1
|
Marshall CJ, Prescott M, Campbell RE. Investigating the NPY/AgRP/GABA to GnRH Neuron Circuit in Prenatally Androgenized PCOS-Like Mice. J Endocr Soc 2020; 4:bvaa129. [PMID: 33094210 PMCID: PMC7566551 DOI: 10.1210/jendso/bvaa129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility, is associated with altered signaling within the hormone-sensitive neuronal network that regulates gonadotropin-releasing hormone (GnRH) neurons, leading to a pathological increase in GnRH secretion. Circuit remodeling is evident between GABAergic neurons in the arcuate nucleus (ARN) and GnRH neurons in a murine model of PCOS. One-third of ARN GABA neurons co-express neuropeptide Y (NPY), which has a known yet complex role in regulating GnRH neurons and reproductive function. Here, we investigated whether the NPY-expressing subpopulation (NPYARN) of ARN GABA neurons (GABAARN) is also affected in prenatally androgenized (PNA) PCOS-like NPYARN reporter mice [Agouti-related protein (AgRP)-Cre;τGFP]. PCOS-like mice and controls were generated by exposure to di-hydrotestosterone or vehicle (VEH) in late gestation. τGFP-expressing NPYARN neuron fiber appositions with GnRH neurons and gonadal steroid hormone receptor expression in τGFP-expressing NPYARN neurons were assessed using confocal microscopy. Although GnRH neurons received abundant close contacts from τGFP-expressing NPYARN neuron fibers, the number and density of putative inputs was not affected by prenatal androgen excess. NPYARN neurons did not co-express progesterone receptor or estrogen receptor α in either PNA or VEH mice. However, the proportion of NPYARN neurons co-expressing the androgen receptor was significantly elevated in PNA mice. Therefore, NPYARN neurons are not remodeled by prenatal androgen excess like the wider GABAARN population, indicating GABA-to-GnRH neuron circuit remodeling occurs in a presently unidentified non-NPY/AgRP population of GABAARN neurons. NPYARN neurons do, however, show independent changes in the form of elevated androgen sensitivity.
Collapse
Affiliation(s)
- Christopher J Marshall
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
3
|
Ilie IR. Neurotransmitter, neuropeptide and gut peptide profile in PCOS-pathways contributing to the pathophysiology, food intake and psychiatric manifestations of PCOS. Adv Clin Chem 2019; 96:85-135. [PMID: 32362321 DOI: 10.1016/bs.acc.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a major health problem with a heterogeneous hormone-imbalance and clinical presentation across the lifespan of women. Increased androgen production and abnormal gonadotropin-releasing hormone (GnRH) release and gonadotropin secretion, resulting in chronic anovulation are well-known features of the PCOS. The brain is both at the top of the neuroendocrine axis regulating ovarian function and a sensitive target of peripheral gonadal hormones and peptides. Current literature illustrates that neurotransmitters regulate various functions of the body, including reproduction, mood and body weight. Neurotransmitter alteration could be one of the reasons for disturbed GnRH release, consequently directing the ovarian dysfunction in PCOS, since there is plenty evidence for altered catecholamine metabolism and brain serotonin or opioid activity described in PCOS. Further, the dysregulated neurotransmitter and neuropeptide profile in PCOS could also be the reason for low self-esteem, anxiety, mood swings and depression or obesity, features closely associated with PCOS women. Can these altered central brain circuits, or the disrupted gut-brain axis be the tie that would both explain and link the pathogenesis of this disorder, the occurrence of depression, anxiety and other mood disorders as well as of obesity, insulin resistance and abnormal appetite in PCOS? This review intends to provide the reader with a comprehensive overview of what is known about the relatively understudied, but very complex role that neurotransmitters, neuropeptides and gut peptides play in PCOS. The answer to the above question may help the development of drugs to specifically target these central and peripheral circuits, thereby providing a valuable treatment for PCOS patients that present to the clinic with GnRH/LH hypersecretion, obesity or psychiatric manifestations.
