1
|
Wang C, Zhong Y, Xu S, Cai W, Zhao J, Mao J, Jin H, Ouyang C, Shi Y, Chan WC, Huang W, Zhang J, Gu Y. TRIM24 promotes T-cell lymphoma development and glucocorticoid resistance via FUS-mediated phase separation of the glucocorticoid receptor. Drug Resist Updat 2025; 82:101270. [PMID: 40513312 DOI: 10.1016/j.drup.2025.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/29/2025] [Accepted: 06/06/2025] [Indexed: 06/16/2025]
Abstract
T-cell lymphoma (TCL) is an aggressive malignancy with poor therapeutic outcomes, where glucocorticoid (GC) resistance remains a major challenge. Here, we identify TRIM24 as a critical regulator of GC receptor (GR) activity and a potential therapeutic target in TCL. TRIM24 deficiency delays TCL progression in murine models, suppresses cell proliferation, and enhances GC sensitivity by restoring GR transcriptional activity, as evidenced by transcriptomic and chromatin profiling. Mechanistically, TRIM24 interacts with Fused In Sarcoma (FUS) and promotes its liquid-liquid phase separation (LLPS) with GR, leading to impaired GR activity and heightened GC resistance. Moreover, TRIM24 is overexpressed in peripheral T-cell lymphoma (PTCL) samples, correlating with suppressed GR signaling and poor therapeutic response. These findings uncover an unrecognized "double-check" mechanism in which TRIM24 regulates nuclear GR function through FUS-facilitated LLPS. Importantly, targeting TRIM24 may provide a novel therapeutic strategy not only for overcoming GC resistance in TCL but also for addressing broader GR-dependent diseases.
Collapse
Affiliation(s)
- Chen Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) & Department of Colorectal Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China; College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Yaoyao Zhong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) & Department of Colorectal Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China
| | - Senlin Xu
- Center for Genetic Medicine and Department of Urology, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China; Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junwei Zhao
- Center for Genetic Medicine and Department of Urology, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China; Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmei Mao
- Center for Genetic Medicine and Department of Urology, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China; Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaizhou Jin
- Key Laboratory of Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, China
| | - Ching Ouyang
- Integrative Genomic Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Yunfei Shi
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wing C Chan
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA; Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA.
| | - Jiawei Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) & Department of Colorectal Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Ying Gu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) & Department of Colorectal Surgery and Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Center for Genetic Medicine and Department of Urology, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China; Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China; Center for Genetic Medicine, International Institute of Medicine, Zhejiang University, Yiwu, Zhejiang, China.
| |
Collapse
|
2
|
Pauss SN, Bates EA, Martinez GJ, Bates ZT, Kipp ZA, Gipson CD, Hinds TD. Steroid receptors and coregulators: Dissemination of sex differences and emerging technologies. J Biol Chem 2025; 301:108363. [PMID: 40023399 PMCID: PMC11986243 DOI: 10.1016/j.jbc.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Steroid receptors are ligand-induced transcription factors that have broad functions among all living animal species, ranging from control of sex differences, body weight, stress responses, and many others. Their binding to coregulator proteins is regulated by corepressors and coactivators that interchange upon stimulation with a ligand. Coregulator proteins are an imperative and understudied aspect of steroid receptor signaling. Here, we discuss steroid receptor basics from protein domain structures that allow them to interact with coregulators and other proteins, their essential functions as transcription factors, and other elemental protein-protein interactions. We deliberate about the mechanisms that coregulators control in steroid receptor signaling, sex hormone signaling differences, sex hormone treatment in the opposite sex, and how these affect the coregulator and sex steroid receptor complexes. The steroid receptor-coregulator signaling mechanisms are essential built-in components of the mammalian DNA that mediate physiological and everyday functions. Targeting their crosstalk might be useful when imbalances lead to disease. We introduce novel technologies, such as the PamGene PamStation, which make investigating the heterogeneity of the steroid receptor-coregulator complexes and targeting their binding more feasible. This review provides an extensive understanding of steroid receptor-coregulator signaling and how these interactions are intrinsic to many physiological functions that may offer therapeutic advantages.
Collapse
Affiliation(s)
- Sally N Pauss
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Evelyn A Bates
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Genesee J Martinez
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Zane T Bates
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, Ohio, USA
| | - Zachary A Kipp
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Cassandra D Gipson
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Terry D Hinds
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
3
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2024; 125:e30351. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
5
|
Wang Y, Qin J, Dong L, He C, Zhang D, Wu X, Li T, Yue H, Mu L, Wang Q, Yang J. Suppression of mir-150-5p attenuates the anti-inflammatory effect of glucocorticoids in mice with ulcerative colitis. Mol Immunol 2023; 163:28-38. [PMID: 37729776 DOI: 10.1016/j.molimm.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Glucocorticoids have been widely used in the treatment of ulcerative colitis, but not all patients benefit from this therapy due to hormone resistance. Mir-150-5p has been reported to enhance the efficacy of glucocorticoids, and low serum mir-150-5p expression has been linked to glucocorticoid resistance in ulcerative colitis patients. The aim of this study was to elucidate the mechanisms of mir-150-5p regulation on glucocorticoid resistance. An ulcerative colitis mouse model was used to evaluate changes in ulcerative colitis symptoms, inflammatory factors, and glucocorticoid resistance-related gene expression. The results showed that mir-150-5p suppression with antagomirs did not significantly interfere with or enhance the induction of ulcerative colitis symptoms by dextran sulfate sodium, but it did attenuate the inflammation inhibitory effect of dexamethasone by abnormally regulating the expression of IL-17a, IL-10, IL-2 and IL-6 levels and myeloperoxidase activity. Mir-150-5p inhibition also induced a glucocorticoid-resistant gene expression profile in colon tissues of ulcerative colitis mice, with upregulation of p-ERK, p-JNK, and HSP90 and downregulation of p-GRa, FKBP4, and HDAC2 expression. Our results indicate that mir-150-5p suppression attenuates the anti-inflammatory effect of glucocorticoids and may function as a driver element in ulcerative colitis glucocorticoid resistance. AVAILABILITY OF DATA AND MATERIALS: All data and figures analyzed in this study are available from the corresponding author by request.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jiahong Qin
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihong Dong
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen He
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dapeng Zhang
- Department of Internal Medicine, Kunming Meizhao Physical Examination Center, Kunming, China
| | - Xue Wu
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ting Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haidong Yue
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingjie Mu
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiang Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jilin Yang
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
7
|
Tsai SF, Hung HC, Shih MMC, Chang FC, Chung BC, Wang CY, Lin YL, Kuo YM. High-fat diet-induced increases in glucocorticoids contribute to the development of non-alcoholic fatty liver disease in mice. FASEB J 2021; 36:e22130. [PMID: 34959259 DOI: 10.1096/fj.202101570r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the causal relationship between chronic ingestion of a high-fat diet (HFD)-induced secretion of glucocorticoids (GCs) and the development of non-alcoholic fatty liver disease (NAFLD). We have produced a strain of transgenic mice (termed L/L mice) that have normal levels of circulating corticosterone (CORT), the major type of GCs in rodents, but unlike wild-type (WT) mice, their circulating CORT was not affected by HFD. Compared to WT mice, 12-week HFD-induced fatty liver was less pronounced with higher plasma levels of triglycerides in L/L mice. These changes were reversed by CORT supplement to L/L mice. By analyzing a sort of lipid metabolism-related proteins, we found that expressions of the hepatic cluster of differentiation 36 (CD36) were upregulated by HFD-induced CORT and involved in CORT-mediated fatty liver. Dexamethasone, an agonist of the glucocorticoid receptor (GR), upregulated expressions of CD36 in HepG2 hepatocytes and facilitated lipid accumulation in the cells. In conclusion, the fat ingestion-induced release of CORT contributes to NAFLD. This study highlights the pathogenic role of CORT-mediated upregulation of hepatic CD 36 in diet-induced NAFLD.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | - Fu-Chuan Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ling Lin
- Division of Gastroenterology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Cui A, Ding D, Li Y. Regulation of Hepatic Metabolism and Cell Growth by the ATF/CREB Family of Transcription Factors. Diabetes 2021; 70:653-664. [PMID: 33608424 PMCID: PMC7897342 DOI: 10.2337/dbi20-0006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
The liver is a major metabolic organ that regulates the whole-body metabolic homeostasis and controls hepatocyte proliferation and growth. The ATF/CREB family of transcription factors integrates nutritional and growth signals to the regulation of metabolism and cell growth in the liver, and deregulated ATF/CREB family signaling is implicated in the progression of type 2 diabetes, nonalcoholic fatty liver disease, and cancer. This article focuses on the roles of the ATF/CREB family in the regulation of glucose and lipid metabolism and cell growth and its importance in liver physiology. We also highlight how the disrupted ATF/CREB network contributes to human diseases and discuss the perspectives of therapeutically targeting ATF/CREB members in the clinic.
