1
|
Geertsema J, Juncker HG, Wilmes L, Burchell GL, de Rooij SR, van Goudoever JB, O'Riordan KJ, Clarke G, Cryan JF, Korosi A. Nutritional interventions to counteract the detrimental consequences of early-life stress. Mol Psychiatry 2025:10.1038/s41380-025-03020-1. [PMID: 40289212 DOI: 10.1038/s41380-025-03020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Exposure to stress during sensitive developmental periods comes with long term consequences for neurobehavioral outcomes and increases vulnerability to psychopathology later in life. While we have advanced our understanding of the mechanisms underlying the programming effects of early-life stress (ES), these are not yet fully understood and often hard to target, making the development of effective interventions challenging. In recent years, we and others have suggested that nutrition might be instrumental in modulating and possibly combatting the ES-induced increased risk to psychopathologies and neurobehavioral impairments. Nutritional strategies are very promising as they might be relatively safe, cheap and easy to implement. Here, we set out to comprehensively review the existing literature on nutritional interventions aimed at counteracting the effects of ES on neurobehavioral outcomes in preclinical and clinical settings. We identified eighty six rodent and ten human studies investigating a nutritional intervention to ameliorate ES-induced impairments. The human evidence to date, is too few and heterogeneous in terms of interventions, thus not allowing hard conclusions, however the preclinical studies, despite their heterogeneity in terms of designs, interventions used, and outcomes measured, showed nutritional interventions to be promising in combatting ES-induced impairments. Furthermore, we discuss the possible mechanisms involved in the beneficial effects of nutrition on the brain after ES, including neuroinflammation, oxidative stress, hypothalamus-pituitary-adrenal axis regulation and the microbiome-gut-brain axis. Lastly, we highlight the critical gaps in our current knowledge and make recommendations for future research to move the field forward.
Collapse
Affiliation(s)
- Jorine Geertsema
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hannah G Juncker
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Lars Wilmes
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susanne R de Rooij
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health research institute, Aging and Later Life, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - J B van Goudoever
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Aniko Korosi
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Lucantonio F, Roeglin J, Li S, Lu J, Shi A, Czerpaniak K, Fiocchi FR, Bontempi L, Shields BC, Zarate CA, Tadross MR, Pignatelli M. Ketamine rescues anhedonia by cell-type- and input-specific adaptations in the nucleus accumbens. Neuron 2025:S0896-6273(25)00139-4. [PMID: 40112815 DOI: 10.1016/j.neuron.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Ketamine is recognized as a rapid and sustained antidepressant, particularly for major depression unresponsive to conventional treatments. Anhedonia is a common symptom of depression for which ketamine is highly efficacious, but the underlying circuits and synaptic changes are not well understood. Here, we show that the nucleus accumbens (NAc) is essential for ketamine's effect in rescuing anhedonia in mice subjected to chronic stress. Specifically, a single exposure to ketamine rescues stress-induced decreased strength of excitatory synapses on NAc-D1 dopamine receptor-expressing medium spiny neurons (D1-MSNs). Using a cell-specific pharmacology method, we establish the necessity of this synaptic restoration for the sustained therapeutic effects of ketamine on anhedonia. Examining causal sufficiency, artificially increasing excitatory synaptic strength onto D1-MSNs recapitulates the behavioral amelioration induced by ketamine. Finally, we used opto- and chemogenetic approaches to determine the presynaptic origin of the relevant synapses, implicating monosynaptic inputs from the medial prefrontal cortex and ventral hippocampus.
Collapse
Affiliation(s)
- Federica Lucantonio
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jacob Roeglin
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Shuwen Li
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jaden Lu
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Aleesha Shi
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Katherine Czerpaniak
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Francesca R Fiocchi
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Brenda C Shields
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Michael R Tadross
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Marco Pignatelli
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Fukada M, Kawaguchi Y, Nakayama A. Rapid and sustained antidepressant effects of tubastatin A in a mouse model of depression. Sci Rep 2025; 15:5182. [PMID: 39939731 PMCID: PMC11821892 DOI: 10.1038/s41598-025-89551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
Depression is a prevalent mental disorder and a leading risk factor for suicide. Conventional antidepressants, which target the monoaminergic system, often have delayed therapeutic effects and limited efficacy. Therefore, the development of faster-acting and more effective treatments is critical. We previously showed that a single dose of an histone deacetylase 6 (HDAC6) inhibitor reduced behavioral despair in wild-type mice, suggesting the therapeutic potential of HDAC6 inhibition. In this study, we evaluated the effects of tubastatin A (TubA), a selective HDAC6 inhibitor, in a chronic corticosterone-induced mouse model of depression. Behavioral assessments using the female-encounter test and forced swim test revealed that a single dose of TubA reversed anhedonia within 24 h, with effects persisting for at least one week. TubA also enhanced exploratory behavior and reduced behavioral despair. Mechanistically, TubA activated extracellular signal-regulated kinase signaling in the brains of chronic corticosterone-treated mice 24 h post-injection. These findings suggest that TubA exhibits rapid and sustained antidepressant effects, offering promise as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Masahide Fukada
- Department of Cellular Pathology, Aichi Developmental Disability Center, Institute for Developmental Research, Kasugai, 480-0392, Japan.
| | - Yoshiharu Kawaguchi
- Department of Cellular Pathology, Aichi Developmental Disability Center, Institute for Developmental Research, Kasugai, 480-0392, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Aichi Developmental Disability Center, Institute for Developmental Research, Kasugai, 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| |
Collapse
|
4
|
Martin-Garcia E, Domingo-Rodriguez L, Lutz B, Maldonado R, Ruiz de Azua I. Cannabinoid type-1 receptors in CaMKII neurons drive impulsivity in pathological eating behavior. Mol Metab 2025; 92:102096. [PMID: 39788291 PMCID: PMC11787564 DOI: 10.1016/j.molmet.2025.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
OBJECTIVES Overconsumption of palatable food and energy accumulation are evolutionary mechanisms of survival when food is scarce. These innate mechanisms becom detrimental in obesogenic environment promoting obesity and related comorbidities, including mood disorders. This study aims at elucidating the role of the endocannabinoid system in energy accumulation and hedonic feeding. METHODS We applied a genetic strategy to reconstitute cannabinoid type-1 receptor (CB1) expression at functional levels specifically in CaMKII+ neurons (CaMKII-CB1-RS) and adipocytes (Ati-CB1-RS), respectively, in a CB1 deficient background. RESULTS Rescued CB1 expression in CaMKII+ neurons, but not in adipocytes, promotes feeding behavior, leading to fasting-induced hyperphagia, increased motivation, and impulsivity to palatable food seeking. In a diet-induced obesity model, CB1 re-expression in CaMKII+ neurons, but not in adipocytes, compared to complete CB1 deficiency, was sufficient to largely restore weight gain, food intake without any effect on glucose intolerance associated with high-fat diet consumption. In a model of glucocorticoid-mediated metabolic syndrome, CaMKII-CB1-RS mice showed all metabolic alterations linked to the human metabolic syndrome except of glucose intolerance. In a binge-eating model mimicking human pathological feeding, CaMKII-CB1-RS mice showed increased seeking and compulsive behavior to palatable food, suggesting crucial roles in foraging and an enhanced susceptibility to addictive-like eating behaviors. Importantly, other contingent behaviors, including increased cognitive flexibility and reduced anxiety-like behaviors, but not depressive-like behaviors, were also observed. CONCLUSIONS CB1 in CaMKII+ neurons is instrumental in feeding behavior and energy storage under physiological conditions. The exposure to risk factors (hypercaloric diet, glucocorticoid dysregulation) leads to obesity, metabolic syndrome, binge-eating and food addiction.
Collapse
Affiliation(s)
- Elena Martin-Garcia
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autonoma de Barcelona, 08193, Bellatera, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Laura Domingo-Rodriguez
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autonoma de Barcelona, 08193, Bellatera, Spain
| | - Beat Lutz
- Leibniz Institute for Resilience Research, 55122, Mainz, Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autonoma de Barcelona, 08193, Bellatera, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research, 55122, Mainz, Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128, Mainz, Germany.
| |
Collapse
|
5
|
Kim YH, Jeong S, Cho KA, Woo SY, Han SH, Ryu KH. Reduction of Low-Density Lipoprotein Cholesterol by Mesenchymal Stem Cells in a Mouse Model of Exogenous Cushing's Syndrome. Tissue Eng Regen Med 2025; 22:237-248. [PMID: 39873947 PMCID: PMC11794754 DOI: 10.1007/s13770-024-00697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome. METHODS Exogenous Cushing's syndrome model mice was generated by corticosterone administration in the drinking water for 5 weeks, and T-MSCs were injected intraperitoneally twice during the third week. Serum lipid profiles were measured using a chemistry analyzer. HepG2 cells were treated with dexamethasone and co-cultured with T-MSCs. Expression levels of genes involved in cholesterol metabolism were examined using real-time PCR. Low-density lipoprotein receptor (LDLR) protein levels were determined using western blotting and immunohistochemistry. Liver RNA extracted from the CORT and CORT + MSC mouse groups was used for transcriptome sequencing analysis and protein-protein interaction analysis. RESULTS Weight reduction and improvements in dyslipidemia by T-MSC administration were observed only in female mice. T-MSCs reduce circulating LDL cholesterol levels by downregulating liver X receptor α (LXRα) and inducible degrader of LDLR (IDOL) expression, thereby stabilizing LDLRs in the liver. Transcriptome analysis of liver tissue revealed pathways that are regulated by T-MSCs administration. CONCLUSION Administration of MSCs to female mice receiving chronic corticosterone treatment reduced the circulating LDL cholesterol level by downregulating the LXRα-IDOL axis in hepatocytes. These results suggest that T-MSCs may offer a novel therapeutic strategy for managing exogenous Cushing's syndrome by regulating cholesterol metabolism.
Collapse
Affiliation(s)
- Yu-Hee Kim
- Advance Biomedical Research Institute, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | - Seonghee Jeong
- Ewha Medical Academy, Ewha Womans University Medical Center, Seoul, South Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Seung-Ho Han
- Ewha Medical Academy, Ewha Womans University Medical Center, Seoul, South Korea
- Department of Anatomy, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| |
Collapse
|
6
|
Finnell JE, Ferrario CR. Voluntary food restriction does not affect circulating corticosterone in obesity-prone or -resistant male and female rats. Physiol Behav 2025; 288:114729. [PMID: 39510225 DOI: 10.1016/j.physbeh.2024.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Food restriction in rodents can increase circulating corticosterone, which reflects activation of physiological stress responses. These responses affect a myriad of behaviors and physiological processes and can increase the risk of obesity. Most studies in this area have used experimenter-imposed restriction. However, rats will voluntarily restrict their food intake if they are returned to chow after a period of access to sugary, fatty "junk food" (JF) diet. Here we examine the effects of voluntary food restriction in obesity-prone and -resistant male and female rats on circulating corticosterone concentrations and determine whether corticosterone release in response to acute stress differs in groups with a history of JF consumption.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, University of Michigan, Ann Arbor MI 48109, USA; Pharmacology and Toxicology State University of New York at Buffalo, Buffalo NY 14203, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor MI 48109, USA; Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor MI 48109, USA.
| |
Collapse
|
7
|
Lee MP, Kim DW, Fang Y, Kim R, Bohnert ASB, Sen S, Forger DB. The real-world association between digital markers of circadian disruption and mental health risks. NPJ Digit Med 2024; 7:355. [PMID: 39639100 PMCID: PMC11621392 DOI: 10.1038/s41746-024-01348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
While circadian disruption is recognized as a potential driver of depression, its real-world impact is poorly understood. A critical step to addressing this is the noninvasive collection of physiological time-series data outside laboratory settings in large populations. Digital tools offer promise in this endeavor. Here, using wearable data, we first quantify the degrees of circadian disruption, both between different internal rhythms and between each internal rhythm and the sleep-wake cycle. Our analysis, based on over 50,000 days of data from over 800 first-year training physicians, reveals bidirectional links between digital markers of circadian disruption and mood both before and after they began shift work, while accounting for confounders such as demographic and geographic variables. We further validate this by finding clinically relevant changes in the 9-item Patient Health Questionnaire score. Our findings validate a scalable digital measure of circadian disruption that could serve as a marker for psychiatric intervention.
