1
|
Joshua Cohen D, ElBaradie K, Boyan BD, Schwartz Z. Sex-specific effects of 17β-estradiol and dihydrotestosterone (DHT) on growth plate chondrocytes are dependent on both ERα and ERβ and require palmitoylation to translocate the receptors to the plasma membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159028. [PMID: 34416391 DOI: 10.1016/j.bbalip.2021.159028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022]
Abstract
Rat costochondral cartilage growth plate chondrocytes exhibit cell sex-specific responses to 17β-estradiol (E2), testosterone, and dihydrotestosterone (DHT). Mechanistically, E2 and DHT stimulate proliferation and extracellular matrix synthesis in chondrocytes from female and male rats, respectively, by signaling through protein kinase C (PKC) and phospholipase C (PLC). Estrogen receptors (ERα; ERβ) and androgen receptors (ARs) are present in both male and female cells, but it is not known whether they interact to elicit sex-specific signaling. We used specific agonists and antagonists of these receptors to examine the relative contributions of ERs and ARs in membrane-mediated E2 signaling in female chondrocytes and DHT signaling in male chondrocytes. PKC activity in female chondrocytes was stimulated by agonists of ERα and ERβ and required intact caveolae; PKC activity was inhibited by the E2 enantiomer and by an inhibitor of ERβ. Western blots of cell lysates co-immunoprecipitated for ERα suggested the formation of a complex containing both ERα and ERß with E2 treatment. DHT and DHT agonists activated PKC in male cells, while AR inhibition blocked the stimulatory effect of DHT on PKC. Inhibition of ERα and ERβ also blocked PKC activation by DHT. Western blots of whole-cell lysates, plasma membranes, and caveolae indicated the translocation of AR to the plasma membrane and specifically to caveolae with DHT treatment. These results suggest that E2 and DHT promote chondrocyte differentiation via the ability of ARs and ERs to form a complex. The results also indicate that intact caveolae and palmitoylation of the membrane receptor(s) or membrane receptor complex containing ERα and ERβ is required for E2 and DHT membrane-associated PKC activity in costochondral cartilage cells.
Collapse
Affiliation(s)
- D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Khairat ElBaradie
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30033, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30033, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Xie Q, Zhang L, Xie L, Zheng Y, Liu K, Tang H, Liao Y, Li X. Z‐ligustilide: A review of its pharmacokinetics and pharmacology. Phytother Res 2020; 34:1966-1991. [DOI: 10.1002/ptr.6662] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/17/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Qingxuan Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Linlin Zhang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Long Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yu Zheng
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Kai Liu
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Hailong Tang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yanmei Liao
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaofang Li
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
3
|
Verma A, Cohen DJ, Schwartz N, Muktipaty C, Koblinski JE, Boyan BD, Schwartz Z. 24R,25-Dihydroxyvitamin D 3 regulates breast cancer cells in vitro and in vivo. Biochim Biophys Acta Gen Subj 2019; 1863:1498-1512. [PMID: 31125679 DOI: 10.1016/j.bbagen.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Epidemiological studies indicate high serum 25(OH)D3 is associated with increased survival in breast cancer patients. Pre-clinical studies attributed this to anti-tumorigenic properties of its metabolite 1α,25(OH)2D3. However, 1α,25(OH)2D3 is highly calcemic and thus has a narrow therapeutic window. Here we propose another metabolite, 24R,25(OH)2D3, as an alternative non-calcemic vitamin D3 supplement. METHODS NOD-SCID-IL2γR null female mice with MCF7 breast cancer xenografts in the mammary fat pad were treated with 24R,25(OH)2D3 and changes in tumor burden and metastases were assessed. ERα66+ MCF7 and T47D cells, and ERα66- HCC38 cells were treated with 24R,25(OH)2D3in vitro to assess effects on proliferation and apoptosis. Effects on migration and metastatic markers were assessed in MCF7. RESULTS 24R,25(OH)2D3 reduced MCF7 tumor growth and metastasis in vivo. In vitro results indicate that this was not due to an anti-proliferative effect; 24R,25(OH)2D3 stimulated DNA synthesis in MCF7 and T47D. In contrast, markers of invasion and metastasis were decreased. 24R,25(OH)2D3 caused dose-dependent increases in apoptosis in MCF7 and T47D, but not HCC38 cells. Inhibitors to palmitoylation, caveolae integrity, phospholipase-D, and estrogen receptors (ER) demonstrate that 24R,25(OH)2D3 acts on MCF7 cells through caveolae-associated, phospholipase D-dependent mechanisms via cross-talk with ERs. CONCLUSION These results indicate that 24R,25(OH)2D3 shows promise in treatment of breast cancer by stimulating tumor apoptosis and reducing metastasis. GENERAL SIGNIFICANCE 24R,25(OH)2D3 regulates breast cancer cell survival through ER-associated mechanisms similar to 24R,25(OH)2D3 effects on chondrocytes. Thus, 24R,25(OH)2D3 may modulate cell survival in other estrogen-responsive cell types, and its therapeutic potential should be investigated in ER-associated pathologies.