Collapse
Affiliation(s)
- Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Præstholm SM, Correia CM, Grøntved L. Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism. Front Endocrinol (Lausanne) 2020; 11:572981. [PMID: 33133019 PMCID: PMC7578419 DOI: 10.3389/fendo.2020.572981] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) and the glucocorticoid receptor (GR) are important regulators of development, inflammation, stress response and metabolism, demonstrated in various diseases including Addison's disease, Cushing's syndrome and by the many side effects of prolonged clinical administration of GCs. These conditions include severe metabolic challenges in key metabolic organs like the liver. In the liver, GR is known to regulate the transcription of key enzymes in glucose and lipid metabolism and contribute to the regulation of circadian-expressed genes. Insights to the modes of GR regulation and the underlying functional mechanisms are key for understanding diseases and for the development of improved clinical uses of GCs. The activity and function of GR is regulated at numerous levels including ligand availability, interaction with heat shock protein (HSP) complexes, expression of GR isoforms and posttranslational modifications. Moreover, recent genomics studies show functional interaction with multiple transcription factors (TF) and coregulators in complex transcriptional networks controlling cell type-specific gene expression by GCs. In this review we describe the different regulatory steps important for GR activity and discuss how different TF interaction partners of GR selectively control hepatic gene transcription and metabolism.
Collapse
Affiliation(s)
| | | | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Su RC, Lad A, Breidenbach JD, Blomquist TM, Gunning WT, Dube P, Kleinhenz AL, Malhotra D, Haller ST, Kennedy DJ. Hyperglycemia induces key genetic and phenotypic changes in human liver epithelial HepG2 cells which parallel the Leprdb/J mouse model of non-alcoholic fatty liver disease (NAFLD). PLoS One 2019; 14:e0225604. [PMID: 31805072 PMCID: PMC6894821 DOI: 10.1371/journal.pone.0225604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing global health concern. With a propensity to progress towards non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma, NAFLD is an important link amongst a multitude of comorbidities including obesity, diabetes, and cardiovascular and kidney disease. As several in vivo models of hyperglycemia and NAFLD are employed to investigate the pathophysiology of this disease process, we aimed to characterize an in vitro model of hyperglycemia that was amenable to address molecular mechanisms and therapeutic targets at the cellular level. Utilizing hyperglycemic cell culturing conditions, we induced steatosis within a human hepatocyte cell line (HepG2 cells), as confirmed by electron microscopy. The deposition and accumulation of lipids within hyperglycemic HepG2 cells is significantly greater than in normoglycemic cells, as visualized and quantified by Nile red staining. Alanine aminotransferase (ALT) and alkaline phosphatase (ALP), diagnostic biomarkers for liver damage and disease, were found to be upregulated in hyperglycemic HepG2 cells as compared with normoglycemic cells. Suppression of CEACAM1, GLUT2, and PON1, and elevation of CD36, PCK1, and G6PK were also found to be characteristic in hyperglycemic HepG2 cells compared with normoglycemic cells, suggesting insulin resistance and NAFLD. These in vitro findings mirror the characteristic genetic and phenotypic profile seen in Leprdb/J mice, a well-established in vivo model of NAFLD. In conclusion, we characterize an in vitro model displaying several key genetic and phenotypic characteristics in common with NAFLD that may assist future studies in addressing the molecular mechanisms and therapeutic targets to combat this disease.
Collapse
Affiliation(s)
- Robin C. Su
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Apurva Lad
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Joshua D. Breidenbach
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Thomas M. Blomquist
- Department of Pathology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - William T. Gunning
- Department of Pathology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Prabhatchandra Dube
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Andrew L. Kleinhenz
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Deepak Malhotra
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Steven T. Haller
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
- * E-mail: (DK); (SH)
| | - David J. Kennedy
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
- * E-mail: (DK); (SH)
| |
Collapse
|
11
|
Zgajnar NR, De Leo SA, Lotufo CM, Erlejman AG, Piwien-Pilipuk G, Galigniana MD. Biological Actions of the Hsp90-binding Immunophilins FKBP51 and FKBP52. Biomolecules 2019; 9:biom9020052. [PMID: 30717249 PMCID: PMC6406450 DOI: 10.3390/biom9020052] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
Immunophilins are a family of proteins whose signature domain is the peptidylprolyl-isomerase domain. High molecular weight immunophilins are characterized by the additional presence of tetratricopeptide-repeats (TPR) through which they bind to the 90-kDa heat-shock protein (Hsp90), and via this chaperone, immunophilins contribute to the regulation of the biological functions of several client-proteins. Among these Hsp90-binding immunophilins, there are two highly homologous members named FKBP51 and FKBP52 (FK506-binding protein of 51-kDa and 52-kDa, respectively) that were first characterized as components of the Hsp90-based heterocomplex associated to steroid receptors. Afterwards, they emerged as likely contributors to a variety of other hormone-dependent diseases, stress-related pathologies, psychiatric disorders, cancer, and other syndromes characterized by misfolded proteins. The differential biological actions of these immunophilins have been assigned to the structurally similar, but functionally divergent enzymatic domain. Nonetheless, they also require the complementary input of the TPR domain, most likely due to their dependence with the association to Hsp90 as a functional unit. FKBP51 and FKBP52 regulate a variety of biological processes such as steroid receptor action, transcriptional activity, protein conformation, protein trafficking, cell differentiation, apoptosis, cancer progression, telomerase activity, cytoskeleton architecture, etc. In this article we discuss the biology of these events and some mechanistic aspects.
Collapse
Affiliation(s)
- Nadia R Zgajnar
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
| | - Sonia A De Leo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| | - Cecilia M Lotufo
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
| | - Alejandra G Erlejman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires 1428, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina.
| |
Collapse
|
12
|
Mains RE, Blaby-Haas C, Rheaume BA, Eipper BA. Changes in Corticotrope Gene Expression Upon Increased Expression of Peptidylglycine α-Amidating Monooxygenase. Endocrinology 2018; 159:2621-2639. [PMID: 29788427 PMCID: PMC6287594 DOI: 10.1210/en.2018-00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022]
Abstract
Throughout evolution, secretion has played an essential role in the ability of organisms and single cells to survive in the face of a changing environment. Peptidylglycine α-amidating monooxygenase (PAM) is an integral membrane monooxygenase, first identified for its role in the biosynthesis of neuroendocrine peptides released by the regulated secretory pathway. PAM was subsequently identified in Chlamydomonas reinhardtii, a unicellular green alga, where it plays an essential role in constitutive secretion and in ciliogenesis. Reduced expression of C. reinhardtii PAM resulted in significant changes in secretion and ciliogenesis. Hence, a screen was performed for transcripts and proteins whose expression responded to changes in PAM levels in a mammalian corticotrope tumor cell line. The goal was to identify genes not previously known to play a role in secretion. The screen identified transcription factors, peptidyl prolyl isomerases, endosomal/lysosomal proteins, and proteins involved in tissue-specific responses to glucose and amino acid availability that had not previously been recognized as relevant to the secretory pathway. Perhaps reflecting the dependence of PAM on molecular oxygen, many PAM-responsive genes are known to be hypoxia responsive. The data highlight the extent to which the performance of the secretory pathway may be integrated into a wide diversity of signaling pathways.