Collapse
Affiliation(s)
- Minki P Lee
- Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dae Wook Kim
- Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, 34141, Republic of Korea.
- Department of Mathematics, Sogang University, Seoul, 04107, Republic of Korea.
| | - Yu Fang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ruby Kim
- Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy S B Bohnert
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48109, USA
- VA Center for Clinical Management Research, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| | - Srijan Sen
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Eisenberg Family Depression Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Michigan Center for Interdisciplinary and Applied Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Shoji H, Maeda Y, Miyakawa T. Chronic corticosterone exposure causes anxiety- and depression-related behaviors with altered gut microbial and brain metabolomic profiles in adult male C57BL/6J mice. Mol Brain 2024; 17:79. [PMID: 39511657 PMCID: PMC11545877 DOI: 10.1186/s13041-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic exposure to glucocorticoids in response to long-term stress is thought to be a risk factor for major depression. Depression is associated with disturbances in the gut microbiota composition and peripheral and central energy metabolism. However, the relationship between chronic glucocorticoid exposure, the gut microbiota, and brain metabolism remains largely unknown. In this study, we first investigated the effects of chronic corticosterone exposure on various domains of behavior in adult male C57BL/6J mice treated with the glucocorticoid corticosterone to evaluate them as an animal model of depression. We then examined the gut microbial composition and brain and plasma metabolome in corticosterone-treated mice. Chronic corticosterone treatment resulted in reduced locomotor activity, increased anxiety-like and depression-related behaviors, decreased rotarod latency, reduced acoustic startle response, decreased social behavior, working memory deficits, impaired contextual fear memory, and enhanced cued fear memory. Chronic corticosterone treatment also altered the composition of gut microbiota, which has been reported to be associated with depression, such as increased abundance of Bifidobacterium, Turicibacter, and Corynebacterium and decreased abundance of Barnesiella. Metabolomic data revealed that long-term exposure to corticosterone led to a decrease in brain neurotransmitter metabolites, such as serotonin, 5-hydroxyindoleacetic acid, acetylcholine, and gamma-aminobutyric acid, as well as changes in betaine and methionine metabolism, as indicated by decreased levels of adenosine, dimethylglycine, choline, and methionine in the brain. These results indicate that mice treated with corticosterone have good face and construct validity as an animal model for studying anxiety and depression with altered gut microbial composition and brain metabolism, offering new insights into the neurobiological basis of depression arising from gut-brain axis dysfunction caused by prolonged exposure to excessive glucocorticoids.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
9
|
Lambert J, Kovilakath A, Jamil M, Valentine Y, Anderson A, Montefusco D, Cowart LA. Sphingosine kinase 1 is induced by glucocorticoids in adipose derived stem cells and enhances glucocorticoid mediated signaling in adipose expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612482. [PMID: 39314417 PMCID: PMC11419133 DOI: 10.1101/2024.09.13.612482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sphingosine kinase 1 (SphK1) plays a crucial role in regulating metabolic pathways within adipocytes and is elevated in the adipose tissue of obese mice. While previous studies have reported both pro- and inhibitory effects of SphK1 and its product, sphingosine-1-phosphate (S1P), on adipogenesis, the precise mechanisms remain unclear. This study explores the timing and downstream effects of SphK1/S1P expression and activation during in vitro adipogenesis. We demonstrate that the synthetic glucocorticoid dexamethasone robustly induces SphK1 expression, suggesting its involvement in glucocorticoid-dependent signaling during adipogenesis. Notably, the activation of C/EBPδ, a key gene in early adipogenesis and a target of glucocorticoids, is diminished in SphK1-/- adipose-derived stem cells (ADSCs). Furthermore, glucocorticoid administration promotes adipose tissue expansion via SphK1 in a depot-specific manner. Although adipose expansion still occurs in SphK1-/- mice, it is significantly reduced. These findings indicate that while SphK1 is not essential for adipogenesis, it enhances early gene activation, thereby facilitating adipose tissue expansion.
Collapse
Affiliation(s)
- Johana Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kovilakath
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maryam Jamil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yolander Valentine
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrea Anderson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - David Montefusco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
10
|
Yan Z, Luo J, Wang Y, Yang J, Su M, Jiang L, Yang J, Dai M, Liu A. PPARα suppresses low-intensity-noise-induced body weight gain in mice: the activated HPA axis plays an critical role. Int J Obes (Lond) 2024; 48:1274-1282. [PMID: 38902386 DOI: 10.1038/s41366-024-01550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND As the second most risky environmental pollution, noise imposes threats to human health. Exposure to high-intensity noise causes hearing impairment, psychotic disorders, endocrine modifications. The relationship among low-intensity noise, obesity and lipid-regulating nuclear factor PPARα is not yet clear. METHODS In this study, male wild-type (WT) and Pparα-null (KO) mice on a high-fat diet (HFD) were exposed to 75 dB noise for 12 weeks to explore the effect of low-intensity noise on obesity development and the role of PPARα. 3T3-L1 cells were treated with dexamethasone (DEX) and sodium oleate (OA) to verify the down-stream effect of hypothalamic-pituitary-adrenal (HPA) axis activation on the adipose tissues. RESULTS The average body weight gain (BWG) of WT mice on HFD exposed to noise was inhibited, which was not observed in KO mice. The mass and adipocyte size of adipose tissues accounted for the above difference of BWG tendency. In WT mice on HFD, the adrenocorticotropic hormone level was increased by the noise challenge. The aggravation of fatty liver by noise exposure occurred in both mouse lines, and the transport of hepatic redundant lipid to adipose tissues were similar. The lipid metabolism in adipose tissue driven by HPA axis accorded with the BWG inhibition in vivo, validated in 3T3-L1 adipogenic stem cells. CONCLUSION Chronic exposure to low-intensity noise aggravated fatty liver in both WT and KO mice. BWG inhibition was observed only in WT mice, which covered up the aggravation of fatty liver by noise exposure. PPARα mediates the activation of HPA axis by noise exposure in mice on HFD. Elevated adrenocorticotropic hormone (ACTH) promoted lipid metabolism in adipocytes, which contributed to the disassociation of BWG and fatty liver development in male WT mice. Summary of PPARα suppresses noise-induced body weight gain in mice on high-fat-diet. Chronic exposure to low-intensity noise exposure inhibited BWG by PPARα-dependent activation of the HPA axis.
Collapse
Affiliation(s)
- Zheng Yan
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jia Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Ying Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jie Yang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Mingli Su
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lei Jiang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Julin Yang
- Department of Basic Nutrition, Ningbo College of Health Sciences, Ningbo, 315211, China
| | - Manyun Dai
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Aiming Liu
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
11
|
Bergosh M, Medvidovic S, Zepeda N, Crown L, Ipe J, Debattista L, Romero L, Amjadi E, Lam T, Hakopian E, Choi W, Wu K, Lo JYT, Lee DJ. Immediate and long-term electrophysiological biomarkers of antidepressant-like behavioral effects after subanesthetic ketamine and medial prefrontal cortex deep brain stimulation treatment. Front Neurosci 2024; 18:1389096. [PMID: 38966758 PMCID: PMC11222339 DOI: 10.3389/fnins.2024.1389096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Both ketamine (KET) and medial prefrontal cortex (mPFC) deep brain stimulation (DBS) are emerging therapies for treatment-resistant depression, yet our understanding of their electrophysiological mechanisms and biomarkers is incomplete. This study investigates aperiodic and periodic spectral parameters, and the signal complexity measure sample entropy, within mPFC local field potentials (LFP) in a chronic corticosterone (CORT) depression model after ketamine and/or mPFC DBS. Methods Male rats were intraperitoneally administered CORT or vehicle for 21 days. Over the last 7 days, animals receiving CORT were treated with mPFC DBS, KET, both, or neither; then tested across an array of behavioral tasks for 9 days. Results We found that the depression-like behavioral and weight effects of CORT correlated with a decrease in aperiodic-adjusted theta power (5-10 Hz) and an increase in sample entropy during the administration phase, and an increase in theta peak frequency and a decrease in the aperiodic exponent once the depression-like phenotype had been induced. The remission-like behavioral effects of ketamine alone correlated with a post-treatment increase in the offset and exponent, and decrease in sample entropy, both immediately and up to eight days post-treatment. The remission-like behavioral effects of mPFC DBS alone correlated with an immediate decrease in sample entropy, an immediate and sustained increase in low gamma (20-50 Hz) peak width and aperiodic offset, and sustained improvements in cognitive function. Failure to fully induce remission-like behavior in the combinatorial treatment group correlated with a failure to suppress an increase in sample entropy immediately after treatment. Conclusion Our findings therefore support the potential of periodic theta parameters as biomarkers of depression-severity; and periodic low gamma parameters and cognitive measures as biomarkers of mPFC DBS treatment efficacy. They also support sample entropy and the aperiodic spectral parameters as potential cross-modal biomarkers of depression severity and the therapeutic efficacy of mPFC DBS and/or ketamine. Study of these biomarkers is important as objective measures of disease severity and predictive measures of therapeutic efficacy can be used to personalize care and promote the translatability of research across studies, modalities, and species.
Collapse
Affiliation(s)
- Matthew Bergosh
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sasha Medvidovic
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Nancy Zepeda
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lindsey Crown
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jennifer Ipe
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren Debattista
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Luis Romero
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Eimon Amjadi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tian Lam
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Erik Hakopian
- Department of Bioengineering, University of California Riverside, Riverside, CA, United States
| | - Wooseong Choi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin Wu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jack Yu Tung Lo
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Darrin Jason Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
| |
Collapse
|
12
|
Riera CE. Wiring the Brain for Wellness: Sensory Integration in Feeding and Thermogenesis: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:338-347. [PMID: 38377445 PMCID: PMC10882152 DOI: 10.2337/db23-0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 02/22/2024]
Abstract
The recognition of sensory signals from within the body (interoceptive) and from the external environment (exteroceptive), along with the integration of these cues by the central nervous system, plays a crucial role in maintaining metabolic balance. This orchestration is vital for regulating processes related to both food intake and energy expenditure. Animal model studies indicate that manipulating specific populations of neurons in the central nervous system which influence these processes can effectively modify energy balance. This body of work presents an opportunity for the development of innovative weight loss therapies for the treatment of obesity and type 2 diabetes. In this overview, we delve into the sensory cues and the neuronal populations responsible for their integration, exploring their potential in the development of weight loss treatments for obesity and type 2 diabetes. This article is the first in a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Céline E. Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
13
|
Abidin İ, Keser H, Şahin E, Öztürk H, Başoğlu H, Alver A, Aydin-Abidin S. Effects of housing conditions on stress, depressive like behavior and sensory-motor performances of C57BL/6 mice. Lab Anim Res 2024; 40:6. [PMID: 38369507 PMCID: PMC10874523 DOI: 10.1186/s42826-024-00193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND The effects of housing conditions on animal physiology, behavior or stress are still debated. The aim of this study was to investigate the effects of three different housing systems, individually ventilated cages (IVC), classical small cages with floor surface area of 500 cm2 (CC500) and classical large cages with floor surface area of 800 cm2 (CC800) on body weight, sensory-motor performances, depression-like behavior, plasma corticosterone and brain oxidative stress parameters in C57BL/6 mice. The mice housed in one of the cages from birth to 6 months of age. Hang wire and adhesive removal tests were performed to evaluate somatosensory and motor performances. The extent of depression was determined by the forced swim test. Blood corticosterone levels were measured. In addition, brain malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS) levels were analyzed. RESULTS The depression-like behavior of the groups was similar. Although there were no significant differences in hang wire test among groups, CC500 group required longer durations in adhesive removal test. The body weight and plasma corticosterone levels of CC800 group were significantly higher than other groups. The oxidative stress parameters were highest in CC500 cage. CONCLUSIONS Our study showed that the least stressful housing condition was IVC cage systems. Interestingly, the number of mice in the classical cages had a significant effect on stress levels and sensory-motor performance.