Collapse
Affiliation(s)
- Anjali Verma
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA.
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA.
| | - Nofrat Schwartz
- Department of Otolaryngology, Meir Hospital, Tchernichovsky St 59, Kfar Saba 4428164, Israel; Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel; Department of Otolaryngology/Head and Neck Surgery, University of North Caroline Chapel Hill, 170 Manning Drive, Chapel Hill, NC 27599, USA
| | - Chandana Muktipaty
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA.
| | - Jennifer E Koblinski
- Department of Pathology, Virginia Commonwealth University, 401 N 13th Street, Richmond, VA 23298, USA; Massey Cancer Center, 401 College Street, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA; Massey Cancer Center, 401 College Street, Virginia Commonwealth University, Richmond, VA 23298, USA; Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Drive NW, Georgia Institute of Technology, Atlanta, VA, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, 8210 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
4
|
Zhou Y, Ming J, Li Y, Deng M, Chen Q, Ma Y, Chen Z, Zhang Y, Liu S. Ligustilide attenuates nitric oxide-induced apoptosis in rat chondrocytes and cartilage degradation via inhibiting JNK and p38 MAPK pathways. J Cell Mol Med 2019; 23:3357-3368. [PMID: 30770640 PMCID: PMC6484328 DOI: 10.1111/jcmm.14226] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
Ligustilide (LIG) is the main lipophilic component of the Umbelliferae family of pharmaceutical plants, including Radix angelicae sinensis and Ligusticum chuanxiong. LIG shows various pharmacological properties associated with anti‐inflammation and anti‐apoptosis in several kinds of cell lines. However, the therapeutic effects of LIG on chondrocyte apoptosis remain unknown. In this study, we investigated whether LIG had an anti‐apoptotic activity in sodium nitroprusside (SNP)‐stimulated chondrocyte apoptosis and could delay cartilage degeneration in a surgically induced rat OA model, and elucidated the potential mechanisms. In vitro studies revealed that LIG significantly suppressed chondrocyte apoptosis and cytoskeletal remodelling, which maintained the nuclear morphology and increased the mitochondrial membrane potential. In terms of SNP, LIG treatment considerably reduced the expression levels of cleaved caspase‐3, Bax and inducible nitric oxide synthase and increased the expression level of Bcl‐2 in a dose‐dependent manner. The LIG‐treated groups presented a significantly suppressed expression of activating transcription factor 2 and phosphorylation of Jun N‐terminal kinase (JNK) and p38 mitogen‐activated protein kinase (MAPK). The inhibitory effect of LIG was enhanced by the p38 MAPK inhibitor SB203580 or the JNK inhibitor SP600125 and offset by the agonist anisomycin. In vivo studies demonstrated that LIG attenuated osteoarthritic cartilage destruction by inhibiting the cartilage chondrocyte apoptosis and suppressing the phosphorylation levels of activating transcription factor 2, JNK and p38 MAPK. This result was confirmed by histological analyses, micro‐CT, TUNEL assay and immunohistochemical analyses. Collectively, our studies indicated that LIG protected chondrocytes against SNP‐induced apoptosis and delayed articular cartilage degeneration by suppressing JNK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianghua Ming
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yaming Li
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Deng
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Chen
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Ma
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhonghui Chen
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yubiao Zhang
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiqing Liu
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Jian QL, HuangFu WC, Lee YH, Liu IH. Age, but not short-term intensive swimming, affects chondrocyte turnover in zebrafish vertebral cartilage. PeerJ 2018; 6:e5739. [PMID: 30294512 PMCID: PMC6171498 DOI: 10.7717/peerj.5739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/30/2018] [Indexed: 01/07/2023] Open
Abstract