Collapse
Affiliation(s)
- Richard E Mains
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
- Correspondence: Richard E. Mains, PhD, University of Connecticut Health Center, 263 Farmington
Avenue, Farmington, Connecticut 06030. E-mail:
| | | | - Bruce A Rheaume
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
| | - Betty A Eipper
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
- Molecular Biology & Biophysics, University of Connecticut, Farmington,
Connecticut
| |
Collapse
|
13
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
14
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
15
|
Hinds TD, Hosick PA, Chen S, Tukey RH, Hankins MW, Nestor-Kalinoski A, Stec DE. Mice with hyperbilirubinemia due to Gilbert's syndrome polymorphism are resistant to hepatic steatosis by decreased serine 73 phosphorylation of PPARα. Am J Physiol Endocrinol Metab 2017; 312:E244-E252. [PMID: 28096081 PMCID: PMC5406988 DOI: 10.1152/ajpendo.00396.2016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 01/07/2023]
Abstract
Gilbert's syndrome in humans is derived from a polymorphism (TA repeat) in the hepatic UGT1A1 gene that results in decreased conjugation and increased levels of unconjugated bilirubin. Recently, we have shown that bilirubin binds directly to the fat-burning nuclear peroxisome proliferator-activated receptor-α (PPARα). Additionally, we have shown that serine 73 phosphorylation [Ser(P)73] of PPARα decreases activity by reducing its protein levels and transcriptional activity. The aim of this study was to determine whether humanized mice with the Gilbert's polymorphism (HuUGT*28) have increased PPARα activation and reduced hepatic fat accumulation. To determine whether humanized mice with Gilbert's mutation (HuUGT*28) have reduced hepatic lipids, we placed them and C57BL/6J control mice on a high-fat (60%) diet for 36 wk. Body weights, fat and lean mass, and fasting blood glucose and insulin levels were measured every 6 wk throughout the investigation. At the end of the study, hepatic lipid content was measured and PPARα regulated genes as well as immunostaining of Ser(P)73 PPARα from liver sections. The HuUGT*28 mice had increased serum bilirubin, lean body mass, decreased fat mass, and hepatic lipid content as well as lower serum glucose and insulin levels. Also, the HuUGT*28 mice had reduced Ser(P)73 PPARα immunostaining in livers and increased PPARα transcriptional activity compared with controls. A chronic but mild endogenous increase in unconjugated hyperbiliubinemia protects against hepatic steatosis through a reduction in Ser(P)73 PPARα, causing an increase in PPARα transcriptional activity.
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Peter A Hosick
- Department of Exercise Science and Physical Education, Montclair State University, Montclair, New Jersey
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California; and
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California; and
| | - Michael W Hankins
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrea Nestor-Kalinoski
- Advanced Microscopy and Imaging Center, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi;
| |
Collapse
|
16
|
Marino JS, Stechschulte LA, Stec DE, Nestor-Kalinoski A, Coleman S, Hinds TD. Glucocorticoid Receptor β Induces Hepatic Steatosis by Augmenting Inflammation and Inhibition of the Peroxisome Proliferator-activated Receptor (PPAR) α. J Biol Chem 2016; 291:25776-25788. [PMID: 27784782 DOI: 10.1074/jbc.m116.752311] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Indexed: 01/01/2023] Open
Abstract
Glucocorticoids (GCs) regulate energy supply in response to stress by increasing hepatic gluconeogenesis during fasting. Long-term GC treatment induces hepatic steatosis and weight gain. GC signaling is coordinated via the GC receptor (GR) GRα, as the GRβ isoform lacks a ligand-binding domain. The roles of the GR isoforms in the regulation of lipid accumulation is unknown. The purpose of this study was to determine whether GRβ inhibits the actions of GCs in the liver, or enhances hepatic lipid accumulation. We show that GRβ expression is increased in adipose and liver tissues in obese high-fat fed mice. Adenovirus-mediated delivery of hepatic GRβ overexpression (GRβ-Ad) resulted in suppression of gluconeogenic genes and hyperglycemia in mice on a regular diet. Furthermore, GRβ-Ad mice had increased hepatic lipid accumulation and serum triglyceride levels possibly due to the activation of NF-κB signaling and increased tumor necrosis factor α (TNFα) and inducible nitric-oxide synthase expression, indicative of enhanced M1 macrophages and the development of steatosis. Consequently, GRβ-Ad mice had increased glycogen synthase kinase 3β (GSK3β) activity and reduced hepatic PPARα and fibroblast growth factor 21 (FGF21) expression and lower serum FGF21 levels, which are two proteins known to increase during fasting to enhance the burning of fat by activating the β-oxidation pathway. In conclusion, GRβ antagonizes the GC-induced signaling during fasting via GRα and the PPARα-FGF21 axis that reduces fat burning. Furthermore, hepatic GRβ increases inflammation, which leads to hepatic lipid accumulation.
Collapse
Affiliation(s)
- Joseph S Marino
- From the Department of Kinesiology, Laboratory of Systems Physiology, University of North Carolina, Charlotte, North Carolina 28223
| | | | - David E Stec
- the Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216, and
| | | | - Sydni Coleman
- the University of Cincinnati, College of Medicine, Cincinnati, Ohio 45220
| | - Terry D Hinds
- Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, Ohio 43614,
| |
Collapse
|
17
|
Young MJ, Geiszler PC, Pardon MC. A novel role for the immunophilin FKBP52 in motor coordination. Behav Brain Res 2016; 313:97-110. [PMID: 27418439 DOI: 10.1016/j.bbr.2016.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/09/2016] [Accepted: 07/10/2016] [Indexed: 02/01/2023]
Abstract
FKBP52 is a ubiquitously distributed immunophilin that has been associated with wide-ranging functions in cell signalling as well as hormonal and stress responses. Amongst other pathways, it acts via complex-formation with corticosteroid receptors and has consequently been associated with stress- and age- related neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Reduced levels of FKBP52 have been linked to tau dysfunction and amyloid beta toxicity in AD. However, FKBP52's role in cognition and neurodegenerative disorder-like phenotypes remain to be elucidated. The present study aimed therefore at investigating the cognitive and behavioural effects of reduced FKBP52 levels of genetically modified mice during ageing. Female and male FKBP52(+/+), FKBP52(+/-) and FKBP52(-/-) mice were compared at two-, ten-, twelve-, fifteen- and eighteen-months-of-age in a series of behavioural tests covering specie-specific behaviour, motor activity and coordination, fear-, spatial and recognition memory as well as curiosity and emotionality. Whilst cognitively unimpaired, FKBP52(+/-) mice performed worse on an accelerating rotating rod than FKBP52(+/+) littermates across all age-groups suggesting that FKBP52 is involved in processes controlling motor coordination. This deficit did not exacerbate with age but did worsen with repeated testing; pointing towards a role for FKBP52 in learning of tasks requiring motor coordination abilities. This study contributes to the knowledge base of FKBP52's implication in neurodegenerative diseases by demonstrating that FKBP52 by itself does not directly affect cognition and may therefore rather play an indirect, modulatory role in the functional pathology of AD, whereas it directly affects motor coordination, an early sign of neurodegenerative damages to the brain.
Collapse
Affiliation(s)
- Matthew J Young
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Philippine C Geiszler
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom
| | - Marie-Christine Pardon
- University of Nottingham Medical School, School of Life Sciences, Neuroscience group, Queen's Medical Centre, Nottingham NG7 2UH United Kingdom.
| |
Collapse
|
18
|
Philp LK, Day TK, Butler MS, Laven-Law G, Jindal S, Hickey TE, Scher HI, Butler LM, Tilley WD. Small Glutamine-Rich Tetratricopeptide Repeat-Containing Protein Alpha (SGTA) Ablation Limits Offspring Viability and Growth in Mice. Sci Rep 2016; 6:28950. [PMID: 27358191 PMCID: PMC4928056 DOI: 10.1038/srep28950] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023] Open
Abstract
Small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) has been implicated as a co-chaperone and regulator of androgen and growth hormone receptor (AR, GHR) signalling. We investigated the functional consequences of partial and full Sgta ablation in vivo using Cre-lox Sgta-null mice. Sgta(+/-) breeders generated viable Sgta(-/-) offspring, but at less than Mendelian expectancy. Sgta(-/-) breeders were subfertile with small litters and higher neonatal death (P < 0.02). Body size was significantly and proportionately smaller in male and female Sgta(-/-) (vs WT, Sgta(+/-) P < 0.001) from d19. Serum IGF-1 levels were genotype- and sex-dependent. Food intake, muscle and bone mass and adiposity were unchanged in Sgta(-/-). Vital and sex organs had normal relative weight, morphology and histology, although certain androgen-sensitive measures such as penis and preputial size, and testis descent, were greater in Sgta(-/-). Expression of AR and its targets remained largely unchanged, although AR localisation was genotype- and tissue-dependent. Generally expression of other TPR-containing proteins was unchanged. In conclusion, this thorough investigation of SGTA-null mutation reports a mild phenotype of reduced body size. The model's full potential likely will be realised by genetic crosses with other models to interrogate the role of SGTA in the many diseases in which it has been implicated.