Collapse
Affiliation(s)
- İsmail Abidin
- Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey
| | - Hatice Keser
- Ataturk Vocational School of Health Services, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Elif Şahin
- Faculty of Medicine, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Hilal Öztürk
- Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey
| | - Harun Başoğlu
- Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Faculty of Medicine, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Aydin-Abidin
- Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
14
|
Fetcho RN, Parekh PK, Chou J, Kenwood M, Chalençon L, Estrin DJ, Johnson M, Liston C. A stress-sensitive frontostriatal circuit supporting effortful reward-seeking behavior. Neuron 2024; 112:473-487.e4. [PMID: 37963470 PMCID: PMC11533377 DOI: 10.1016/j.neuron.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Effort valuation-a process for selecting actions based on the anticipated value of rewarding outcomes and expectations about the work required to obtain them-plays a fundamental role in decision-making. Effort valuation is disrupted in chronic stress states and is supported by the anterior cingulate cortex (ACC), but the circuit-level mechanisms by which the ACC regulates effort-based decision-making are unclear. Here, we show that ACC neurons projecting to the nucleus accumbens (ACC-NAc) play a critical role in effort valuation behavior in mice. Activity in ACC-NAc cells integrates both reward- and effort-related information, encoding a reward-related signal that scales with effort requirements and is necessary for supporting future effortful decisions. Chronic corticosterone exposure reduces motivation, suppresses effortful reward-seeking, and disrupts ACC-NAc signals. Together, our results delineate a stress-sensitive ACC-NAc circuit that supports effortful reward-seeking behavior by integrating reward and effort signals and reinforcing effort allocation in the service of maximizing reward.
Collapse
Affiliation(s)
- Robert N Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Puja K Parekh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jolin Chou
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Margaux Kenwood
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Chalençon
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - David J Estrin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan Johnson
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
15
|
Zhang Y, Tsai TH, Ezrokhi M, Stoelzel C, Cincotta AH. Tyrosine Hydroxylase Knockdown at the Hypothalamic Supramammillary Nucleus Area Induces Obesity and Glucose Intolerance. Neuroendocrinology 2023; 114:483-510. [PMID: 38128505 PMCID: PMC11098027 DOI: 10.1159/000535944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The supramammillary nucleus (SuMN) exerts influences on a wide range of brain functions including feeding and feeding-independent fuel metabolism. However, which specific neuronal type(s) within the SuMN manifest this influence has not been delineated. This study investigated the effect of SuMN tyrosine hydroxylase (TH) (rate-limiting enzyme in dopamine synthesis) knockdown (THx) on peripheral fuel metabolism. METHODS SuMN-THx was accomplished using a virus-mediated shRNA to locally knockdown TH gene expression at the SuMN. The impact of SuMN-THx was examined over 35-72 days in rats least prone to developing metabolic syndrome (MS) - female Sprague-Dawley rats resistant to the obesogenic effect of high fat diet (HFDr) and fed regular chow (RC) - upon body weight/fat, feeding, glucose tolerance, and insulin sensitivity. The influence of HFD, gender, and long-term response of SuMN-THx was subsequently investigated in female HFDr rats fed HFD, male HFDr rats fed RC, and female HFD-sensitive rats fed RC over 1 year, respectively. RESULTS SuMN-THx induced obesity and glucose intolerance, elevated plasma leptin and triglycerides, increased hepatic mRNA levels of gluconeogenic, lipogenic, and pro-inflammatory genes, reduced white adipose fatty acid oxidation rate, and altered plasma corticosterone level and hepatic circadian gene expression. Moreover, SuMN-THx increased feeding during the natural resting/fasting period and altered ghrelin feeding response suggesting ghrelin resistance. This MS-inducing effect was enhanced by HFD feeding, similarly observed in male rats and persisted over 1 year. DISCUSSION/CONCLUSION SuMN-THx induced long-term, gender-nonspecific, multiple pathophysiological changes leading to MS suggesting SuMN dopaminergic circuits communicating with other brain metabolism and behavior control centers modulate peripheral fuel metabolism.
Collapse
|
16
|
Mirmira RG, Kulkarni RN, Xu P, Drossos T, Varady K, Knutson KL, Reutrakul S, Martyn-Nemeth P, Sargis RM, Wallia A, Tuchman AM, Weissberg-Benchell J, Danielson KK, Oakes SA, Thomas CC, Layden BT, May SC, Burbea Hoffmann M, Gatta E, Solway J, Philipson LH. Stress and human health in diabetes: A report from the 19 th Chicago Biomedical Consortium symposium. J Clin Transl Sci 2023; 7:e263. [PMID: 38229904 PMCID: PMC10790105 DOI: 10.1017/cts.2023.646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/01/2023] [Indexed: 01/18/2024] Open
Abstract
Stress and diabetes coexist in a vicious cycle. Different types of stress lead to diabetes, while diabetes itself is a major life stressor. This was the focus of the Chicago Biomedical Consortium's 19th annual symposium, "Stress and Human Health: Diabetes," in November 2022. There, researchers primarily from the Chicago area met to explore how different sources of stress - from the cells to the community - impact diabetes outcomes. Presenters discussed the consequences of stress arising from mutant proteins, obesity, sleep disturbances, environmental pollutants, COVID-19, and racial and socioeconomic disparities. This symposium showcased the latest diabetes research and highlighted promising new treatment approaches for mitigating stress in diabetes.
Collapse
Affiliation(s)
- Raghavendra G. Mirmira
- Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Rohit N. Kulkarni
- Department of Medicine, Islet Cell and Regenerative Biology, Joslin Diabetes Center, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Boston, MA, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Tina Drossos
- Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Kristen L. Knutson
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sirimon Reutrakul
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Pamela Martyn-Nemeth
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Robert M. Sargis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Amisha Wallia
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Jill Weissberg-Benchell
- Department of Psychiatry and Behavioral Sciences, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kirstie K. Danielson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Scott A. Oakes
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Celeste C. Thomas
- Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Brian T. Layden
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL, USA
| | - Sarah C. May
- Department of Medicine, Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | | | | | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Louis H. Philipson
- Department of Medicine and Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Kang M, Chung JM, Noh J, Kim J. The mineralocorticoid receptor and extra-synaptic NMDA receptor in the lateral habenula involve in the vulnerability to early life stress in the maternal separation model. Neurobiol Stress 2023; 27:100570. [PMID: 37771409 PMCID: PMC10522873 DOI: 10.1016/j.ynstr.2023.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023] Open
Abstract
The lateral habenula (LHb) plays a pivotal role in regulating emotional responses during stress reactions, and its hyperactivity has been associated with depression. Recently it has been demonstrated that chronic early-life stress results in individual differences in stress vulnerability among rodents. However, how synaptic function in the LHb varies between susceptibility and resilience to early life stress remains elusive. In this study, we used a maternal separation model to assign animals with different stress vulnerabilities into groups and investigated the synaptic responses in the LHb. Our findings indicate that synaptic long-term depression (LTD) was impaired and extra-synaptic LTD was enhanced in the LHb of the susceptible group. To mimic the synaptic alteration in stress situations, when administered corticosterone, a stress hormone, the intervention appeared to impair synaptic LTD in the LHb of the control group, through the activation of mineralocorticoid receptors (MR). Indeed, there was an up-regulation of MR mRNA observed in the susceptible group. Following there was an up-regulation of both NR2A and NR2B subunits in the LHb. These results indicated that MR and extra-synaptic NMDA receptors in LHb are critically engaged in the susceptibilities to stress. Furthermore, our findings propose potential therapeutic targets for alleviating stress-related symptoms.
Collapse
Affiliation(s)
- Miseon Kang
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Woman's University, Seoul, South Korea
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Jun-mo Chung
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Woman's University, Seoul, South Korea
| | - Jihyun Noh
- Department of Science Education, College of Education, Dankook University, Yongin, South Korea
| | - Jeongyeon Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
18
|
Shahanoor Z, Sultana R, Savenkova M, Karatsoreos IN, Romeo RD. Metabolic dysfunctions following chronic oral corticosterone are modified by adolescence and sex in mice. Physiol Behav 2023; 269:114289. [PMID: 37422081 PMCID: PMC10530018 DOI: 10.1016/j.physbeh.2023.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Adolescence is a period of development in which shifts in responses to glucocorticoids is well-documented. Obesity and metabolic syndrome are substantial health issues whose rates continue to rise in both adult and adolescent populations. Though many interacting factors contribute to these dysfunctions, how these shifts in glucocorticoid responses may be related remain unknown. Using a model of oral corticosterone (CORT) exposure in male and female mice, we demonstrate differential responses during adolescence (30-58 days of age) or adulthood (70-98 day of age) in endpoints relevant to metabolic function. Our data indicate that CORT resulted in significant weight gain in adult- and adolescent-exposed females and adult-exposed males, but not adolescent-exposed males. Despite this difference, all animals treated with high levels of CORT showed significant increases in white adipose tissue, indicating a dissociation between weight gain and adiposity in adolescent-treated males. Similarly, all experimental groups showed significant increases in plasma insulin, leptin, and triglyceride levels, further suggesting potential disconnects between overt weight gain, and underlying metabolic dysregulation. Finally, we found age- and dose-dependent changes in the expression of hepatic genes important in glucocorticoid receptor and lipid regulation, which showed different patterns in males and females. Thus, altered transcriptional pathways in the liver might be contributing differentially to the similar metabolic phenotype observed among these experimental groups. We also show that despite little CORT-induced changes in the hypothalamic levels of orexin-A and NPY, we found that food and fluid intake were elevated in adolescent-treated males and females. These data indicate chronic exposure to elevated glucocorticoid levels results in metabolic dysfunction in both males and females, which can be further modulated by developmental stage.
Collapse
Affiliation(s)
- Ziasmin Shahanoor
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States
| | - Razia Sultana
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States
| | - Marina Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Ilia N Karatsoreos
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Russell D Romeo
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
19
|
Jovanovic P, Pool AH, Morones N, Wang Y, Novinbakht E, Keshishian N, Jang K, Oka Y, Riera CE. A sex-specific thermogenic neurocircuit induced by predator smell recruiting cholecystokinin neurons in the dorsomedial hypothalamus. Nat Commun 2023; 14:4937. [PMID: 37582805 PMCID: PMC10427624 DOI: 10.1038/s41467-023-40484-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Olfactory cues are vital for prey animals like rodents to perceive and evade predators. Stress-induced hyperthermia, via brown adipose tissue (BAT) thermogenesis, boosts physical performance and facilitates escape. However, many aspects of this response, including thermogenic control and sex-specific effects, remain enigmatic. Our study unveils that the predator odor trimethylthiazoline (TMT) elicits BAT thermogenesis, suppresses feeding, and drives glucocorticoid release in female mice. Chemogenetic stimulation of olfactory bulb (OB) mitral cells recapitulates the thermogenic output of this response and associated stress hormone corticosterone release in female mice. Neuronal projections from OB to medial amygdala (MeA) and dorsomedial hypothalamus (DMH) exhibit female-specific cFos activity toward odors. Cell sorting and single-cell RNA-sequencing of DMH identify cholecystokinin (CCK)-expressing neurons as recipients of predator odor cues. Chemogenetic manipulation and neuronal silencing of DMHCCK neurons further implicate these neurons in the propagation of predator odor-associated thermogenesis and food intake suppression, highlighting their role in female stress-induced hyperthermia.
Collapse
Affiliation(s)
- Predrag Jovanovic
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Allan-Hermann Pool
- Department of Neuroscience, Department of Anesthesiology and Pain Management, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nancy Morones
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Yidan Wang
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Edward Novinbakht
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Nareg Keshishian
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Kaitlyn Jang
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Celine E Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA.
