrophoblast fusion. Treatment of BeWo cells with the cell permeable cyclic AMP analogue dibutyryl cyclic AMP (dbcAMP) resulted in a strong upregulation of RhoE at 24h, coinciding with the onset of fusion. Using the protein kinase A (PKA)-specific cAMP analogue N6-phenyl-cAMP, and a specific inhibitor of PKA (14–22 amide, PKI), we found that upregulation of RhoE by cAMP was mediated through activation of PKA signalling. Silencing of RhoE expression by RNA interference resulted in a significant decrease in dbcAMP-induced fusion. However, expression of differentiation markers human chorionic gonadotrophin and placental alkaline phosphatase was unaffected by RhoE silencing. Finally, we found that RhoE upregulation by dbcAMP was significantly reduced under hypoxic conditions in which cell fusion is impaired. These results show that induction of RhoE by cAMP is mediated through PKA and promotes BeWo cell fusion but has no effect on functional differentiation, supporting evidence that these two processes may be controlled by separate or diverging pathways.
Collapse
|
39
|
Abstract
OBJECTIVES To compare gene expression profiles of placentas from preeclamptic and normal pregnancies. STUDY DESIGN We performed microarray experiments to analyze genome-wide expression profiling for 10 placentas from pregnant women with preeclampsia and 10 placentas from women who experienced noncomplicated pregnancies (CON), and to identify dysregulated signaling pathways as well as genes in preeclampsia. RT-PCR, real-time RT-PCR and/or immunofluorescence analyses were performed to validate the data obtained from microarray experiments. RESULTS Unsupervised hierarchical clustering showed heterogeneity of preeclampsia at the molecular levels, whereas expression profiles of preeclampsia are distinctly different from those of CON. A list of genes which are differentially expressed between preeclampsia and CON included well known preeclampsia markers, such as Flt-1, leptin, HTRA1 and SIGLEC6. Gene Set Enrichment Analysis, a pathway-oriented analysis method for expression profiles, provided evidence that a number of biological activities including pathways that regulate actin cytoskeleton, TGFβ signaling, oxidative phosphorylation, and proteasome activity were aberrantly either up-regulated or down-regulated in preeclampsia. RT-PCR and real-time-RT-PCR for genes contributing these biological pathways (gene sets) enriched in either CON or preeclampsia reinforced that these biological processes were systemically dysregulated in preeclampsia. CONCLUSIONS Genome-wide expression profiles of preeclampsia showed heterogeneous characteristics of preeclampsia at the molecular levels. Dysregulation of genes and biological pathways could contribute to abnormal behavior of preeclmapsia. Our results will help further understand underlying mechanisms by which preeclampsia affects placental physiology.
Collapse
|
40
|
Nakashima M, Adachi S, Yasuda I, Yamauchi T, Kawaguchi J, Hanamatsu T, Yoshioka T, Okano Y, Hirose Y, Kozawa O, Moriwaki H. Inhibition of Rho-associated coiled-coil containing protein kinase enhances the activation of epidermal growth factor receptor in pancreatic cancer cells. Mol Cancer 2011; 10:79. [PMID: 21722395 PMCID: PMC3141756 DOI: 10.1186/1476-4598-10-79] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rho-associated coiled-coil containing protein kinase (Rho-kinase/ROCK) is involved in various cellular functions including cell proliferation, and is generally considered to be oncogenic, while some studies show that ROCK functions as a negative regulator of cancer progression. As a result, the precise role of ROCK remains controversial. We have previously reported that Rho-kinase/ROCK negatively regulates epidermal growth factor (EGF)-induced cell proliferation in SW480 colon cancer cells. In the present study, we investigated the role of ROCK in EGF receptor (EGFR) signaling in the pancreatic cancer cell lines, Panc1, KP3 and AsPc1. RESULTS In these cells, Y27632, a specific ROCK inhibitor, enhanced EGF-induced BrdU incorporation. The blockade of EGF stimulation utilizing anti-EGFR-neutralizing antibodies suppressed Panc1 cell proliferation. EGF induced RhoA activity, as well as the phosphorylation of cofilin and myosin light chain (MLC), both targets of ROCK signaling, and Y27632 suppressed both of these processes, indicating that the phosphorylation of cofilin and MLC by EGF occurs through ROCK in Panc1 cells. EGF-induced phosphorylation of EGFR at tyrosine residues was augmented when the cells were pretreated with Y27632 or were subjected to gene silencing using ROCK-siRNA. We also obtained similar results using transforming growth factor-α. In addition, EGF-induced phosphorylation of p44/p42 mitogen-activated protein kinase and Akt were also enhanced by Y27632 or ROCK-siRNA. Moreover, an immunofluorescence microscope study revealed that pretreatment with Y27632 delayed EGF-induced internalization of EGFR. Taken together, these data indicate that ROCK functions to switch off EGFR signaling by promoting the internalization of the EGFR. CONCLUSIONS While EGF first stimulates the activation of the EGFR and subsequently increases cancer cell proliferation, EGF concurrently induces the activation of ROCK, which then turns off the activated EGFR pathway via a negative feedback system.
Collapse
Affiliation(s)
- Masanori Nakashima
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Antoine A Khalil
- Department of Dermatology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|