Collapse
Affiliation(s)
- Lisa K. Philp
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Tanya K. Day
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Miriam S. Butler
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Geraldine Laven-Law
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Shalini Jindal
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Theresa E. Hickey
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | | | - Lisa M. Butler
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
- Freemason’s Foundation Centre for Men’s Health, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| | - Wayne D. Tilley
- Adelaide Prostate Cancer Research Centre and Dame Roma Mitchell Cancer Research Laboratories, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
- Freemason’s Foundation Centre for Men’s Health, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
19
|
Timcodar (VX-853) Is a Non-FKBP12 Binding Macrolide Derivative That Inhibits PPARγ and Suppresses Adipogenesis. PPAR Res 2016; 2016:6218637. [PMID: 27190501 PMCID: PMC4848453 DOI: 10.1155/2016/6218637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/27/2016] [Indexed: 11/17/2022] Open
Abstract
Nutrient overload and genetic factors have led to a worldwide epidemic of obesity that is the underlying cause of diabetes, atherosclerosis, and cardiovascular disease. In this study, we used macrolide drugs such as FK506, rapamycin, and macrolide derived, timcodar (VX-853), to determine their effects on lipid accumulation during adipogenesis. Rapamycin and FK506 bind to FK506-binding proteins (FKBPs), such as FKBP12, which causes suppression of the immune system and inhibition of mTOR. Rapamycin has been previously reported to inhibit the adipogenic process and lipid accumulation. However, rapamycin treatment in rodents caused immune suppression and glucose resistance, even though the mice lost weight. Here we show that timcodar (1 μM), a non-FKBP12-binding drug, significantly (p < 0.001) inhibited lipid accumulation during adipogenesis. A comparison of the same concentration of timcodar (1 μM) and rapamycin (1 μM) showed that both are inhibitors of lipid accumulation during adipogenesis. Importantly, timcodar potently (p < 0.01) suppressed transcriptional regulators of adipogenesis, PPARγ and C/EBPα, resulting in the inhibition of genes involved in lipid accumulation. These studies set the stage for timcodar as a possible antiobesity therapy, which is rapidly emerging as a pandemic.
Collapse
|
20
|
John K, Marino JS, Sanchez ER, Hinds TD. The glucocorticoid receptor: cause of or cure for obesity? Am J Physiol Endocrinol Metab 2016; 310:E249-57. [PMID: 26714851 PMCID: PMC4838130 DOI: 10.1152/ajpendo.00478.2015] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
Abstract
Glucocorticoid hormones (GCs) are important regulators of lipid metabolism, promoting lipolysis with acute treatment but lipogenesis with chronic exposure. Conventional wisdom posits that these disparate outcomes are mediated by the classical glucocorticoid receptor GRα. There is insufficient knowledge of the GC receptors (GRα and GRβ) in metabolic conditions such as obesity and diabetes. We present acute models of GC exposure that induce lipolysis, such as exercise, as well as chronic-excess models that cause obesity and lipid accumulation in the liver, such as hepatic steatosis. Alternative mechanisms are then proposed for the lipogenic actions of GCs, including induction of GC resistance by the GRβ isoform, and promotion of lipogenesis by GC activation of the mineralocorticoid receptor (MR). Finally, the potential involvement of chaperone proteins in the regulation of adipogenesis is considered. This reevaluation may prove useful to future studies on the steroidal basis of adipogenesis and obesity.
Collapse
Affiliation(s)
- Kezia John
- Center for Hypertension and Personalized Medicine and
| | - Joseph S Marino
- Department of Kinesiology, University of North Carolina Charlotte, Charlotte, North Carolina
| | - Edwin R Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio; and
| | - Terry D Hinds
- Center for Hypertension and Personalized Medicine and
| |
Collapse
|
21
|
Woods CP, Hazlehurst JM, Tomlinson JW. Glucocorticoids and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2015; 154:94-103. [PMID: 26241028 DOI: 10.1016/j.jsbmb.2015.07.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the global obesity and metabolic disease epidemic and is rapidly becoming the leading cause of liver cirrhosis and indication for liver transplantation worldwide. The hallmark pathological finding in NAFLD is excess lipid accumulation within hepatocytes, but it is a spectrum of disease ranging from benign hepatic steatosis to steatohepatitis through to fibrosis, cirrhosis and risk of hepatocellular carcinoma. The exact pathophysiology remains unclear with a multi-hit hypothesis generally accepted as being required for inflammation and fibrosis to develop after initial steatosis. Glucocorticoids have been implicated in the pathogenesis of NAFLD across all stages. They have a diverse array of metabolic functions that have the potential to drive NAFLD acting on both liver and adipose tissue. In the fasting state, they are able to mobilize lipid, increasing fatty acid delivery and in the fed state can promote lipid accumulation. Their action is controlled at multiple levels and in this review will outline the evidence base for the role of GCs in the pathogenesis of NAFLD from cell systems, rodent models and clinical studies and describe interventional strategies that have been employed to modulate glucocorticoid action as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Conor P Woods
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Jonathon M Hazlehurst
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK.
| |
Collapse
|
22
|
Toneatto J, Charó NL, Galigniana NM, Piwien-Pilipuk G. Adipogenesis is under surveillance of Hsp90 and the high molecular weight Immunophilin FKBP51. Adipocyte 2015; 4:239-47. [PMID: 26451279 DOI: 10.1080/21623945.2015.1049401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 01/21/2023] Open
Abstract
Adipose tissue plays a central role in the control of energy balance as well as in the maintenance of metabolic homeostasis. It was not until recently that the first evidences of the role of heat shock protein (Hsp) 90 and high molecular weight immunophilin FKBP51 have been described in the process of adipocyte differentiation. Recent reports describe their role in the regulation of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype. In addition, novel roles have been uncovered for FKBP51 in the organization of the architecture of the nucleus through its participation in the reorganization of the nuclear lamina. Therefore, the aim of this review is to integrate and discuss the recent advances in the field, with special emphasis on the roles of Hsp90 and FKBP51 in the process of adipocyte differentiation.