- Department of Neurology, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA, 90048, USA.
| |
Collapse
|
20
|
Lange ME, Clarke ST, Boras VF, Brown CLJ, Zhang G, Laing CR, Uwiera RRE, Montina T, Kalmokoff ML, Taboada EN, Gannon VPJ, Metz GAS, Church JS, Inglis GD. Commensal Escherichia coli Strains of Bovine Origin Competitively Mitigated Escherichia coli O157:H7 in a Gnotobiotic Murine Intestinal Colonization Model with or without Physiological Stress. Animals (Basel) 2023; 13:2577. [PMID: 37627368 PMCID: PMC10451813 DOI: 10.3390/ani13162577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cattle are a primary reservoir of enterohemorrhagic Escherichia coli (EHEC) O157:H7. Currently, there are no effective methods of eliminating this important zoonotic pathogen from cattle, and colonization resistance in relation to EHEC O157:H7 in cattle is poorly understood. We developed a gnotobiotic EHEC O157:H7 murine model to examine aspects of the cattle pathogen-microbiota interaction, and to investigate competitive suppression of EHEC O157:H7 by 18 phylogenetically distinct commensal E. coli strains of bovine origin. As stress has been suggested to influence enteric colonization by EHEC O157:H7 in cattle, corticosterone administration (±) to incite a physiological stress response was included as an experimental variable. Colonization of the intestinal tract (IT) of mice by the bovine EHEC O157:H7 strain, FRIK-2001, mimicked characteristics of bovine IT colonization. In this regard, FRIK-2001 successfully colonized the IT and temporally incited minimal impacts on the host relative to other EHEC O157:H7 strains, including on the renal metabolome. The presence of the commensal E. coli strains decreased EHEC O157:H7 densities in the cecum, proximal colon, and distal colon. Moreover, histopathologic changes and inflammation markers were reduced in the distal colon of mice inoculated with commensal E. coli strains (both propagated separately and communally). Although stress induction affected the behavior of mice, it did not influence EHEC O157:H7 densities or disease. These findings support the use of a gnotobiotic murine model of enteric bovine EHEC O157:H7 colonization to better understand pathogen-host-microbiota interactions toward the development of effective on-farm mitigations for EHEC O157:H7 in cattle, including the identification of bacteria capable of competitively colonizing the IT.
Collapse
Affiliation(s)
- Maximo E. Lange
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Sandra T. Clarke
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| | - Valerie F. Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB T1J 1W5, Canada;
| | - Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| | - Guangzhi Zhang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (G.Z.); (E.N.T.)
| | - Chad R. Laing
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada;
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Martin L. Kalmokoff
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada;
| | - Eduardo N. Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (G.Z.); (E.N.T.)
| | - Victor P. J. Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4, Canada;
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - John S. Church
- Natural Resource Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (M.E.L.); (S.T.C.); (C.L.J.B.)
| |
Collapse
|
21
|
Linden MA, Burke SJ, Pirzadah HA, Huang TY, Batdorf HM, Mohammed WK, Jones KA, Ghosh S, Campagna SR, Collier JJ, Noland RC. Pharmacological inhibition of lipolysis prevents adverse metabolic outcomes during glucocorticoid administration. Mol Metab 2023; 74:101751. [PMID: 37295745 PMCID: PMC10300254 DOI: 10.1016/j.molmet.2023.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE Glucocorticoids are one of the most commonly prescribed classes of anti-inflammatory drugs; however, chronic treatment promotes iatrogenic (drug-induced) diabetes. As part of their physiological role, glucocorticoids stimulate lipolysis to spare glucose. We hypothesized that persistent stimulation of lipolysis during glucocorticoid therapy plays a causative role in the development of iatrogenic diabetes. METHODS Male C57BL/6J mice were given 100 μg/mL corticosterone (Cort) in the drinking water for two weeks and were fed either normal chow (TekLad 8640) or the same diet supplemented with an adipose triglyceride lipase inhibitor (Atglistatin - 2 g/kg diet) to inhibit the first step of lipolysis. RESULTS Herein, we report for the first time that glucocorticoid administration promotes a unique state of substrate excess and energetic overload in skeletal muscle that primarily results from the rampant mobilization of endogenous fuels. Inhibiting lipolysis protected mice from Cort-induced gains in fat mass, excess ectopic lipid accrual, hyperinsulinemia, and hyperglycemia. The role lipolysis plays in Cort-mediated pathology appears to differ between tissues. Within skeletal muscle, Cort-induced lipolysis facilitated diversion of glucose-derived carbons toward the pentose phosphate and hexosamine biosynthesis pathways but contributed to <3% of the Cort-induced genomic adaptations. In contrast, Cort stimulation of lipolysis accounted for ∼35% of the genomic changes in the liver but had minimal impact on hepatic metabolites reported. CONCLUSIONS These data support the idea that activation of lipolysis plays a causal role in the progression toward iatrogenic diabetes during glucocorticoid therapy with differential impact on skeletal muscle and liver.
Collapse
Affiliation(s)
- Melissa A Linden
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Exercise and Health Sciences, University of Massachusetts-Boston, Boston, MA, 02125, USA.
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Humza A Pirzadah
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Tai-Yu Huang
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Walid K Mohammed
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Katarina A Jones
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, 37916, USA.
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Program in Cardiovascular and Metabolic Disorders and Center for Computational Biology, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore.
| | - Shawn R Campagna
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, 37916, USA.
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
22
|
Li X, Teng T, Yan W, Fan L, Liu X, Clarke G, Zhu D, Jiang Y, Xiang Y, Yu Y, Zhang Y, Yin B, Lu L, Zhou X, Xie P. AKT and MAPK signaling pathways in hippocampus reveals the pathogenesis of depression in four stress-induced models. Transl Psychiatry 2023; 13:200. [PMID: 37308476 DOI: 10.1038/s41398-023-02486-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Major depressive disorder (MDD) is a highly heterogeneous psychiatric disorder. The pathogenesis of MDD remained unclear, and it may be associated with exposure to different stressors. Most previous studies have focused on molecular changes in a single stress-induced depression model, which limited the identification of the pathogenesis of MDD. The depressive-like behaviors were induced by four well-validated stress models in rats, including chronic unpredictable mild stress, learned helplessness stress, chronic restraint stress and social defeat stress. We applied proteomic and metabolomic to investigate molecular changes in the hippocampus of those four models and revealed 529 proteins and 98 metabolites. Ingenuity Pathways Analysis (IPA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified differentially regulated canonical pathways, and then we presented a schematic model that simulates AKT and MAPK signaling pathways network and their interactions and revealed the cascade reactions. Further, the western blot confirmed that p-AKT, p-ERK12, GluA1, p-MEK1, p-MEK2, p-P38, Syn1, and TrkB, which were changed in at least one depression model. Importantly, p-AKT, p-ERK12, p-MEK1 and p-P38 were identified as common alterations in four depression models. The molecular level changes caused by different stressors may be dramatically different, and even opposite, between four depression models. However, the different molecular alterations converge on a common AKT and MAPK molecular pathway. Further studies of these pathways could contribute to a better understanding of the pathogenesis of depression, with the ultimate goal of helping to develop or select more effective treatment strategies for MDD.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Fan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
23
|
Lucantonio F, Li S, Lu J, Roeglin J, Bontempi L, Shields BC, Zarate CA, Tadross MR, Pignatelli M. Ketamine rescues anhedonia by cell-type and input specific adaptations in the Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544088. [PMID: 37333325 PMCID: PMC10274891 DOI: 10.1101/2023.06.08.544088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Ketamine's role in providing a rapid and sustained antidepressant response, particularly for patients unresponsive to conventional treatments, is increasingly recognized. A core symptom of depression, anhedonia, or the loss of enjoyment or interest in previously pleasurable activities, is known to be significantly alleviated by ketamine. While several hypotheses have been proposed regarding the mechanisms by which ketamine alleviates anhedonia, the specific circuits and synaptic changes responsible for its sustained therapeutic effects are not yet understood. Here, we show that the nucleus accumbens (NAc), a major hub of the reward circuitry, is essential for ketamine's effect in rescuing anhedonia in mice subjected to chronic stress, a critical risk factor in the genesis of depression in humans. Specifically, a single exposure to ketamine rescues stress-induced decreased strength of excitatory synapses on NAc D1 dopamine receptor-expressing medium spiny neurons (D1-MSNs). By using a novel cell-specific pharmacology method, we demonstrate that this cell-type specific neuroadaptation is necessary for the sustained therapeutic effects of ketamine. To test for causal sufficiency, we artificially mimicked ketamine-induced increase in excitatory strength on D1-MSNs and found that this recapitulates the behavioral amelioration induced by ketamine. Finally, to determine the presynaptic origin of the relevant glutamatergic inputs for ketamine-elicited synaptic and behavioral effects, we used a combination of opto- and chemogenetics. We found that ketamine rescues stress-induced reduction in excitatory strength at medial prefrontal cortex and ventral hippocampus inputs to NAc D1-MSNs. Chemogenetically preventing ketamine-evoked plasticity at those unique inputs to the NAc reveals a ketamine-operated input-specific control of hedonic behavior. These results establish that ketamine rescues stress-induced anhedonia via cell-type-specific adaptations as well as information integration in the NAc via discrete excitatory synapses.
Collapse
|
24
|
Balsevich G, Petrie GN, Heinz DE, Singh A, Aukema RJ, Hunker AC, Vecchiarelli HA, Yau H, Sticht M, Thompson RJ, Lee FS, Zweifel LS, Chelikani PK, Gassen NC, Hill MN. A genetic variant of fatty acid amide hydrolase (FAAH) exacerbates hormone-mediated orexigenic feeding in mice. eLife 2023; 12:e81919. [PMID: 37039453 PMCID: PMC10159625 DOI: 10.7554/elife.81919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) degrades the endocannabinoid anandamide. A polymorphism in FAAH (FAAH C385A) reduces FAAH expression, increases anandamide levels, and increases the risk of obesity. Nevertheless, some studies have found no association between FAAH C385A and obesity. We investigated whether the environmental context governs the impact of FAAH C385A on metabolic outcomes. Using a C385A knock-in mouse model, we found that FAAH A/A mice are more susceptible to glucocorticoid-induced hyperphagia, weight gain, and activation of hypothalamic AMP-activated protein kinase (AMPK). AMPK inhibition occluded the amplified hyperphagic response to glucocorticoids in FAAH A/A mice. FAAH knockdown exclusively in agouti-related protein (AgRP) neurons mimicked the exaggerated feeding response of FAAH A/A mice to glucocorticoids. FAAH A/A mice likewise presented exaggerated orexigenic responses to ghrelin, while FAAH knockdown in AgRP neurons blunted leptin anorectic responses. Together, the FAAH A/A genotype amplifies orexigenic responses and decreases anorexigenic responses, providing a putative mechanism explaining the diverging human findings.
Collapse
Affiliation(s)
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of CalgaryCalgaryCanada
| | - Daniel E Heinz
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital BonnBonnGermany
| | - Arashdeep Singh
- Monell Chemical Senses Center and Department of Neuroscience, University of PennsylvaniaPhiladelphiaUnited States
| | - Robert J Aukema
- Hotchkiss Brain Institute, University of CalgaryCalgaryCanada
| | - Avery C Hunker
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | | | - Hiulan Yau
- Hotchkiss Brain Institute, University of CalgaryCalgaryCanada
| | - Martin Sticht
- Hotchkiss Brain Institute, University of CalgaryCalgaryCanada
| | | | - Francis S Lee
- Weill Cornell Medical College, Cornell UniversityNew YorkUnited States
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
| | | | - Nils C Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, University Hospital BonnBonnGermany
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
25
|
Rasiah NP, Loewen SP, Bains JS. Windows into stress: a glimpse at emerging roles for CRH PVN neurons. Physiol Rev 2023; 103:1667-1691. [PMID: 36395349 DOI: 10.1152/physrev.00056.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticotropin-releasing hormone cells in the paraventricular nucleus of the hypothalamus (CRHPVN) control the slow endocrine response to stress. The synapses on these cells are exquisitely sensitive to acute stress, leveraging local signals to leave a lasting imprint on this system. Additionally, recent work indicates that these cells also play key roles in the control of distinct stress and survival behaviors. Here we review these observations and provide a perspective on the role of CRHPVN neurons as integrative and malleable hubs for behavioral, physiological, and endocrine responses to stress.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Spencer P Loewen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Power EM, Ganeshan D, Iremonger KJ. Estradiol regulates voltage-gated potassium currents in corticotropin-releasing hormone neurons. J Exp Biol 2023; 226:287072. [PMID: 36805713 PMCID: PMC10038157 DOI: 10.1242/jeb.245222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
Corticotropin-releasing hormone (CRH) neurons are the primary neural population controlling the hypothalamic-pituitary-adrenal (HPA) axis and the secretion of adrenal stress hormones. Previous work has demonstrated that stress hormone secretion can be regulated by circulating levels of estradiol. However, the effect of estradiol on CRH neuron excitability is less clear. Here, we show that chronic estradiol replacement following ovariectomy increases two types of potassium channel currents in CRH neurons: fast inactivating voltage-gated A-type K+ channel currents (IA) and non-inactivating M-type K+ channel currents (IM). Despite the increase in K+ currents following estradiol replacement, there was no overall change in CRH neuron spiking excitability assessed with either frequency-current curves or current ramps. Together, these data reveal a complex picture whereby ovariectomy and estradiol replacement differentially modulate distinct aspects of CRH neuron and HPA axis function.