Both age and intensive exercise are generally considered critical risk factors for osteoarthritis. In this work, we intend to establish zebrafish models to assess the role of these two factors on cartilage homeostasis. We designed a swimming device for zebrafish intensive exercise. The body measurements, bone mineral density (BMD) and the histology of spinal cartilages of 4- and 12-month-old zebrafish, as well the 12-month-old zebrafish before and after a 2-week exercise were compared. Our results indicate that both age and exercise affect the body length and body weight, and the micro-computed tomography reveals that both age and exercise affect the spinal BMD. However, quantitative analysis of immunohistochemistry and histochemistry indicate that short-term intensive exercise does not affect the extracellular matrix (ECM) of spinal cartilage. On the other hand, the cartilage ECM significantly grew from 4 to 12 months of age with an increase in total chondrocytes. dUTP nick end labeling staining shows that the percentages of apoptotic cells significantly increase as the zebrafish grows, whereas the BrdU labeling shows that proliferative cells dramatically decrease from 4 to 12 months of age. A 30-day chase of BrdU labeling shows some retention of labeling in cells in 4-month-old spinal cartilage but not in cartilage from 12-month-old zebrafish. Taken together, our results suggest that zebrafish chondrocytes are actively turned over, and indicate that aging is a critical factor that alters cartilage homeostasis. Zebrafish vertebral cartilage may serve as a good model to study the maturation and homeostasis of articular cartilage.
Collapse
Affiliation(s)
- Quan-Liang Jian
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Lee
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Barakat R, Oakley O, Kim H, Jin J, Ko CJ. Extra-gonadal sites of estrogen biosynthesis and function. BMB Rep 2017; 49:488-96. [PMID: 27530684 PMCID: PMC5227141 DOI: 10.5483/bmbrep.2016.49.9.141] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 12/23/2022] Open
Abstract
Estrogens are the key hormones regulating the development and function of reproductive organs in all vertebrates. Recent evidence indicates that estrogens play important roles in the immune system, cancer development, and other critical biological processes related to human well-being. Obviously, the gonads (ovary and testis) are the primary sites of estrogen synthesis, but estrogens synthesized in extra- gonadal sites play an equally important role in controlling biological activities. Understanding non-gonadal sites of estrogen synthesis and function is crucial and will lead to therapeutic interventions targeting estrogen signaling in disease prevention and treatment. Developing a rationale targeting strategy remains challenging because knowledge of extra-gonadal biosynthesis of estrogens, and the mechanism by which estrogen activity is exerted, is very limited. In this review, we will summarize recent discoveries of extra-gonadal sites of estrogen biosynthesis and their local functions and discuss the significance of the most recent novel discovery of intestinal estrogen biosynthesis. [BMB Reports 2016; 49(9): 488-496]
Collapse
Affiliation(s)
- Radwa Barakat
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois 61802, Unites States; Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt
| | - Oliver Oakley
- Department of Biology, College of Arts and Sciences, Eastern Kentucky University, Kentucky 40475, United States
| | - Heehyen Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jooyoung Jin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois 61802, Unites States
| |
Collapse
|
7
|
He B, Tao H, Wei A, Liu S, Li X, Chen R. Protection of carboxymethylated chitosan on chondrocytes from nitric oxide-induced apoptosis by regulating phosphatidylinositol 3-kinase/Akt signaling pathway. Biochem Biophys Res Commun 2016; 479:380-386. [PMID: 27644875 DOI: 10.1016/j.bbrc.2016.09.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