Collapse
|
23
|
Feng X, Sippel C, Bracher A, Hausch F. Structure–Affinity Relationship Analysis of Selective FKBP51 Ligands. J Med Chem 2015; 58:7796-806. [DOI: 10.1021/acs.jmedchem.5b00785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xixi Feng
- Department
of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| | - Claudia Sippel
- Department
of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| | - Andreas Bracher
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Felix Hausch
- Department
of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| |
Collapse
|
24
|
Guo F, Zhang Y, Zhang C, Wang S, Ni Y, Zhao R. Fat mass and obesity associated (FTO) gene regulates gluconeogenesis in chicken embryo fibroblast cells. Comp Biochem Physiol A Mol Integr Physiol 2015; 179:149-56. [DOI: 10.1016/j.cbpa.2014.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/02/2014] [Accepted: 10/13/2014] [Indexed: 02/01/2023]
|
25
|
Guy NC, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-binding FKBP immunophilins. Subcell Biochem 2015; 78:35-68. [PMID: 25487015 DOI: 10.1007/978-3-319-11731-7_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hsp90 functionally interacts with a broad array of client proteins, but in every case examined Hsp90 is accompanied by one or more co-chaperones. One class of co-chaperone contains a tetratricopeptide repeat domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is now clear that the client protein influences, and is influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Naihsuan C Guy
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 79968, El Paso, TX, USA,
| | | | | | | | | |
Collapse
|
26
|
Ohno M, Kanayama T, Moore R, Ray M, Negishi M. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers. PLoS One 2014; 9:e115663. [PMID: 25542016 PMCID: PMC4277317 DOI: 10.1371/journal.pone.0115663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/16/2014] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic constitutive active/androstane receptor (CAR) retention protein (CCRP and also known as DNAJC7) is a co-chaperone previously characterized to retain nuclear receptor CAR in the cytoplasm of HepG2 cells. Here we have produced CCRP knockout (KO) mice and demonstrated that CCRP regulates CAR at multiple steps in activation of the cytochrome (Cyp) 2b10 gene in liver: nuclear accumulation, RNA polymerase II recruitment and epigenetic modifications. Phenobarbital treatment greatly increased nuclear CAR accumulation in the livers of KO males as compared to those of wild type (WT) males. Despite this accumulation, phenobarbital-induced activation of the Cyp2b10 gene was significantly attenuated. In ChIP assays, a CAR/retinoid X receptor-α (RXRα) heterodimer binding to the Cyp2b10 promoter was already increased before phenobarbital treatment and further pronounced after treatment. However, RNA polymerase II was barely recruited to the promoter even after phenobarbital treatment. Histone H3K27 on the Cyp2b10 promoter was de-methylated only after phenobarbital treatment in WT but was fully de-methylated before treatment in KO males. Thus, CCRP confers phenobarbital-induced de-methylation capability to the promoter as well as the phenobarbital responsiveness of recruiting RNA polymerase II, but is not responsible for the binding between CAR and its cognate sequence, phenobarbital responsive element module. In addition, KO males developed steatotic livers and increased serum levels of total cholesterol and high density lipoprotein in response to fasting. CCRP appears to be involved in various hepatic regulations far beyond CAR-mediated drug metabolism.
Collapse
Affiliation(s)
- Marumi Ohno
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Tomohiko Kanayama
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Manas Ray
- Knockout Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Toneatto J, Charó NL, Naselli A, Muñoz-Bernart M, Lombardi A, Piwien-Pilipuk G. Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis? NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Hinds TD, Stechschulte LA, Elkhairi F, Sanchez ER. Analysis of FK506, timcodar (VX-853) and FKBP51 and FKBP52 chaperones in control of glucocorticoid receptor activity and phosphorylation. Pharmacol Res Perspect 2014; 2:e00076. [PMID: 25505617 PMCID: PMC4186452 DOI: 10.1002/prp2.76] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 02/02/2023] Open
Abstract
The immunosuppressive ligand FK506 and the FK506-binding protein FKBP52 are stimulatory to glucocorticoid receptor (GR) activity. Here, we explore the underlying mechanism by comparing GR activity and phosphorylation status in response to FK506 and the novel nonimmunosuppressive ligand timcodar (VX-853) and in the presence and absence of FKBP52 and the closely related protein FKBP51. Using mouse embryonic fibroblast cells (MEFs) deficient knockout (KO) in FKBP51 or FKBP52, we show decreased GR activity at endogenous genes in 52KO cells, but increased activity in 51KO cells. In 52KO cells, elevated phosphorylation occurred at inhibitory serine 212 and decreased phosphorylation at the stimulatory S220 residue. In contrast, 51KO cells showed increased GR phosphorylation at the stimulatory residues S220 and S234. In wild-type (WT) MEF cells, timcodar, like FK506, potentiated dexamethasone-induced GR transcriptional activity at two endogenous genes. Using 52KO and 51KO MEF cells, FK506 potentiated GR activity in 51KO cells but could not do so in 52KO cells, suggesting FKBP52 as the major target of FK506 action. Like FK506, timcodar potentiated GR in 51KO cells, but it also increased GR activity in 52KO cells. Knock-down of FKBP51 in the 52KO cells showed that the latter effect of timcodar required FKBP51. Thus, timcodar appears to have a dual specificity for FKBP51 and FKBP52. This work demonstrates phosphorylation as an important mechanism in FKBP control of GR and identifies the first nonimmunosuppressive macrolide capable of targeting GR action.
Collapse
Affiliation(s)
- Terry D Hinds
- Center for Diabetes and Endocrine Research, Department of Physiology & Pharmacology, University of Toledo College of Medicine Toledo, Ohio, 43614 ; Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine Toledo, Ohio, 43614
| | - Lance A Stechschulte
- Center for Diabetes and Endocrine Research, Department of Physiology & Pharmacology, University of Toledo College of Medicine Toledo, Ohio, 43614
| | - Fadel Elkhairi
- Department of Urology, University of Toledo College of Medicine Toledo, Ohio, 43614
| | - Edwin R Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology & Pharmacology, University of Toledo College of Medicine Toledo, Ohio, 43614
| |
Collapse
|
29
|
Ott M, Litzenburger UM, Rauschenbach KJ, Bunse L, Ochs K, Sahm F, Pusch S, Opitz CA, Blaes J, von Deimling A, Wick W, Platten M. Suppression of TDO-mediated tryptophan catabolism in glioblastoma cells by a steroid-responsive FKBP52-dependent pathway. Glia 2014; 63:78-90. [PMID: 25132599 DOI: 10.1002/glia.22734] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/17/2014] [Indexed: 02/04/2023]
Abstract
Tryptophan catabolism is increasingly recognized as a key and druggable molecular mechanism active in cancer, immune, and glioneural cells and involved in the modulation of antitumor immunity, autoimmunity and glioneural function. In addition to the pivotal rate limiting enzyme indoleamine-2,3-dioxygenase, expression of tryptophan-2,3-dioxygenase (TDO) has recently been described as an alternative pathway responsible for constitutive tryptophan degradation in malignant gliomas and other types of cancer. In addition, TDO has been implicated as a key regulator of neurotoxicity involved in neurodegenerative diseases and ageing. The pathways regulating TDO expression, however, are largely unknown. Here, a siRNA-based transcription factor profiling in human glioblastoma cells revealed that the expression of human TDO is suppressed by endogenous glucocorticoid signaling. Similarly, treatment of glioblastoma cells with the synthetic glucocorticoid dexamethasone led to a reduction of TDO expression and activity in vitro and in vivo. TDO inhibition was dependent on the immunophilin FKBP52, whose FK1 domain physically interacted with the glucocorticoid receptor as demonstrated by bimolecular fluorescence complementation and in situ proximity ligation assays. Accordingly, gene expression profile analyses revealed negative correlation of FKBP52 and TDO in glial and neural tumors and in normal brain. Knockdown of FKBP52 and treatment with the FK-binding immunosuppressant FK506 enhanced TDO expression and activity in glioblastoma cells. In summary, we identify a novel steroid-responsive FKBP52-dependent pathway suppressing the expression and activity of TDO, a central and rate-limiting enzyme in tryptophan metabolism, in human gliomas.
Collapse
Affiliation(s)
- Martina Ott
- German Cancer Consortium (DKTK) Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurooncology, University Hospital Heidelberg and National Center for Tumor Diseases, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
François Y, Marie-Etancelin C, Vignal A, Viala D, Davail S, Molette C. Mule duck "foie gras" shows different metabolic states according to its quality phenotype by using a proteomic approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7140-7150. [PMID: 24976256 DOI: 10.1021/jf5006963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study aimed at identifying the mechanisms implicated in "foie gras" quality variability through the study of the relationships between liver protein compositions and four liver quality phenotypes: liver weight, melting rate, and protein contents on crude or dry matter. Spots of soluble proteins were separated by bidimensional electrophoresis, and the relative abundance of proteins according to quality traits values was investigated. Twenty-three protein spots (19 unique identified proteins) showed different levels of abundance according to one or more of the traits' values. These abundance differences highlighted two groups of livers with opposite trends of abundance levels. Proteins of the first group, associated with low liver weight and melting rate, are involved in synthesis and anabolism processes, whereas proteins of the second group, associated with high liver weight and melting rate, are proteins involved in stress response. Altogether, these results highlight the variations in metabolic states underlying foie gras quality traits.