Collapse
Affiliation(s)
- Emmet M Power
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin9016, New Zealand
| | - Dharshini Ganeshan
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin9016, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin9016, New Zealand
| |
Collapse
|
27
|
Overnight Corticosterone and Gene Expression in Mouse Hippocampus: Time Course during Resting Period. Int J Mol Sci 2023; 24:ijms24032828. [PMID: 36769150 PMCID: PMC9917930 DOI: 10.3390/ijms24032828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of the experiment was to test the effect of an elevated level of glucocorticoids on the mouse hippocampal transcriptome after 12 h of treatment with corticosterone that was administered during an active phase of the circadian cycle. Additionally, we also tested the circadian changes in gene expression and the decay time of transcriptomic response to corticosterone. Gene expression was analyzed using microarrays. Obtained results show that transcriptomic responses to glucocorticoids are heterogeneous in terms of the decay time with some genes displaying persistent changes in expression during 9 h of rest. We have also found a considerable overlap between genes regulated by corticosterone and genes implicated previously in stress response. The examples of such genes are Acer2, Agt, Apod, Aqp4, Etnppl, Fabp7, Fam107a, Fjx1, Fmo2, Galnt15, Gjc2, Heph, Hes5, Htra1, Jdp2, Kif5a, Lfng, Lrg1, Mgp, Mt1, Pglyrp1, Pla2g3, Plin4, Pllp, Ptgds, Ptn, Slc2a1, Slco1c1, Sult1a1, Thbd and Txnip. This indicates that the applied model is a useful tool for the investigation of mechanisms underlying the stress response.
Collapse
|
28
|
Nomoto K, Kansaku K. Chronic corticosterone deteriorates latrine and nesting behaviours in mice. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220718. [PMID: 36756053 PMCID: PMC9890096 DOI: 10.1098/rsos.220718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Self-care behaviours are actions that help maintain good health and surroundings. For example, appropriate toileting, sleeping in the bed, and bathing and washing are among self-care behaviours in humans. Animals also perform similar self-care behaviours such as latrine, nesting and self-grooming. Studies have shown that chronic stress disrupts nesting and self-grooming behaviours. However, the effect of chronic stress on latrine behaviour, preferential, repeated defecation at specific locations, has not yet been clarified. This study aimed to investigate the influence of chronic corticosterone administration on latrine and nesting behaviours in mice. The variation in defecation location was quantified as the degree of the latrine behaviour by using Shannon entropy. The nest quality was scored based on shape. The study showed that mice exposed to chronic corticosterone had scattered defecation sites and lower nest quality compared to the control group. Furthermore, results showed that more scattered defecation behaviour was associated with lower nest quality at an individual level. Additionally, the deterioration of these self-care behaviours was associated with depression-like behaviours such as less open field activity and increased immobility time during the tail suspension test. These results suggest that chronic corticosterone deteriorates self-care behaviours such as latrine and nesting in mice.
Collapse
Affiliation(s)
- Kensaku Nomoto
- Department of Physiology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| | - Kenji Kansaku
- Department of Physiology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| |
Collapse
|
29
|
Chronic Corticosterone Exposure Suppresses Copper Transport through GR-Mediated Intestinal CTR1 Pathway in Mice. BIOLOGY 2023; 12:biology12020197. [PMID: 36829476 PMCID: PMC9953443 DOI: 10.3390/biology12020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Numerous studies have discovered that chronic stress induces metabolic disorders by affecting iron and zinc metabolism, but the relationship between chronic stress and copper metabolism remains unclear. Here, we explore the influence of chronic corticosterone (CORT) exposure on copper metabolism and its regulatory mechanism in mice. Mice were treated with 100 μg/mL CORT in drinking water for a 4-week trial. We found that CORT treatment resulted in a significant decrease in plasma copper level, plasma ceruloplasmin activity, plasma and liver Cu/Zn-SOD activity, hepatic copper content, and liver metallothionein content in mice. CORT treatment led to the reduction in duodenal expression of copper transporter 1 (CTR1), duodenal cytochrome b (DCYTB), and ATPase copper-transporting alpha (ATP7A) at the mRNA and protein level in mice. CORT treatment activated nuclear glucocorticoid receptor (GR) and down-regulated CRT1 expression in Caco-2 cells, whereas these phenotypes were reversible by an antagonist of GR, RU486. Chromatin immunoprecipitation analysis revealed that GR bound to the Ctr1 promoter in Caco-2 cells. Transient transfection assays in Caco-2 cells demonstrated that the Ctr1 promoter was responsive to the CORT-activated glucocorticoid receptor, whereas mutation/deletion of the glucocorticoid receptor element (GRE) markedly impaired activation of the Ctr1 promoter. In addition, CORT-induced downregulation of Ctr1 promoter activity was markedly attenuated in Caco-2 cells when RU486 was added. These findings present a novel molecular target for CORT that down-regulates intestinal CTR1 expression via GR-mediated trans-repression in mice.
Collapse
|
30
|
Antevska A, Long CC, Dupuy SD, Collier JJ, Karlstad MD, Do TD. Mouse Pancreatic Peptide Hormones Probed at the Sub-Single-Islet Level: The Effects of Acute Corticosterone Treatment. J Proteome Res 2023; 22:235-245. [PMID: 36412564 DOI: 10.1021/acs.jproteome.2c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We combine liquid chromatography coupled with ion mobility spectrometry-mass spectrometry to elucidate how short exposure to corticosterone (Cort) alters the output of mouse pancreatic islet hormones. The workflow enables the robust separation of mouse insulin 1 (Ins1) and insulin 2 (Ins2) and the detection of major islet hormones in a homogenate equivalent to 100-150 islet cells. We show that Ins2 has a unique structure and is degraded much faster than Ins1. Further investigation indicates that Ins2 may populate both T and R states, whereas Ins1 may not. The assemblies of Ins1's B-chain also introduce more structural heterogeneity than Ins2. Collectively, these features account for their unique degradation profiles, the diabetes risk associated with Ins1, and the protective effect of Ins2. In the same experiments, we observe that the ratio of amylin to Ins1 increased significantly in Cort-treated mice (15:1) compared to the control mice (42:1), correlating well with β-cell proliferation observed in immunoassays on the same animal model. We observe no increase in intact full-length insulin levels but more of the truncated forms, indicating that enzymatic activity is accelerated. Our data provide a molecular basis for reduced insulin action induced by Cort and connections between insulin turnover and insulin resistance.
Collapse
Affiliation(s)
- Aleksandra Antevska
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Connor C Long
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee37996, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana70808, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
31
|
Ruan J, Hu X, Liu Y, Han Z, Ruan Q. Vulnerability to chronic stress and the phenotypic heterogeneity of presbycusis with subjective tinnitus. Front Neurosci 2022; 16:1046095. [PMID: 36620444 PMCID: PMC9812577 DOI: 10.3389/fnins.2022.1046095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related functional reserve decline and vulnerability of multiple physiological systems and organs, as well as at the cellular and molecular levels, result in different frailty phenotypes, such as physical, cognitive, and psychosocial frailty, and multiple comorbidities, including age-related hearing loss (ARHL) and/or tinnitus due to the decline in auditory reserve. However, the contributions of chronic non-audiogenic cumulative exposure, and chronic audiogenic stress to phenotypic heterogeneity of presbycusis and/or tinnitus remain elusive. Because of the cumulative environmental stressors throughout life, allostasis systems, the hypothalamus-pituitary-adrenal (HPA) and the sympathetic adrenal-medullary (SAM) axes become dysregulated and less able to maintain homeostasis, which leads to allostatic load and maladaptation. Brain-body communication via the neuroendocrine system promotes systemic chronic inflammation, overmobilization of energetic substances (glucose and lipids), and neuroplastic changes via the non-genomic and genomic actions of glucocorticoids, catecholamines, and their receptors. These systemic maladaptive alterations might lead to different frailty phenotypes and physical, cognitive, and psychological comorbidities, which, in turn, cause and exacerbate ARHL and/or tinnitus with phenotypic heterogeneity. Chronic audiogenic stressors, including aging accompanying ontological diseases, cumulative noise exposure, and ototoxic drugs as well as tinnitus, activate the HPA axis and SAM directly and indirectly by the amygdala, promoting allostatic load and maladaptive neuroplasticity in the auditory system and other vulnerable brain regions, such as the hippocampus, amygdala, and medial prefrontal cortex (mPFC). In the auditory system, peripheral deafferentation, central disinhibition, and tonotopic map reorganization may trigger tinnitus. Cross-modal maladaptive neuroplasticity between the auditory and other sensory systems is involved in tinnitus modulation. Persistent dendritic growth and formation, reduction in GABAergic inhibitory synaptic inputs induced by chronic audiogenic stresses in the amygdala, and increased dendritic atrophy in the hippocampus and mPFC, might involve the enhancement of attentional processing and long-term memory storage of chronic subjective tinnitus, accompanied by cognitive impairments and emotional comorbidities. Therefore, presbycusis and tinnitus are multisystem disorders with phenotypic heterogeneity. Stressors play a critical role in the phenotypic heterogeneity of presbycusis. Differential diagnosis based on biomarkers of metabonomics study, and interventions tailored to different ARHL phenotypes and/or tinnitus will contribute to healthy aging and improvement in the quality of life.
Collapse
Affiliation(s)
- Jian Ruan
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiuhua Hu
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuehong Liu
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao Han
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingwei Ruan
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qingwei Ruan,
| |
Collapse
|
32
|
Nishiyama M, Iwasaki Y, Makino S. Animal Models of Cushing's Syndrome. Endocrinology 2022; 163:6761324. [PMID: 36240318 DOI: 10.1210/endocr/bqac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/19/2022]
Abstract
Endogenous Cushing's syndrome is characterized by unique clinical features and comorbidities, and progress in the analysis of its genetic pathogenesis has been achieved. Moreover, prescribed glucocorticoids are also associated with exogenous Cushing's syndrome. Several animal models have been established to explore the pathophysiology and develop treatments for Cushing's syndrome. Here, we review recent studies reporting animal models of Cushing's syndrome with different features and complications induced by glucocorticoid excess. Exogenous corticosterone (CORT) administration in drinking water is widely utilized, and we found that CORT pellet implantation in mice successfully leads to a Cushing's phenotype. Corticotropin-releasing hormone overexpression mice and adrenal-specific Prkar1a-deficient mice have been developed, and AtT20 transplantation methods have been designed to examine the medical treatments for adrenocorticotropic hormone-producing pituitary neuroendocrine tumors. We also review recent advances in the molecular pathogenesis of glucocorticoid-induced complications using animal models.