Chondrocyte apoptosis is the most important element of development and progression of osteoarthritis (OA). Nitric oxide (NO) was used as the agent to induce chondrocyte apoptosis. Carboxymethylated chitosan (CMCS) has anti-apoptosis effect on many cell types in vitro. This study was designed to investigate the protective effect of CMCS on NO-induced chondrocyte apoptosis and the probable molecular mechanisms. The newborn Sprague-Dawley (SD) rats were used in this study for isolation of chondrocytes. The cell viability was determined by cell counting kit (CCK-8), cell apoptosis was detected by Annexin-V/PI double staining assay kit. The levels of phosphorylated-PI3K (p-PI3K), phosphorylated-Akt (p-Akt), Bcl-2 and Bax were determined by Western blot analysis. The caspase-3 activity was determined by a quantitative colorimetric assay. Results showed that pretreatment with CMCS could inhibit the apoptosis induced by NO. CMCS could decrease the activity of NO and decrease the expression of Bcl-2, p-PI3K and p-Akt, increase the expression of Bax, cytochrome c and caspase-3. CMCS also could reverse the effect of NO that prompted matrix metalloproteinase-13 (MMP-13) and inhibited tissue inhibitor of metalloproteinase-1 (TIMP-1) activity. All the present results indicated that CMCS can protect NO induced chondrocytes apoptosis by activate PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Haiying Tao
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ailin Wei
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shiqing Liu
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaohai Li
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ren Chen
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Abstract
The growth plate (physis) is responsible for enabling and regulating longitudinal growth of upper and lower limbs. This regulation occurs through interaction of the cells in the growth plate with systemic and locally produced factors. This complex interaction leads to precisely controlled changes in chondrocyte size, receptors, and matrix, which ultimately result in endochondral bone formation. With advances in cellular and molecular biology, our knowledge about these complex interactions has increased significantly over the past decade. Deficiency of any of the regulating factors or physeal injury during childhood can alter this well-orchestrated sequence of events and lead to abnormalities in growth. This review highlights the histology of the normal physis, including recent findings at the cellular and molecular levels, mechanics and mechanobiology of the growth plate, pathologies that can affect the physis, and treatment options, including interposition materials.
Collapse
|
9
|
Sołtysik K, Czekaj P. ERα36--Another piece of the estrogen puzzle. Eur J Cell Biol 2015; 94:611-25. [PMID: 26522827 DOI: 10.1016/j.ejcb.2015.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/03/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Although the nuclear action of estrogen receptors (ER) is a well-known fact, evidence supporting membrane estrogen receptors is steadily accumulating. New ER variants of unrecognized function have been discovered. ERα is a product of the ESR1 gene. It serves not only as a template for the full-length 66kDa protein, but also for smaller isoforms which exist as independent receptors. The recently discovered ERα36 (36kDa), consisting of 310 amino acids of total 595 ERα66 protein residues, is an example of that group. The transcription initiation site is identified in the first intron of the ESR1 gene. C-Terminal 27 amino acids are encoded by previously unknown exon 9. The presence of this unique C-terminal sequence creates an opportunity for the production of selective antibodies. ERα36 has been shown to have a high affinity to the cell membrane and as much as 90% of the protein can be bound with it. Post-translational palmitoylation is suspected to play a crucial role in ERα36 anchoring to the cell membrane. In silico analysis suggests the existence of a potential transmembrane domain in ERα36. ERα36 was found in most cells of animals at various ages, but its exact physiological function remains to be fully elucidated. It seems that cells traditionally considered as being deprived of ER are able to respond to hormonal stimulation via the ERα36 receptor. Moreover, ERα36 displays unique pharmacological properties and its action may be behind antiestrogen resistance. The use of ERα36 in cancer diagnosis gives rise to great expectations.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Students Scientific Society, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
10
|
Abstract
The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.