Collapse
Affiliation(s)
- Yoannah François
- Université de Pau et des Pays de l'Adour, UMR5254 Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux - Equipe Environnement et Microbiologie (IPREM-EEM), 40004 Mont de Marsan Cedex, France
| | | | | | | | | | | |
Collapse
|
31
|
Stechschulte LA, Hinds TD, Ghanem SS, Shou W, Najjar SM, Sanchez ER. FKBP51 reciprocally regulates GRα and PPARγ activation via the Akt-p38 pathway. Mol Endocrinol 2014; 28:1254-64. [PMID: 24933248 DOI: 10.1210/me.2014-1023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
FK506-binding protein 51 (FKBP51) is a negative regulator of glucocorticoid receptor-α (GRα), although the mechanism is unknown. We show here that FKBP51 is also a chaperone to peroxisome proliferator-activated receptor-γ (PPARγ), which is essential for activity, and uncover the mechanism underlying this differential regulation. In COS-7 cells, FKBP51 overexpression reduced GRα activity at a glucocorticoid response element-luciferase reporter, while increasing PPARγ activity at a peroxisome proliferator response element reporter. Conversely, FKBP51-deficient (knockout) (51KO) mouse embryonic fibroblasts (MEFs) showed elevated GRα but reduced PPARγ activities compared with those in wild-type MEFs. Phosphorylation is known to exert a similar pattern of reciprocal modulation of GRα and PPARγ. Knockdown of FKBP51 in 3T3-L1 preadipocytes increased phosphorylation of PPARγ at serine 112, a phospho-residue that inhibits activity. In 51KO cells, elevated phosphorylation of GRα at serines 220 and 234, phospho-residues that promote activity, was observed. Because FKBP51 is an essential chaperone to the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase, Akt signaling was investigated. Elevated Akt activation and increased activation of p38 kinase, a downstream target of Akt that phosphorylates GRα and PPARγ, were seen in 51KO MEFs, causing activation and inhibition, respectively. Inactivation of p38 with PD169316 reversed the effects of FKBP51 deficiency on GRα and PPARγ activities and reduced PPARγ phosphorylation. Last, loss of FKBP51 caused a shift of PPARγ from cytoplasm to nucleus, as previously shown for GRα. A model is proposed in which FKBP51 loss reciprocally regulates GRα and PPARγ via 2 complementary mechanisms: activation of Akt-p38-mediated phosphorylation and redistribution of the receptors to the nucleus for direct targeting by p38.
Collapse
Affiliation(s)
- Lance A Stechschulte
- Center for Diabetes and Endocrine Research (L.A.S., T.D.H., S.S.G., S.M.N., E.R.S.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio 43614; and Herman B. Wells Center for Pediatric Research (W.S.), Section of Pediatric Cardiology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | | | | | | | | |
Collapse
|
32
|
Toneatto J, Guber S, Charó NL, Susperreguy S, Schwartz J, Galigniana MD, Piwien-Pilipuk G. Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. J Cell Sci 2013; 126:5357-68. [PMID: 24101724 DOI: 10.1242/jcs.125799] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoids play an important role in adipogenesis through the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90•Hsp70 and one high molecular weight immunophilin, either FKBP51 or FKBP52. When 3T3-L1 preadipocytes are induced to differentiate, FKBP51 expression progressively increases, whereas FKBP52 decreases, and Hsp90, Hsp70, p23 and Cyp40 remain unchanged. Interestingly, FKBP51 rapidly translocates from mitochondria to the nucleus where it is retained upon its interaction with chromatin and the nuclear matrix. FKBP51 nuclear localization is transient, and after 48 hours it cycles back to mitochondria. Importantly, this dynamic FKBP51 mitochondrial-nuclear shuttling depends on PKA signaling, because its inhibition by PKI or knockdown of PKA-cα by siRNA, prevented FKBP51 nuclear translocation induced by IBMX. In addition, the electrophoretic pattern of migration of FKBP51 is altered by treatment of cells with PKI or knockdown of PKA-cα, suggesting that FKBP51 is a PKA substrate. In preadipocytes, FKBP51 colocalizes with PKA-cα in mitochondria. When adipogenesis is triggered, PKA-cα also moves to the nucleus colocalizing with FKBP51 mainly in the nuclear lamina. Moreover, FKBP51 and GR interaction increases when preadipocytes are induced to differentiate. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced FKBP51 nuclear translocation, but not by a specific activator of EPAC. FKBP51 knockdown facilitates adipogenesis, whereas ectopic expression of FKBP51 blocks adipogenesis. These findings indicate that the dynamic mitochondrial-nuclear shuttling of FKBP51 regulated by PKA may be key in fine-tuning the transcriptional control of GR target genes required for the acquisition of adipocyte phenotype.
Collapse
Affiliation(s)
- Judith Toneatto
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires C1428ADN, Argentina
| | | | | | | | | | | | | |
Collapse
|
33
|
Cluning C, Ward BK, Rea SL, Arulpragasam A, Fuller PJ, Ratajczak T. The helix 1-3 loop in the glucocorticoid receptor LBD is a regulatory element for FKBP cochaperones. Mol Endocrinol 2013; 27:1020-35. [PMID: 23686112 DOI: 10.1210/me.2012-1023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The heat-shock protein 90 (Hsp90) cochaperone FK506-binding protein 52 (FKBP52) upregulates, whereas FKBP51 inhibits, hormone binding and nuclear targeting of the glucocorticoid receptor (GR). Decreased cortisol sensitivity in the guinea pig is attributed to changes within the helix 1 to helix 3 (H1-H3) loop of the guinea pig GR (gpGR) ligand-binding domain. It has been proposed that this loop serves as a contact point for FKBP52 and/or FKBP51 with receptor. We examined the role of the H1-H3 loop in GR activation by FKBP52 using a Saccharomyces cerevisiae model. The activity of rat GR (rGR) containing the gpGR H1-H3 loop substitutions was still potentiated by FKBP52, confirming the loop is not involved in primary FKBP52 interactions. Additional assays also excluded a role for other intervening loops between ligand-binding domain helices in direct interactions with FKBP52 associated with enhanced receptor activity. Complementary studies in FKBP51-deficient mouse embryo fibroblasts and HEK293 cells demonstrated that substitution of the gpGR H1-H3 loop residues into rGR dramatically increased receptor repression by FKBP51 without enhancing receptor-FKBP51 interaction and did not alter recruitment of endogenous Hsp90 and the p23 cochaperone to receptor complexes. FKBP51 suppression of the mutated rGR did not require FKBP51 peptidylprolyl cis-trans isomerase activity and was not disrupted by mutation of the FK1 proline-rich loop thought to mediate reciprocal FKBP influences on receptor activity. We conclude that the gpGR-specific mutations within the H1-H3 loop confer global changes within the GR-Hsp90 complex that favor FKBP51 repression over FKBP52 potentiation, thus identifying the loop as an important target for GR regulation by the FKBP cochaperones.
Collapse
Affiliation(s)
- Carmel Cluning
- Laboratory for Molecular Endocrinology, Western Australian Institute forMedical Research and the UWA Centre for Medical Research, The University of Western Australia, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Fkbp52 heterozygosity alters behavioral, endocrine and neurogenetic parameters under basal and chronic stress conditions in mice. Psychoneuroendocrinology 2012; 37:2009-21. [PMID: 22641006 DOI: 10.1016/j.psyneuen.2012.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 01/13/2023]
Abstract
Aversive life events represent one of the main risk factors for the development of many psychiatric diseases, but the interplay between environmental factors and genetic predispositions is still poorly understood. One major finding in many depressed patients is an impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis. The negative feedback loop of the HPA axis is mediated via the glucocorticoid receptor (GR) and the mineralocorticoid receptor. The co-chaperones FK506-binding protein 51 (FKBP51) and FK506-binding protein 52 (FKBP52) are components of the heat shock protein 90-receptor-heterocomplex and are functionally divergent regulators of both receptors. Here, we characterized heterozygous Fkbp52 knockout (Fkbp52(+/-)) mice under basal or chronic social defeat stress (CSDS) conditions with regard to physiological, neuroendocrine, behavioral and mRNA expression alterations. Fkbp52(+/-) mice displayed symptoms of increased stress sensitivity in a subset of behavioral and neuroendocrine parameters. These included increased anxiety-related behavior in the elevated plus-maze and an enhanced neuroendocrine response to a forced swim test (FST), possibly mediated by reduced GR sensitivity. At the same time, Fkbp52(+/-) mice also demonstrated signs of stress resilience in other behavioral and neuroendocrine aspects, such as reduced basal corticosterone levels and more active stress-coping behavior in the FST following CSDS. These contrasting results are in line with previous reports showing that FKBP52 is not involved in all branches of GR signaling, but rather acts in a gene-specific manner to regulate GR transcriptional activation.