Collapse
Affiliation(s)
- Mitsuru Nishiyama
- Health Care Center, Kochi University, Kochi city, Kochi 780-8520, Japan
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
| | - Yasumasa Iwasaki
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka city, Mie 510-0293Japan
| | - Shinya Makino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku city, Kochi 783-8505, Japan
- Department of Internal Medicine, Osaka Gyomeikan Hospital, Osaka city, Osaka 554-0012Japan
| |
Collapse
|
33
|
Srivastava RK, Ruiz de Azua I, Conrad A, Purrio M, Lutz B. Cannabinoid CB1 Receptor Deletion from Catecholaminergic Neurons Protects from Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms232012635. [PMID: 36293486 PMCID: PMC9604114 DOI: 10.3390/ijms232012635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
High-calorie diets and chronic stress are major contributors to the development of obesity and metabolic disorders. These two risk factors regulate the activity of the sympathetic nervous system (SNS). The present study showed a key role of the cannabinoid type 1 receptor (CB1) in dopamine β-hydroxylase (dbh)-expressing cells in the regulation of SNS activity. In a diet-induced obesity model, CB1 deletion from these cells protected mice from diet-induced weight gain by increasing sympathetic drive, resulting in reduced adipogenesis in white adipose tissue and enhanced thermogenesis in brown adipose tissue. The deletion of CB1 from catecholaminergic neurons increased the plasma norepinephrine levels, norepinephrine turnover, and sympathetic activity in the visceral fat, which coincided with lowered neuropeptide Y (NPY) levels in the visceral fat of the mutant mice compared with the controls. Furthermore, the mutant mice showed decreased plasma corticosterone levels. Our study provided new insight into the mechanisms underlying the roles of the endocannabinoid system in regulating energy balance, where the CB1 deletion in dbh-positive cells protected from diet-induced weight gain via multiple mechanisms, such as increased SNS activity, reduced NPY activity, and decreased basal hypothalamic-pituitary-adrenal (HPA) axis activity.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484887, India
| | - Inigo Ruiz de Azua
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Andrea Conrad
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Martin Purrio
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Correspondence:
| |
Collapse
|
34
|
Gouws JM, Sherrington A, Zheng S, Kim JS, Iremonger KJ. Regulation of corticotropin-releasing hormone neuronal network activity by noradrenergic stress signals. J Physiol 2022; 600:4347-4359. [PMID: 36040213 PMCID: PMC9825848 DOI: 10.1113/jp283328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023] Open
Abstract
Noradrenaline is a neurotransmitter released in response to homeostatic challenge and activates the hypothalamic-pituitary-adrenal axis via stimulation of corticotropin-releasing hormone (CRH) neurons. Here we investigated the mechanism through which noradrenaline regulates activity within the CRH neuronal network. Using a combination of in vitro GCaMP6f Ca2+ imaging and electrophysiology, we show that noradrenaline induces a robust increase in excitability in a proportion of CRH neurons with many neurons displaying a bursting mode of activity. Noradrenaline-induced activation required α1 -adrenoceptors and L-type voltage-gated Ca2+ channels, but not GABA/glutamate synaptic transmission or sodium action potentials. Exposure of mice to elevated corticosterone levels was able to suppress noradrenaline-induced activation. These results provide further insight into the mechanisms by which noradrenaline regulates CRH neural network activity and hence stress responses. KEY POINTS: GCaMP6f Ca2+ imaging and on-cell patch-clamp recordings reveal that corticotropin-releasing hormone neurons are activated by noradrenaline with many neurons displaying a bursting mode of activity. Noradrenaline-induced activation requires α1 -adrenoceptors. Noradrenaline-induced Ca2+ elevations persist after blocking GABAA , AMPA, NMDA receptors and voltage-gated Na+ channels. Noradrenaline-induced Ca2+ elevations require L-type voltage-gated Ca2+ channels. Corticosterone suppresses noradrenaline-induced excitation.
Collapse
Affiliation(s)
- Julia M. Gouws
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Aidan Sherrington
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Shaojie Zheng
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Joon S. Kim
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| | - Karl J. Iremonger
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical SciencesUniversity of OtagoDunedinOtagoNew Zealand
| |
Collapse
|
35
|
Lange ME, Uwiera RRE, Inglis GD. Enteric Escherichia coli O157:H7 in Cattle, and the Use of Mice as a Model to Elucidate Key Aspects of the Host-Pathogen-Microbiota Interaction: A Review. Front Vet Sci 2022; 9:937866. [PMID: 35898542 PMCID: PMC9310005 DOI: 10.3389/fvets.2022.937866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is responsible for foodborne disease outbreaks, typically associated with the consumption of undercooked foods contaminated with cattle manure containing the bacterium. At present, effective mitigations do not exist. Many of the factors regulating enteric colonization by E. coli O157:H7 in cattle, and how cattle respond to the bacterium are unknown. In this regard, intestinal colonization locations, shedding patterns, interactions with the enteric microbiota, and host immune responses to infection are current knowledge gaps. As disturbances to host homeostasis are believed to play an important role in the enteric survival of the bacterium, it is important to consider the potential importance of stress during cattle production. Husbandry logistics, cost, and the high genetic, physiological, and microbial heterogeneity in cattle has greatly hampered the ability of researchers to elucidate key aspects of the host-pathogen-microbiota interaction. Although mice have not been extensively used as a cattle model, the utilization of murine models has the potential to identify mechanisms to facilitate hypothesis formulation and efficacy testing in cattle. Murine models have been effectively used to mechanistically examine colonization of the intestine, host responses to infection, and to interactively ascertain how host physiological status (e.g., due to physiological stress) and the enteric microbiota influences colonization and disease. In addition to reviewing the relevant literature on intestinal colonization and pathogenesis, including existing knowledge gaps, the review provides information on how murine models can be used to elucidate mechanisms toward the development of rationale-based mitigations for E. coli O157:H7 in cattle.
Collapse
Affiliation(s)
- Maximo E. Lange
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Richard R. E. Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - G. Douglas Inglis
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| |
Collapse
|
36
|
Bel JS, Tai TC, Khaper N, Lees SJ. Chronic glucocorticoid exposure causes brown adipose tissue whitening, alters whole-body glucose metabolism and increases tissue uncoupling protein-1. Physiol Rep 2022; 10:e15292. [PMID: 35510321 PMCID: PMC9069169 DOI: 10.14814/phy2.15292] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 04/14/2023] Open
Abstract
Adipose tissue (AT) has been found to exist in two predominant forms, white and brown. White adipose tissue (WAT) is the body's conventional storage organ, and brown adipose tissue (BAT) is responsible for non-shivering thermogenesis which allows mammals to produce heat and regulate body temperature. Studies examining BAT and its role in whole-body metabolism have found that active BAT utilizes glucose and circulating fatty acids and is associated with improved metabolic outcomes. While the beiging of WAT is a growing area of interest, the possibility of the BAT depot to "whiten" and store more triglycerides also has metabolic and health implications. Currently, there are limited studies that examine the effects of chronic stress and its ability to induce a white-like phenotype in the BAT depot. This research examined how chronic exposure to the murine stress hormone, corticosterone, for 4 weeks can affect the whitening process of BAT in C57BL/6 male mice. Separate treatments with mirabegron, a known β3-adrenergic receptor agonist, were used to directly compare the effects of corticosterone with a beiging phenotype. Corticosterone-treated mice had significantly higher body weight (p ≤ 0.05) and BAT mass (p ≤ 0.05), increased adipocyte area (p ≤ 0.05), were insulin resistant (p ≤ 0.05), and significantly elevated expressions of uncoupling protein 1 (UCP-1) in BAT (p ≤ 0.05) while mitochondrial content remained unchanged. This whitened phenotype has not been previously associated with increased uncoupling proteins under chronic stress and may represent a compensatory mechanism being initiated under these conditions. These findings have implications for the study of BAT in response to chronic glucocorticoid exposure potentially leading to BAT dysfunction and negative impacts on whole-body glucose metabolism.
Collapse
Affiliation(s)
- Jocelyn S. Bel
- Biotechnology ProgramLakehead UniversityThunder BayOntarioCanada
| | - T. C. Tai
- Northern Ontario School of MedicineThunder BayOntarioCanada
- BiologyLaurentian UniversitySudburyOntarioCanada
- Chemistry and BiochemistryLaurentian UniversitySudburyOntarioCanada
- Biomolecular Sciences ProgramLaurentian UniversitySudburyOntarioCanada
| | - Neelam Khaper
- Northern Ontario School of MedicineThunder BayOntarioCanada
- Biomolecular Sciences ProgramLaurentian UniversitySudburyOntarioCanada
- BiologyLakehead UniversityThunder BayOntarioCanada
| | - Simon J. Lees
- Northern Ontario School of MedicineThunder BayOntarioCanada
- BiologyLakehead UniversityThunder BayOntarioCanada
| |
Collapse
|
37
|
Caradonna SG, Zhang TY, O’Toole N, Shen MJ, Khalil H, Einhorn NR, Wen X, Parent C, Lee FS, Akil H, Meaney MJ, McEwen BS, Marrocco J. Genomic modules and intramodular network concordance in susceptible and resilient male mice across models of stress. Neuropsychopharmacology 2022; 47:987-999. [PMID: 34848858 PMCID: PMC8938529 DOI: 10.1038/s41386-021-01219-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
The multifactorial etiology of stress-related disorders necessitates a constant interrogation of the molecular convergences in preclinical models of stress that use disparate paradigms as stressors spanning from environmental challenges to genetic predisposition to hormonal signaling. Using RNA-sequencing, we investigated the genomic signatures in the ventral hippocampus common to mouse models of stress. Chronic oral corticosterone (CORT) induced increased anxiety- and depression-like behavior in wild-type male mice and male mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met, a variant associated with genetic susceptibility to stress. In a separate set of male mice, chronic social defeat stress (CSDS) led to a susceptible or a resilient population, whose proportion was dependent on housing conditions, namely standard housing or enriched environment. Rank-rank-hypergeometric overlap (RRHO), a threshold-free approach that ranks genes by their p value and effect size direction, was used to identify genes from a continuous gradient of significancy that were concordant across groups. In mice treated with CORT and in standard-housed susceptible mice, differentially expressed genes (DEGs) were concordant for gene networks involved in neurotransmission, cytoskeleton function, and vascularization. Weighted gene co-expression analysis generated 54 gene hub modules and revealed two modules in which both CORT and CSDS-induced enrichment in DEGs, whose function was concordant with the RRHO predictions, and correlated with behavioral resilience or susceptibility. These data showed transcriptional concordance across models in which the stress coping depends upon hormonal, environmental, or genetic factors revealing common genomic drivers that embody the multifaceted nature of stress-related disorders.
Collapse
Affiliation(s)
- Salvatore G. Caradonna
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Tie-Yuan Zhang
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Nicholas O’Toole
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Mo-Jun Shen
- grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore
| | - Huzefa Khalil
- grid.214458.e0000000086837370Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Nathan R. Einhorn
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Xianglan Wen
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Carine Parent
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Francis S. Lee
- grid.5386.8000000041936877XDepartment of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY USA
| | - Huda Akil
- grid.214458.e0000000086837370Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Michael J. Meaney
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, Singapore, Singapore ,grid.14709.3b0000 0004 1936 8649Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC Canada
| | - Bruce S. McEwen
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Jordan Marrocco
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
38
|
Corticosterone induces discrete epigenetic signatures in the dorsal and ventral hippocampus that depend upon sex and genotype: focus on methylated Nr3c1 gene. Transl Psychiatry 2022; 12:109. [PMID: 35296634 PMCID: PMC8927334 DOI: 10.1038/s41398-022-01864-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
The genomic effects of circulating glucocorticoids are particularly relevant in cortico-limbic structures, which express a high concentration of steroid hormone receptors. To date, no studies have investigated genomic differences in hippocampal subregions, namely the dorsal (dHPC) and ventral (vHPC) hippocampus, in preclinical models treated with exogenous glucocorticoids. Chronic oral corticosterone (CORT) in mouse is a pharmacological approach that disrupts the activity of the hypothalamic-pituitary-adrenal axis, increases affective behavior, and induces genomic changes after stress in the HPC of wildtype (WT) mice and mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met (hMet), a variant associated with genetic susceptibility to stress. Using RNA-sequencing, we investigated the genomic signatures of oral CORT in the dHPC and vHPC of WT and hMet male and female mice, and examined sex and genotype differences in response to oral CORT. Males under CORT showed lower glycemia and increased anxiety- and depression-like behavior compared to females that showed instead opposite affective behavior in response to CORT. Rank-rank-hypergeometric overlap (RRHO) was used to identify genes from a continuous gradient of significancy that were concordant across groups. RRHO showed that CORT-induced differentially expressed genes (DEGs) in WT mice and hMet mice converged in the dHPC of males and females, while in the vHPC, DEGs converged in males and diverged in females. The vHPC showed a higher number of DEGs compared to the dHPC and exhibited sex differences related to glucocorticoid receptor (GR)-binding genes and epigenetic modifiers. Methyl-DNA-immunoprecipitation in the vHPC revealed differential methylation of the exons 1C and 1F of the GR gene (Nr3c1) in hMet females. Together, we report behavioral and endocrinological sex differences in response to CORT, as well as epigenetic signatures that i) differ in the dHPC and vHPC,ii) are distinct in males and females, and iii) implicate differential methylation of Nr3c1 selectively in hMet females.