Collapse
|
11
|
Protection of ginsenoside Rg1 on chondrocyte from IL-1β-induced mitochondria-activated apoptosis through PI3K/Akt signaling. Mol Cell Biochem 2014; 392:249-57. [PMID: 24671491 DOI: 10.1007/s11010-014-2035-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/14/2014] [Indexed: 01/06/2023]
Abstract
Chondrocyte apoptosis is closely related to the development and progression of osteoarthritis. Ginsenoside Rg1 protects cells by antagonizing apoptosis. This study aimed to investigate the protective effect of Rg1 on interleukin 1β (IL-1β)-induced chondrocyte apoptosis and the underlying molecular mechanisms. Chondrocytes were harvested from the joints of 1-week-old Sprague-Dawley rats. After treated with 10 μg/mL Rg1 for 2 h, the chondrocytes were cultured with 10 ng/mL IL-1β to induce cytotoxicity. Cell viability was assessed with MTT assays. Annexin V/propidium iodide staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling were used to detect chondrocyte apoptosis. The contents of total Akt, phosphorylated Akt (p-Akt), Bcl-2, Bax, and cytochrome C (Cyt c) were determined by Western blotting assay. A quantitative colorimetric assay was used to determine caspase-3 activity. Our present findings have shown that pre-treatment of chondrocytes with Rg1 reduces IL-1β induced cytotoxicity/apoptosis. Rg1 pretreatment also decreases the activity of IL-1β that reduces expression of Bcl-2 and level of p-Akt, and increases Bax activity, Cyt c release, and caspase-3 activation. It also reverses the activity of IL-1β that reduces the expression of tissue inhibitor of metalloproteinase-1 expression and increased the synthesis of matrix metalloproteinase-13, with the net effect of inhibiting extracellular matrix degradation. These results indicate that Rg1 may protect chondrocytes from IL-1β-induced apoptosis via the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, through preventing caspase-3 release.
Collapse
|
12
|
Zhang X, Xu X, Xu T, Qin S. β-Ecdysterone suppresses interleukin-1β-induced apoptosis and inflammation in rat chondrocytes via inhibition of NF-κB signaling pathway. Drug Dev Res 2014; 75:195-201. [PMID: 24648308 DOI: 10.1002/ddr.21170] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/11/2014] [Indexed: 11/09/2022]
Abstract
Osteoarthritis (OA) is characterized by a loss of articular cartilage accompanied with inflammation of synovium. β-Ecdysterone (Ecd), a major component of several Chinese herbal medicines, e.g., Achyranthes bidentata BL., has been used for the prevention and treatment of OA. Ecd is an estrogen analog and is likely to have similar pharmacological effects including the effect of protective chondrocytes. This study investigated the effects of Ecd on interleukin-1β (IL-1β)-induced apoptosis and inflammation in rat chondrocytes. Ecd protected chondrocytes from IL-1β-induced injury by inhibiting expression of Bax, p53 phosphorylation, and promoting expression of Bcl-xL . Simultaneously, Ecd reduced caspase 3 activity. IL-1β-induced inflammation and matrix degration were also prevented by Ecd via down-regulation of matrix metalloproteinases MMP 3, MMP 9, and cyclooxygenase-2 expression. Additionally, Ecd inhibited Nuclear Factor Kappa B (NF-κB) p65 phosphorylation, IκBα degradation, and phosphorylation in IL-1β-induced rat chondrocytes. These results suggested Ecd exerted anti-apoptosis and anti-inflammation in IL-1β-induced rat chondrocytes, which might be related to NF-κB signal pathway.