Collapse
|
35
|
Pearson JD, Mohammed Z, Bacani JTC, Lai R, Ingham RJ. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein. BMC Cancer 2012; 12:229. [PMID: 22681779 PMCID: PMC3407532 DOI: 10.1186/1471-2407-12-229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/08/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g. NPM-ALK) with constitutive tyrosine kinase activity, which activate numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock protein-90 (Hsp90) plays a critical role in allowing NPM-ALK and other signalling proteins to function in this lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40), is up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines. METHODS NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP) 51, and FKBP52 examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined. RESULTS We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with siRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell lines treated with Cyp40 siRNA does not appear to be due to a decrease in NPM-ALK levels or the ability of this oncoprotein to signal. CONCLUSIONS This is the first study demonstrating that the expression of immunophilin family co-chaperones is promoted by an oncogenic tyrosine kinase. Moreover, this is the first report establishing an important role for Cyp40 in lymphoma.
Collapse
Affiliation(s)
- Joel D Pearson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Zubair Mohammed
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Julinor T C Bacani
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2B7, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2B7, Canada
| | - Robert J Ingham
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G 2E1, Canada
| |
Collapse
|
36
|
Galigniana NM, Ballmer LT, Toneatto J, Erlejman AG, Lagadari M, Galigniana MD. Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51. J Neurochem 2012; 122:4-18. [DOI: 10.1111/j.1471-4159.2012.07775.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Taga H, Chilliard Y, Meunier B, Chambon C, Picard B, Zingaretti MC, Cinti S, Bonnet M. Cellular and molecular large-scale features of fetal adipose tissue: is bovine perirenal adipose tissue brown? J Cell Physiol 2012; 227:1688-1700. [PMID: 21678425 DOI: 10.1002/jcp.22893] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidemiological and fetal programming studies point to the role of fetal growth in adult adipose tissue (AT) mass in large mammals. Despite the incidence of fetal AT growth for human health and animal production outcomes, there is still a lack of relevant studies. We determined the cellular and large-scale-molecular features of bovine fetal perirenal AT sampled at 110, 180, 210, and 260 days post-conception (dpc) with the aim of identifying key cellular and molecular events in AT growth. The increase in AT weight from 110 to 260 dpc resulted from an increase in adipocyte volume and particularly adipocyte number that were concomitant with temporal changes in the abundance of 142 proteins revealed by proteomics. At 110 and 180 dpc, we identified proteins such as TCP1, FKBP4, or HSPD1 that may regulate adipocyte precursor proliferation by controlling cell-cycle progression and/or apoptosis or delaying PPARγ-induced differentiation. From 180 dpc, the up-regulation of PPARγ-induced proteins, lipogenic and lipolytic enzymes, and adipokine expression may underpin the differentiation and increase in adipocyte volume. Also from 180 dpc, we unexpectedly observed up-regulations in the β-subunit of ATP synthase, which is normally bypassed in brown AT, as well as in aldehyde dehydrogenases ALDH2 and ALDH9A1, which were predominantly expressed in mouse white AT. These results, together with the observed abundant unilocular adipocytes at 180 and 260 dpc, strongly suggest that fetal bovine perirenal AT has much more in common with white than with brown AT.
Collapse
Affiliation(s)
- Hajer Taga
- INRA, UR1213 Herbivores, Saint-Genès-Champanelle, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Al-Qabandi W, Owayed AF, Dhaunsi GS. Cellular oxidative stress and peroxisomal enzyme activities in pediatric liver transplant patients. Med Princ Pract 2012; 21:264-70. [PMID: 22134066 DOI: 10.1159/000334491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 10/06/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES In this study, we examined the activities of key peroxisomal enzymes in peripheral blood lymphocytes (PBLs) of pediatric liver transplant patients. SUBJECTS AND METHODS Venous blood was drawn from 14 patients aged 5-16 years on FK-506 treatment and 18 healthy subjects for isolation of lymphocytes. β-Oxidation of very long chain fatty acids (VLCFAs) and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), NADPH oxidase (NOX), catalase and peroxisomal enzyme acyl CoA oxidase (ACO) were measured in cellular homogenates. Levels of malondialdehyde (MDA) were measured as an index of lipid peroxidation. Protein content and mRNA levels of catalase, peroxisomal membrane protein-70 (PMP-70) and ACO were measured using Western blotting and PCR techniques. RESULTS PBLs isolated from liver transplant patients showed significantly (p < 0.01) increased levels (226.9 ± 24.5 μmol/mg protein) of MDA as compared to the levels in controls (162.8 ± 19.6 μmol/mg protein), whereas enzyme activities of SOD and NOX remained unaltered in patients' cells. Enzyme activities of catalase and GPx were markedly (p < 0.01) decreased in cells isolated from liver transplant patients. ACO activity and β-oxidation of VLCFAs in PBLs from liver transplant patients were however found to be significantly increased by 38 and 52% respectively when compared with controls. Gene expression of PMP-70 and ACO was also significantly increased (p < 0.01) in PBLs of patients. CONCLUSION Our results clearly showed that peroxisomal metabolic activities are markedly altered in lymphocytes of liver transplant patients and might contribute to the development of cellular oxidative stress.
Collapse
Affiliation(s)
- Wafa'a Al-Qabandi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | | | | |
Collapse
|
39
|
Sanchez ER. Chaperoning steroidal physiology: lessons from mouse genetic models of Hsp90 and its cochaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:722-9. [PMID: 22155719 DOI: 10.1016/j.bbamcr.2011.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
The molecular chaperone Hsp90 is abundant, ubiquitous, and catholic to biological processes in eukaryotes, controlling phosphorylation cascades, protein stability and turnover, client localization and trafficking, and ligand-receptor interactions. Not surprisingly, Hsp90 does not accomplish these activities alone. Instead, an ever-growing number of cochaperones have been identified, leading to an explosion of reports on their molecular and cellular effects on Hsp90 chaperoning of client substrates. Notable among these clients are many members of the steroid receptor family, such as glucocorticoid, androgen, estrogen and progesterone receptors. Cochaperones typically associated with the mature, hormone-competent states of these receptors include p23, the FK506-binding protein 52 (FKBP52), FKBP51, protein phosphatase 5 (PP5) and cyclophilin 40 (Cyp40). The ultimate relevance of these cochaperones to steroid receptor action depends on their physiological effects. In recent years, the first mouse genetic models of these cochaperones have been developed. This work will review the complex and intriguing phenotypes so far obtained in genetically-altered mice and compare them to the known molecular and cellular impacts of cochaperones on steroid receptors. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Edwin R Sanchez
- Department of Physiologyand Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA.
| |
Collapse
|
40
|
Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB. FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab 2011; 22:481-90. [PMID: 21889356 PMCID: PMC3229651 DOI: 10.1016/j.tem.2011.08.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 11/21/2022]
Abstract
FKBP51 and FKBP52 are diverse regulators of steroid hormone receptor signaling, including receptor maturation, hormone binding and nuclear translocation. Although structurally similar, they are functionally divergent, which is largely attributed to differences in the FK1 domain and the proline-rich loop. FKBP51 and FKBP52 have emerged as likely contributors to a variety of hormone-dependent diseases, including stress-related diseases, immune function, reproductive functions and a variety of cancers. In addition, recent studies have implicated FKBP51 and FKBP52 in Alzheimer's disease and other protein aggregation disorders. This review summarizes our current understanding of FKBP51 and FKBP52 interactions within the receptor-chaperone complex, their contributions to health and disease, and their potential as therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Cheryl L Storer
- The Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | | | | | |
Collapse
|
41
|
Stechschulte LA, Sanchez ER. FKBP51-a selective modulator of glucocorticoid and androgen sensitivity. Curr Opin Pharmacol 2011; 11:332-7. [PMID: 21565552 PMCID: PMC3156375 DOI: 10.1016/j.coph.2011.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/28/2022]
Abstract
FK506-binding protein 51 (FKBP51) is gaining increased recognition for its essential roles in cell biology. Originally discovered as a component of steroid receptor complexes, it is now known to regulate a diverse set of transcription factors, enzymes and structural proteins. Its cellular properties suggest numerous possible functions for FKBP51 in physiology, and the best clue to its potential importance may be the following: FKBP51 is a glucocorticoid-induced negative regulator of the glucocorticoid receptor. Thus, FKBP51 is intricately involved in regulation of the most pleiotropic hormone known to biology. In contrast to glucocorticoid receptor, FKBP51 is a positive regulator of the androgen receptor, suggesting that it functions as a reciprocal modulator of glucocorticoid-mediated and androgen-mediated physiology. In this work, we evaluate this hypothesis by examining recent cellular and physiological evidence.