Collapse
|
39
|
Herman JP. The neuroendocrinology of stress: Glucocorticoid signaling mechanisms. Psychoneuroendocrinology 2022; 137:105641. [PMID: 34954409 DOI: 10.1016/j.psyneuen.2021.105641] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/13/2023]
Abstract
Glucocorticoid signaling plays major roles in energy homeostasis and adaptation to adversity, and dysregulation of this process is linked to systemic and psychological pathology. Over the last several decades, new work has challenged many of the long-standing assumptions regarding regulation of glucocorticoid secretion and glucocorticoid signaling mechanisms, revealing an exquisite complexity that accompanies the important and perhaps global role of these hormones in physiological and psychological regulation. New findings have included discovery of membrane signaling, direct neural control of the adrenal, a role for pulsatile glucocorticoid release in glucocorticoid receptor signaling, marked sex differences in brain glucocorticoid biology, and salutary as well as deleterious roles for glucocorticoids in long- and short-term adaptations to stress. This review covers some of the major lessons learned in the area of mechanisms of glucocorticoid signaling, and discusses how these may inform the field moving forward.
Collapse
Affiliation(s)
- James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Cincinnati Veterans Administration Medical Center, USA
| |
Collapse
|
40
|
García-Eguren G, González-Ramírez M, Vizán P, Giró O, Vega-Beyhart A, Boswell L, Mora M, Halperin I, Carmona F, Gracia M, Casals G, Squarcia M, Enseñat J, Vidal O, Di Croce L, Hanzu FA. Glucocorticoid-induced Fingerprints on Visceral Adipose Tissue Transcriptome and Epigenome. J Clin Endocrinol Metab 2022; 107:150-166. [PMID: 34487152 DOI: 10.1210/clinem/dgab662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Chronic glucocorticoid (GC) overexposure, resulting from endogenous Cushing's syndrome (CS) or exogenous GC therapy, causes several adverse outcomes, including persistent central fat accumulation associated with a low-grade inflammation. However, no previous multiomics studies in visceral adipose tissue (VAT) from patients exposed to high levels of unsuppressed GC during active CS or after remission are available yet. OBJECTIVE To determine the persistent VAT transcriptomic alterations and epigenetic fingerprints induced by chronic hypercortisolism. METHODS We employed a translational approach combining high-throughput data on endogenous CS patients and a reversible CS mouse model. We performed RNA sequencing and chromatin immunoprecipitation sequencing on histone modifications (H3K4me3, H3K27ac, and H3K27me3) to identify persistent transcriptional and epigenetic signatures in VAT produced during active CS and maintained after remission. RESULTS VAT dysfunction was associated with low-grade proinflammatory status, macrophage infiltration, and extracellular matrix remodeling. Most notably, chronic hypercortisolism caused a persistent circadian rhythm disruption in VAT through core clock genes modulation. Importantly, changes in the levels of 2 histone modifications associated to gene transcriptional activation (H3K4me3 and H3K27ac) correlated with the observed differences in gene expression during active CS and after CS remission. CONCLUSION We identified for the first time the persistent transcriptional and epigenetic signatures induced by hypercortisolism in VAT, providing a novel integrated view of molecular components driving the long-term VAT impairment associated with CS.
Collapse
Affiliation(s)
- Guillermo García-Eguren
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar González-Ramírez
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Vizán
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Giró
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Arturo Vega-Beyhart
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Boswell
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
| | - Mireia Mora
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Irene Halperin
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco Carmona
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Gynecology and Obstetrics Department, Hospital Clínic, Barcelona, Spain
| | - Meritxell Gracia
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Gynecology and Obstetrics Department, Hospital Clínic, Barcelona, Spain
| | - Gregori Casals
- Biomedical Diagnostics Centre, Hospital Clinic, Barcelona, Spain
| | - Mattia Squarcia
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Radiology, Hospital Clínic, Barcelona, Spain
| | - Joaquim Enseñat
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Endocrine Surgery Department, Hospital Clinic, Barcelona, Spain
| | - Oscar Vidal
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic, Barcelona, Spain
| | - Luciano Di Croce
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Felicia A Hanzu
- Group of Endocrine Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Wang G, Li S, Li Y, Zhang M, Xu T, Li T, Cao L, Lu J. Corticosterone induces obesity partly via promoting intestinal cell proliferation and survival. Front Endocrinol (Lausanne) 2022; 13:1052487. [PMID: 36699046 PMCID: PMC9869250 DOI: 10.3389/fendo.2022.1052487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION A vicious cycle ensues whereby prolonged exposure to social stress causes increased production of glucocorticoids (GCs), leading to obesity even further. Understanding the role of GCs, the key element in the vicious circle, might be helpful to break the vicious circle. However, the mechanism by which GCs induce obesity remains elusive. METHODS Corticosterone (CORT) was administered to mice for 8 weeks. Food and water intake were recorded; obesity was analyzed by body-weight evaluation and magnetic resonance imaging (MRI); intestinal proliferation and survival were evaluated by H&E staining, EdU-progression test, TUNEL assay and immunofluorescence staining of Ki67 and CC3; RNA-seq was performed to analyze transcriptional alterations in small intestines and livers. RESULTS Chronic CORT treatment induced obesity, longer small intestines, hepatic steatosis and elevated levels of serum insulin and leptin in mice; CORT-treated mice showed increased cell proliferation and decreased apoptosis of small intestines; RNA-seq results indicate that differentially expressed genes (DEGs) were enriched in several cell growth/death-associated signaling pathways. DISCUSSION Herein we find that administration of CORT to mice promotes the proliferation and survival of intestinal cells, which might contribute to the longer small intestines and the elongated intestinal villi, thus leading to increased nutrient absorption and obesity in mice. Understanding CORT-induced alterations in intestines and associated signaling pathways might provide novel therapeutic clues for GCs or stress-associated obesity.
Collapse
Affiliation(s)
- Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ting Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tianming Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- *Correspondence: Jianfeng Lu, ; ; Lining Cao,
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Biomedical research center, Suzhou Institute of Tongji University, Suzhou, China
- *Correspondence: Jianfeng Lu, ; ; Lining Cao,
| |
Collapse
|
42
|
Merrill AK, Anderson T, Conrad K, Marvin E, James-Todd T, Cory-Slechta DA, Sobolewski M. Protracted Impairment of Maternal Metabolic Health in Mouse Dams Following Pregnancy Exposure to a Mixture of Low Dose Endocrine-Disrupting Chemicals, a Pilot Study. TOXICS 2021; 9:346. [PMID: 34941779 PMCID: PMC8706199 DOI: 10.3390/toxics9120346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
Pregnancy, a period of increased metabolic demands coordinated by fluctuating steroid hormones, is an understudied critical window of disease susceptibility for later-life maternal metabolic health. Epidemiological studies have identified associations between exposures to various endocrine-disrupting chemicals (EDCs) with an increased risk for metabolic syndrome, obesity, and diabetes. Whether such adverse outcomes would be heightened by concurrent exposures to multiple EDCs during pregnancy, consistent with the reality that human exposures are to EDC mixtures, was examined in the current pilot study. Mouse dams were orally exposed to relatively low doses of four EDCs: (atrazine (10 mg/kg), bisphenol-A (50 µg/kg), perfluorooctanoic acid (0.1 mg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (0.036 µg/kg)), or the combination (MIX), from gestational day 7 until birth or for an equivalent 12 days in non-pregnant females. Glucose intolerance, serum lipids, weight, and visceral adiposity were assessed six months later. MIX-exposed dams exhibited hyperglycemia with a persistent elevation in blood glucose two hours after glucose administration in a glucose tolerance test, whereas no such effects were observed in MIX-exposed non-pregnant females. Correspondingly, MIX dams showed elevated serum low-density lipoprotein (LDL). There were no statistically significant differences in weight or visceral adipose; MIX dams showed an average visceral adipose volume to body volume ratio of 0.09, while the vehicle dams had an average ratio of 0.07. Collectively, these findings provide biological plausibility for the epidemiological associations observed between EDC exposures during pregnancy and subsequent maternal metabolic dyshomeostasis, and proof of concept data that highlight the importance of considering complex EDC mixtures based of off common health outcomes, e.g., for increased risk for later-life maternal metabolic effects following pregnancy.
Collapse
Affiliation(s)
- Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Timothy Anderson
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard University, Boston, MA 02115, USA;
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| |
Collapse
|
43
|
Akther S, Hirase H. Assessment of astrocytes as a mediator of memory and learning in rodents. Glia 2021; 70:1484-1505. [PMID: 34582594 DOI: 10.1002/glia.24099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022]
Abstract
The classical view of astrocytes is that they provide supportive functions for neurons, transporting metabolites and maintaining the homeostasis of the extracellular milieu. This view is gradually changing with the advent of molecular genetics and optical methods allowing interrogation of selected cell types in live experimental animals. An emerging view that astrocytes additionally act as a mediator of synaptic plasticity and contribute to learning processes has gained in vitro and in vivo experimental support. Here we focus on the literature published in the past two decades to review the roles of astrocytes in brain plasticity in rodents, whereby the roles of neurotransmitters and neuromodulators are considered to be comparable to those in humans. We outline established inputs and outputs of astrocytes and discuss how manipulations of astrocytes have impacted the behavior in various learning paradigms. Multiple studies suggest that the contribution of astrocytes has a considerably longer time course than neuronal activation, indicating metabolic roles of astrocytes. We advocate that exploring upstream and downstream mechanisms of astrocytic activation will further provide insight into brain plasticity and memory/learning impairment.
Collapse
Affiliation(s)
- Sonam Akther
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Oda S, Ashida K, Uchiyama M, Sakamoto S, Hasuzawa N, Nagayama A, Wang L, Nagata H, Sakamoto R, Kishimoto J, Todaka K, Ogawa Y, Nakanishi Y, Nomura M. An Open-label Phase I/IIa Clinical Trial of 11β-HSD1 Inhibitor for Cushing's Syndrome and Autonomous Cortisol Secretion. J Clin Endocrinol Metab 2021; 106:e3865-e3880. [PMID: 34143883 DOI: 10.1210/clinem/dgab450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors demonstrate antimetabolic and antisarcopenic effects in Cushing's syndrome (CS) and autonomous cortisol secretion (ACS) patients. OBJECTIVE To confirm the efficacy and safety of S-707106 (11β-HSD1 inhibitor) administered to CS and ACS patients. DESIGN A 24-week single-center, open-label, single-arm, dose-escalation, investigator-initiated clinical trial on a database. SETTING Kyushu University Hospital, Kurume University Hospital, and related facilities. PATIENTS Sixteen patients with inoperable or recurrent CS and ACS, with mildly impaired glucose tolerance. INTERVENTION Oral administration of 200 mg S-707106 after dinner, daily, for 24 weeks. In patients with insufficient improvement in oral glucose tolerance test results at 12 weeks, an escalated dose of S-707106 (200 mg twice daily) was administered for the residual 12 weeks. MAIN OUTCOME MEASURES The rate of participants responding to glucose tolerance impairment, defined as those showing a 25% reduction in the area under the curve (AUC) of plasma glucose during the 75-g oral glucose tolerance test at 24 weeks. RESULTS S-707106 administration could not achieve the primary endpoint of this clinical trial (>20% of responsive participants). AUC glucose decreased by -7.1% [SD, 14.8 (90% CI -14.8 to -1.0), P = 0.033] and -2.7% [14.5 (-10.2 to 3.4), P = 0.18] at 12 and 24 weeks, respectively. S-707106 administration decreased AUC glucose significantly in participants with a high body mass index. Body fat percentage decreased by -2.5% [1.7 (-3.3 to -1.8), P < 0.001] and body muscle percentage increased by 2.4% [1.6 (1.7 to 3.1), P < 0.001]. CONCLUSIONS S-707106 is an effective insulin sensitizer and antisarcopenic and antiobesity medication for these patients.