Collapse
Affiliation(s)
- Xiaohong Zhang
- School of Biomedical Science, Huaqiao University, Quanzhou, China
| | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE The influence of gender on the biomechanical outcome after autologous chondrocyte implantation (ACI) including isokinetic muscle strength measurements has not been investigated. The present prospective study was performed to evaluate gender-specific differences in the biomechanical function 48 months after ACI. METHODS Fifty-two patients (mean age 35.6 ± 8.5 years) that met our inclusion criteria, underwent ACI with Bioseed C(®) and were evaluated with the KOOS score preoperatively, 6, 12 and 48 months after surgery. At final follow-up, 44 out of the 52 patients underwent biomechanical evaluation with isokinetic strength measurements of both knees. All data were evaluated separately for men and women and compared for each time interval using the Mann-Whitney U test. RESULTS Clinical scores improved significantly over the whole study period (p < 0.05). Male patients demonstrated significantly better scores during the follow-up in the KOOS score (p < 0.05). Isokinetic strength measurements after 48 months revealed a significant strength deficit of the treated knee in all test modes compared to the healthy extremity (p < 0.05). Furthermore, male patients achieved significantly higher strength values compared to female patients (p < 0.05). CONCLUSIONS ACI is a viable treatment option for full-thickness chondral defects in the knee of both genders. Isokinetic muscle strength measures are significantly worse in women (p < 0.05), but physiological and may play a role for the explanation of gender-specific results after ACI.
Collapse
|
14
|
Wang XD, Kou XX, Meng Z, Bi RY, Liu Y, Zhang JN, Zhou YH, Gan YH. Estrogen aggravates iodoacetate-induced temporomandibular joint osteoarthritis. J Dent Res 2013; 92:918-24. [PMID: 23934157 DOI: 10.1177/0022034513501323] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is clinically characterized by female preponderance, with a female-to-male ratio of more than 2:1; however, the underlying mechanism remains obscure. We examined the effects of estrogen on TMJOA induced by monosodium iodoacetate. Female rats were randomly and equally divided into 5 groups: control, sham-ovariectomized, and ovariectomized rats treated, respectively, with 17β-estradiol (E2) at doses of 0 µg, 20 µg, and 80 µg/day until the end of the experiment. After induction of TMJOA, TMJs were evaluated by histopathology and microCT, and the expression of Fas, FasL, caspase 3, and caspase 8 was evaluated by real-time polymerase chain-reaction or immunohistochemistry. Another 5 groups of female rats were used to evaluate the effect of estrogen receptor antagonist ICI 182780 on E2 effects on TMJOA, when injected intraperitoneally into the control, sham-ovariectomized, and 80-µg-E2-treated groups. We found that E2 potentiated cartilage degradation and subchondral bone erosion in iodoacetate-induced TMJOA. E2 also potentiated mRNA expression of Fas, FasL, caspase 3, and caspase 8 in the condylar cartilage. Moreover, the estrogen receptor antagonist partially blocked E2 effects on TMJOA. These findings suggest that E2 could aggravate TMJOA, which may be an important mechanism underlying the sexual dimorphism of TMJOA.