Collapse
Affiliation(s)
- Lance A. Stechschulte
- Center for Diabetes and Endocrine Research, Department of Physiology & Pharmacology, University of Toledo College of Medicine, 3035 Arlington Avenue, Toledo, OH 43614, USA
| | - Edwin R. Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology & Pharmacology, University of Toledo College of Medicine, 3035 Arlington Avenue, Toledo, OH 43614, USA
| |
Collapse
|
42
|
Sivils JC, Storer CL, Galigniana MD, Cox MB. Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52). Curr Opin Pharmacol 2011; 11:314-9. [PMID: 21511531 PMCID: PMC3156321 DOI: 10.1016/j.coph.2011.03.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 11/20/2022]
Abstract
The large FK506-binding protein FKBP52 has been characterized as an important positive regulator of androgen, glucocorticoid and progesterone receptor signaling pathways. FKBP52 associates with receptor-Hsp90 complexes and is proposed to have roles in both receptor hormone binding and receptor subcellular localization. Data from biochemical and cellular studies have been corroborated in whole animal models as fkbp52-deficient male and female mice display characteristics of androgen, glucocorticoid and/or progesterone insensitivity. FKBP52 receptor specificity and the specific phenotypes displayed by the fkbp52-deficient mice have firmly established FKBP52 as a promising target for the treatment of a variety of hormone-dependent diseases. Recent studies demonstrated that the FKBP52 FK1 domain and the proline-rich loop within this domain are functionally important for FKBP52 regulation of receptor function. Based on these data, efforts are currently underway to target the FKBP52 FK1 domain and the proline-rich loop with small molecule inhibitors.
Collapse
Affiliation(s)
- Jeffrey C Sivils
- The Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | | | | | | |
Collapse
|
43
|
Gallo LI, Lagadari M, Piwien-Pilipuk G, Galigniana MD. The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress. J Biol Chem 2011; 286:30152-60. [PMID: 21730050 DOI: 10.1074/jbc.m111.256610] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Confocal microscopy images revealed that the tetratricopeptide repeat motif (TPR) domain immunophilin FKBP51 shows colocalization with the specific mitochondrial marker MitoTracker. Signal specificity was tested with different antibodies and by FKBP51 knockdown. This unexpected subcellular localization of FKBP51 was confirmed by colocalization studies with other mitochondrial proteins, biochemical fractionation, and electron microscopy imaging. Interestingly, FKBP51 forms complexes in mitochondria with the glucocorticoid receptor and the Hsp90/Hsp70-based chaperone heterocomplex. Although Hsp90 inhibitors favor FKBP51 translocation from mitochondria to the nucleus in a reversible manner, TPR domain-deficient mutants of FKBP51 are constitutively nuclear and fully excluded from mitochondria, suggesting that a functional TPR domain is required for its mitochondrial localization. FKBP51 overexpression protects cells against oxidative stress, whereas FKBP51 knockdown makes them more sensitive to injury. In summary, this is the first demonstration that FKBP51 is a major mitochondrial factor that undergoes nuclear-mitochondrial shuttling, an observation that may be related to antiapoptotic mechanisms triggered during the stress response.
Collapse
Affiliation(s)
- Luciana I Gallo
- Instituto de Biología y Medicina Experimental/Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME/CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
44
|
Current world literature. Curr Opin Lipidol 2011; 22:231-6. [PMID: 21562387 DOI: 10.1097/mol.0b013e328347aeca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Abstract
PURPOSE OF REVIEW To summarize currently available information about the mechanisms involved in liver fat accumulation. RECENT FINDINGS The contribution of functional genomics approaches, such as those represented by high-throughput analysis and genetically modified mice, may envision a complex network involving fatty acid, triglyceride and phospholipid metabolisms and lipid droplet dynamics. Likewise, it may pose an exquisite regulation exerted through insulin, glucocorticoids, thyroid hormones, transcription factors and microRNAs, orchestrated with sexual differences and able to respond to environmental factors such as nutritional or viral influences among others. SUMMARY The information gathered will facilitate further research to complete gaps of interacting pieces among regulators and new contributing agents emerging from high-throughput analyses. With this new paradigm, new biomarkers able to discriminate the progression of hepatic steatosis into human steatohepatitis will eventually emerge, and hopefully new therapeutic approaches will be developed.
Collapse
Affiliation(s)
- José M Lou-Bonafonte
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de Salud y del Deporte, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
46
|
Chen H, Yong W, Hinds TD, Yang Z, Zhou Y, Sanchez ER, Shou W. Fkbp52 regulates androgen receptor transactivation activity and male urethra morphogenesis. J Biol Chem 2010; 285:27776-84. [PMID: 20605780 PMCID: PMC2934645 DOI: 10.1074/jbc.m110.156091] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/01/2010] [Indexed: 01/12/2023] Open
Abstract
Hypospadias is a common birth defect in humans, yet its etiology and pattern of onset are largely unknown. Recent studies have shown that male mice with targeted ablation of FK506-binding protein-52 (Fkbp52) develop hypospadias, most likely due to actions of Fkbp52 as a molecular co-chaperone of the androgen receptor (AR). Here, we further dissect the developmental and molecular mechanisms that underlie hypospadias in Fkbp52-deficient mice. Scanning electron microscopy revealed a defect in the elevation of prepucial swelling that led to the onset of the ventral penile cleft. Interestingly, expression of Fkbp52 was highest in the ventral aspect of the developing penis that undergoes fusion of the urethral epithelium. Although in situ hybridization and immunohistochemical analyses suggested that Fkbp52 mutants had a normal urethral epithelium signaling center and epithelial differentiation, a reduced apoptotic cell index at ventral epithelial cells at the site of fusion and a defect of genital mesenchymal cell migration were observed. Supplementation of gestating females with excess testosterone partially rescued the hypospadic phenotype in Fkbp52 mutant males, showing that loss of Fkbp52 desensitizes AR to hormonal activation. Direct measurement of AR activity was performed in mouse embryonic fibroblast cells treated with dihydrotestosterone or synthetic agonist R1881. Reduced AR activity at genes controlling sexual dimorphism and cell growth was found in Fkbp52-deficient mouse embryonic fibroblast cells. However, chromatin immunoprecipitation analysis revealed normal occupancy of AR at gene promoters, suggesting that Fkbp52 exerts downstream effects on the transactivation function of AR. Taken together, our data show Fkbp52 to be an important molecular regulator in the androgen-mediated pathway of urethra morphogenesis.
Collapse
Affiliation(s)
- Hanying Chen
- From the Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Weidong Yong
- From the Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Terry D. Hinds
- the Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio 43614
| | - Zuocheng Yang
- From the Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- the Department of Pediatrics, Third Xiang-Ya Hospital, Central South University, Xiang-Ya School of Medicine, Changsha 410013, China, and
| | - Yuhong Zhou
- From the Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- the Department of Pharmacology, Harbin Medical University, Harbin 150086, China
| | - Edwin R. Sanchez
- the Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio 43614
| | - Weinian Shou
- From the Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|