Collapse
Affiliation(s)
- Satoko Oda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Kenji Ashida
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| | - Makiko Uchiyama
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Shohei Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Nao Hasuzawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| | - Ayako Nagayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| | - Lixiang Wang
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume-city, Japan
| | - Hiromi Nagata
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Koji Todaka
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
| | - Yoichi Nakanishi
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka-city, Japan
| | - Masatoshi Nomura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka-city, Japan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume-city, Japan
| |
Collapse
|
45
|
Pan SM, Pan Y, Tang YL, Zuo N, Zhang YX, Jia KK, Kong LD. Thioredoxin interacting protein drives astrocytic glucose hypometabolism in corticosterone-induced depressive state. J Neurochem 2021; 161:84-100. [PMID: 34368959 DOI: 10.1111/jnc.15489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/18/2023]
Abstract
Brain energetics disturbance is a hypothesized cause of depression. Glucose is the predominant fuel of brain energy metabolism, however, the cell-specific change of glucose metabolism and underlying molecular mechanism in depression remain unclear. In this study, we firstly applied 18 F-FDG PET and observed brain glucose hypometabolism in prefrontal cortex (PFC) of corticosterone-induced depression of rats. Next, astrocytic glucose hypometabolism was identified in PFC slices in in both corticosterone-induced depression of rats and cultured primary astrocytes from newborn rat PFC after stress-level corticosterone (100 nM) stimulation. Furthermore, we found the blockage of glucose uptake and the decrease of plasma membrane (PM) translocation of glucose transporter 1 (GLUT1) in astrocytic glucose hypometabolism under depressive condition. Interestingly, thioredoxin interacting protein (TXNIP), a glucose metabolism sensor and controller, was found to be overexpressed in corticosterone-stimulated astrocytes in vivo and in vitro. High TXNIP level could restrict GLUT1-mediated glucose uptake in primary astrocytes in vitro. Adeno-associated virus vector-mediated astrocytic TXNIP overexpression in rat medial PFC suppressed GLUT1 PM translocation, consequently developed depressive-like behavior. Conversely, TXNIP siRNA facilitated GLUT1 PM translocation to recover glucose hypometabolism in corticosterone-exposed cultured astrocytes. Notably, astrocyte-specific knockdown of TXNIP in medial PFC of rats facilitated astrocytic GLUT1 PM translocation, showing obvious antidepressant activity. These findings provide a new astrocytic energetic perspective in the pathogenesis of depression, more importantly, provide TXNIP as a promising molecular target for novel depression therapy.
Collapse
Affiliation(s)
- Shu-Man Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, P. R. China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, P. R. China
| | - Ya-Li Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, P. R. China
| | - Na Zuo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, P. R. China
| | - Yan-Xiu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, P. R. China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, P. R. China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu Province, P. R. China
| |
Collapse
|
46
|
Sial OK, Gnecco T, Cardona-Acosta AM, Vieregg E, Cardoso EA, Parise LF, Bolaños-Guzmán CA. Exposure to Vicarious Social Defeat Stress and Western-Style Diets During Adolescence Leads to Physiological Dysregulation, Decreases in Reward Sensitivity, and Reduced Antidepressant Efficacy in Adulthood. Front Neurosci 2021; 15:701919. [PMID: 34408623 PMCID: PMC8366028 DOI: 10.3389/fnins.2021.701919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023] Open
Abstract
A dramatic increase in the prevalence of major depression and diet-related disorders in adolescents has been observed over several decades, yet the mechanisms underlying this comorbidity have only recently begun to be elucidated. Exposure to western-style diet (WSD), high in both fats (45% kcal) and carbohydrates (35% kcal): e.g., high fat diet (HFD), has been linked to the development of metabolic syndrome-like symptoms and behavioral dysregulation in rodents, as similarly observed in the human condition. Because adolescence is a developmental period highlighted by vulnerability to both stress and poor diet, understanding the mechanism(s) underlying the combined negative effects of WSDs and stress on mood and reward regulation is critical. To this end, adolescent male C57 mice were exposed to vicarious social defeat stress (VSDS), a stress paradigm capable of separating physical (PS) versus psychological/emotional (ES) stress, followed by normal chow (NC), HFD, or a separate control diet high in carbohydrates (same sucrose content as HFD) and low in fat (LFD), while measuring body weight and food intake. Non-stressed control mice exposed to 5 weeks of NC or HFD showed no significant differences in body weight or social interaction. Mice exposed to VSDS (both ES and PS) gain weight rapidly 1 week after initiation of HFD, with the ES-exposed mice showing significantly higher weight gain as compared to the HFD-exposed control mice. These mice also exhibited a reduction in saccharin preference, indicative of anhedonic-like behavior. To further delineate whether high fat was the major contributing factor to these deficits, LFD was introduced. The mice in the VSDS + HFD gained weight more rapidly than the VSDS + LFD group, and though the LFD-exposed mice did not gain weight as rapidly as the HFD-exposed mice, both the VSDS + LFD- and VSDS + HFD-exposed mice exhibited attenuated response to the antidepressant fluoxetine. These data show that diets high in both fats and carbohydrates are responsible for rapid weight gain and reduced reward sensitivity; and that while consumption of diet high in carbohydrate and low in fat does not lead to rapid weight gain, both HFD and LFD exposure after stress leads to reduced responsiveness to antidepressant treatment.
Collapse
Affiliation(s)
- Omar K. Sial
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Tamara Gnecco
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Astrid M. Cardona-Acosta
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Emily Vieregg
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Ernesto A. Cardoso
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Lyonna F. Parise
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carlos A. Bolaños-Guzmán
- Department of Psychological and Brain Sciences, and Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
47
|
Chronic glucocorticoid treatment induces hepatic lipid accumulation and hyperinsulinaemia in part through actions on AgRP neurons. Sci Rep 2021; 11:13776. [PMID: 34215821 PMCID: PMC8253818 DOI: 10.1038/s41598-021-93378-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/04/2021] [Indexed: 11/08/2022] Open
Abstract
Glucocorticoids (GCs) are widely prescribed anti-inflammatory medicines, but their use can lead to metabolic side-effects. These may occur through direct actions of GCs on peripheral organs, but could also be mediated by the hypothalamic AgRP neurons, which can increase food intake and modify peripheral metabolism. Therefore, the aim of this study was to examine the metabolic effects of chronic treatment with the GC corticosterone (Cort, 75 μg/ml in drinking water) in mice lacking the glucocorticoid receptor (GR) on AgRP neurons. Female AgRP-GR KO mice had delayed onset of Cort-induced hyperphagia. However, AgRP-GR KO had little impact on the increased body weight or adiposity seen with 3 weeks Cort treatment. Cort caused hepatic steatosis in control mice, but in Cort treated female AgRP-GR KO mice there was a 25% reduction in liver lipid content and lower plasma triglycerides. Additionally, Cort treatment led to hyperinsulinaemia, but compared to controls, Cort-treated AgRP-GR KO mice had both lower fasting insulin levels and lower insulin levels during a glucose tolerance test. In conclusion, these data indicate that GCs do act through AgRP neurons to contribute, at least in part, to the adverse metabolic consequences of chronic GC treatment.
Collapse
|
48
|
Stanić D, Oved K, Israel-Elgali I, Jukić M, Batinić B, Puškaš N, Shomron N, Gurwitz D, Pešić V. Synergy of oxytocin and citalopram in modulating Itgb3/Chl1 interplay: Relevance to sensitivity to SSRI therapy. Psychoneuroendocrinology 2021; 129:105234. [PMID: 33930757 DOI: 10.1016/j.psyneuen.2021.105234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
Intranasal treatment with oxytocin showed beneficial effects in post-traumatic stress disorder and autism spectrum disorders; however, it was not investigated as much in depression. Keeping in mind the favorable effects of oxytocin on animal models of anxiety and depression, we postulated that synergy between prescribed first choice drugs, selective serotonin reuptake inhibitors (SSRIs) and oxytocin could improve the treatment outcome compared with SSRI monotherapy. Our previous in vitro genome-wide transcriptomic study on human lymphoblastoid cell lines exposed to paroxetine resulted in increase of integrin β3 (ITGB3) gene expression, and further, ITGB3/CHL1 expression ratio was hypothesized to influence the sensitivity to SSRIs. The aim of this report was to explore molecular mechanisms behind the antidepressant-like oxytocin effect, alone and in synergy with citalopram, on behavioral and molecular level in corticosterone treated rats, a paradigm used to model anxiety and depression in animals. Oxytocin treatment (1) ameliorated corticosterone-induced reduction of neurogenesis and number of parvalbumin-positive interneurons in the hippocampal CA1 region, (2) enhanced anxiolytic- and antidepressant-like effects of citalopram in the open field test, and (3) the SSRI/oxytocin synergy persisted in reversing the reduction of the Itgb3 gene expression and increased Itgb3/Chl1 ratio in the prefrontal cortices. These results support the existence of synergy between citalopram and oxytocin in reversing the molecular and behavioral changes induced by corticosterone treatment and point to possible molecular mechanisms behind antidepressant-like effect of oxytocin.
Collapse
Affiliation(s)
- Dušanka Stanić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Keren Oved
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ifat Israel-Elgali
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Marin Jukić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11121 Belgrade, Serbia; Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Bojan Batinić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11121 Belgrade, Serbia
| | - Nela Puškaš
- Department of Histology and Embryology, Faculty of Medicine, University of Belgrade, Serbia
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Vesna Pešić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11121 Belgrade, Serbia.
| |
Collapse
|
49
|
Ren L, Zhang Y, Xin Y, Chen G, Sun X, Chen Y, He B. Dysfunction in Sertoli cells participates in glucocorticoid-induced impairment of spermatogenesis. Mol Reprod Dev 2021; 88:405-415. [PMID: 34032349 DOI: 10.1002/mrd.23515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/16/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022]
Abstract
The effect of stress on male fertility is a widespread public health issue, but less is known about the related signaling pathway. To investigate this, we established a hypercortisolism mouse model by supplementing the drinking water with corticosterone for four weeks. In the hypercortisolism mice, the serum corticosterone was much higher than in the control, and serum testosterone was significantly decreased. Moreover, corticosterone treatment induced decrease of sperm counts and increase of teratozoospermia. Increased numbers of multinucleated giant cells and apoptotic germ cells as well as downregulated meiotic markers suggested that corticosterone induced impaired spermatogenesis. Further, upregulation of macrophage-specific marker antigen F4/80 as well as inflammation-related genes suggested that corticosterone induced inflammation in the testis. Lactate content was found to be decreased in the testis and Sertoli cells after corticosterone treatment, and lactate metabolism-related genes were downregulated. In vitro phagocytosis assays showed that the phagocytic activity in corticosterone-treated Sertoli cells was downregulated and accompanied by decreased mitochondrial membrane potential, while pyruvate dehydrogenase kinase-4 inhibitor supplementation restored this process. Taken together, our results demonstrated that dysfunctional phagocytosis capacity and lactate metabolism in Sertoli cells participates in corticosterone-induced impairment of spermatogenesis.
Collapse
Affiliation(s)
- Li Ren
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanwen Zhang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yining Xin
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guo Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiao Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingqi Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Pang TY, Yaeger JDW, Summers CH, Mitra R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci Biobehav Rev 2021; 124:137-150. [PMID: 33549740 PMCID: PMC9286069 DOI: 10.1016/j.neubiorev.2021.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time. Collectively, these studies testify that environmental variation at an earlier time point modifies the relationship between stressor and stress response at a later stage. The metaplastic effects of the environment on the stress response remain possible across various endpoints, including behavior, neuroendocrine regulation, region-specific neural plasticity, and regulation of receptors. The timescale of such variation spans adulthood, across stages of life history and generational boundaries. Thus, environmental variables are powerful determinants of the observed diversity in stress response. The predominant role of the environment suggests that it is possible to promote stress resilience through purposeful modification of the environment.
Collapse
Affiliation(s)
- Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, 3010, VIC, Australia
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|