Collapse
Affiliation(s)
- X D Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sukocheva OA, Wee C, Ansar A, Hussey DJ, Watson DI. Effect of estrogen on growth and apoptosis in esophageal adenocarcinoma cells. Dis Esophagus 2013; 26:628-35. [PMID: 23163347 DOI: 10.1111/dote.12000] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The epidemiology of esophageal adenocarcinoma demonstrates a strong gender bias with a sex ratio of 8-9:1 in favor of males. A potential explanation for this is that estrogen might protect against esophageal adenocarcinoma. Estrogen has previously been shown to stimulate apoptosis in esophageal squamous cancer cells. However, the effect of estrogen on esophageal adenocarcinoma cells has not been determined. We used immunoblotting analysis to determine the expression of estrogen receptors, cell adhesion marker E-cadherin, and proliferation marker Ki-67 in cell lines derived from esophageal adenocarcinoma (OE-19, OE-33) and Barrett's esophagus (QhTRT, ChTRT, GihTRT). Estrogen and selective estrogen receptor modulator (SERM)-dependent effects on cell growth were determined by the CellTiter-96 Aqueous Proliferation Assay. Apoptosis was determined by Annexin V/Propidium Iodide cell labeling and flow cytometry. We detected that physiological and supra-physiological concentrations of 17β-estradiol and SERM decreased cell growth in esophageal adenocarcinoma cells. In Barrett's esophagus cells (QhTRT, ChTRT), decreased growth was also detected in response to estrogen/SERM. The level of estrogen receptor expression in the cell lines correlated with the level of anti-growth effects induced by the receptor agonists. Flow cytometry analysis confirmed estrogen/SERM stimulated apoptosis in esophageal adenocarcinoma cells. Estrogen/SERM treatments were associated with a decrease in the expression of Ki-67 and an increase in E-cadherin expression in esophageal adenocarcinoma cells. This study suggests that esophageal adenocarcinoma and Barrett's esophagus cells respond to treatment with selective estrogen receptor ligands, resulting in decreased cell growth and apoptosis. Further research to explore potential therapeutic applications is warranted.
Collapse
Affiliation(s)
- O A Sukocheva
- Department of Surgery, Flinders Centre for Cancer Prevention and Control, Flinders Medical Centre, Flinders University, Bedford Park, South Australia, Australia.
| | | | | | | | | |
Collapse
|
16
|
Elbaradie KB, Wang Y, Boyan BD, Schwartz Z. Sex-specific response of rat costochondral cartilage growth plate chondrocytes to 17β-estradiol involves differential regulation of plasma membrane associated estrogen receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1165-72. [DOI: 10.1016/j.bbamcr.2012.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/29/2012] [Accepted: 12/30/2012] [Indexed: 12/17/2022]
|
17
|
Chaudhri RA, Olivares-Navarrete R, Cuenca N, Hadadi A, Boyan BD, Schwartz Z. Membrane estrogen signaling enhances tumorigenesis and metastatic potential of breast cancer cells via estrogen receptor-α36 (ERα36). J Biol Chem 2012; 287:7169-81. [PMID: 22247547 DOI: 10.1074/jbc.m111.292946] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein kinase C (PKC) signaling can be activated rapidly by 17β-estradiol (E(2)) via nontraditional signaling in ERα-positive MCF7 and ERα-negative HCC38 breast cancer cells and is associated with tumorigenicity. Additionally, E(2) has been shown to elicit anti-apoptotic effects in cancer cells counteracting pro-apoptotic effects of chemotherapeutics. Supporting evidence suggests the existence of a membrane-associated ER that differs from the traditional receptors, ERα and ERβ. Our aim was to identify the ER responsible for rapid PKC activation and to evaluate downstream effects, such as proliferation, apoptosis, and metastasis. RT-PCR, Western blot, and immunofluorescence were used to determine the presence of ER splice variants in multiple cell lines. E(2) effects on PKC activity were measured with and without ER-blocking antibodies. Cell proliferation was determined by [(3)H]thymidine incorporation, and cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, (MTT) whereas apoptosis was determined by DNA fragmentation and TUNEL. Quantitative RT-PCR and sandwich ELISA were used to determine the effects on metastatic factors. The role of membrane-dependent signaling in cancer cell invasiveness was examined using an in vitro assay. The results indicate the presence of an ERα splice variant, ERα36, in ERα-positive MCF7 and ERα-negative HCC38 breast cancer cells, which localized to plasma membranes and rapidly activated PKC in response to E(2), leading to deleterious effects such as enhancement of proliferation, protection against apoptosis, and enhancement of metastatic factors. These findings propose ERα36 as a novel target for the development of therapies that can prevent progression of breast cancer in the primary tumor as well as during metastasis.
Collapse
Affiliation(s)
- Reyhaan A Chaudhri
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | | | | | | | | | | |
Collapse
|