Collapse
Affiliation(s)
- Ioana R Ilie
- Department of Endocrinology, University of Medicine and Pharmacy 'Iuliu-Hatieganu', Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Coyle C, Campbell RE. Pathological pulses in PCOS. Mol Cell Endocrinol 2019; 498:110561. [PMID: 31461666 DOI: 10.1016/j.mce.2019.110561] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a highly prevalent endocrine disorder associated with hyperandrogenism and anovulation. Although a spectrum disorder, many women with PCOS exhibit elevated luteinizing hormone (LH) pulse frequency and an elevated LH to follicle stimulating hormone ratio. This aberrant pattern of gonadotrophin signalling drives many of the downstream ovarian features of PCOS, including increased androgen synthesis, and indicates neuroendocrine impairments upstream. Decreased responsiveness to gonadal steroid hormone negative feedback in PCOS patients points toward dysfunction within the gonadotropin-releasing hormone (GnRH) neuronal network in the brain. Excessive androgen exposure during development or over pubertal onset can recapitulate the neuroendocrine pathology of PCOS in pre-clinical models, and these models have been fundamental in beginning to pick apart the specific central mechanisms involved. This mini-review will briefly describe the pathology of PCOS associated with high frequency GnRH/LH pulses and then highlight what is currently known, and yet to be discovered, about the central mechanisms involved.
Collapse
Affiliation(s)
- Christopher Coyle
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
5
|
Decreased Serum Level of Gamma-amino Butyric Acid in Egyptian Infertile Females with Polycystic Ovary Syndrome is Correlated with Dyslipidemia, Total Testosterone and 25(OH) Vitamin D Levels. J Med Biochem 2019; 38:512-518. [PMID: 31496917 PMCID: PMC6708297 DOI: 10.2478/jomb-2018-0051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders around the world. Increasing evidence suggests that neurotransmitter Gamma-aminobutyric acid (GABA) is involved in the pathogenesis of PCOS through its central role in the hypothalamus. However, the peripheral role of GABA in PCOS has not been sufficiently investigated in spite of its existence in peripheral organs. First, the aim of this study is to, investigate serum GABA level in Egyptian PCOS patients. Second, to explore the correlation between serum GABA level with Body Mass Index (BMI), dyslipidemia, totaltestosterone and 25 (OH) vitamin D. Methods Eighty PCOS patients and eighty age-matched healthy females were included in this study. All parameters were assessed colourimetrically or with ELISA. Results PCOS patients exhibited significantly decreased serum GABA level compared to controls (p < 0.001). There was a significant positive correlation between serum GABA and 25(OH) vitamin D levels (r = 0.26, p = 0.018), and a significant negative correlation with total testosterone (r = - 0.3, p = 0.02), total cholesterol (TC) (r = - 0.31, p = 0.01) and LDL-Cholesterol (LDL-C) (r = - 0.23, p = 0.045), respectively. Conclusions The findings of this study suggest that disrupted GABA level in the peripheral circulation is an additional contributing factor to PCOS manifestations. GABA deficiency was correlated with 25 (OH) vitamin D deficiency, dyslipidemia, and total testosterone. Further investigations for GABA adjustment might provide a promising means for better management of PCOS symptoms.
Collapse
|
6
|
Abbott DH, Vepraskas SH, Horton TH, Terasawa E, Levine JE. Accelerated Episodic Luteinizing Hormone Release Accompanies Blunted Progesterone Regulation in PCOS-like Female Rhesus Monkeys (Macaca Mulatta) Exposed to Testosterone during Early-to-Mid Gestation. Neuroendocrinology 2018; 107:133-146. [PMID: 29949806 PMCID: PMC7363207 DOI: 10.1159/000490570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS Ovarian theca cell hyperandrogenism in women with polycystic ovary syndrome (PCOS) is compounded by androgen receptor-mediated impairment of estradiol and progesterone negative feedback regulation of episodic luteinizing hormone (LH) release. The resultant LH hypersecretion, likely the product of accelerated episodic release of gonadotropin-releasing hormone (GnRH) from the median eminence of the hypothalamus, hyperstimulates ovarian theca cell steroidogenesis, enabling testosterone (T) and androstenedione excess. Prenatally androgenized (PA) female monkeys exposed to fetal male levels of T during early-to-mid gestation, when adult, demonstrate PCOS-like traits, including high T and LH levels. This study tests the hypothesis that progesterone resistance-associated acceleration in episodic LH release contributes to PA monkey LH excess. METHODS A total of 4 PA and 3 regularly cycling, healthy control adult female rhesus monkeys of comparable age and body mass index underwent (1) a 10 h, frequent intravenous sampling assessment for LH episodic release, immediately followed by (2) IV infusion of exogenous GnRH to quantify continuing pituitary LH responsiveness, and subsequently (3) an SC injection of a progesterone receptor antagonist, mifepristone, to examine LH responses to blockade of progesterone-mediated action. RESULTS Compared to controls, the relatively hyperandrogenic PA females exhibited ~100% increase (p = 0.037) in LH pulse frequency, positive correlation of LH pulse amplitude (p = 0.017) with androstenedione, ~100% greater increase (p = 0.034) in acute (0-10 min) LH responses to exogenous GnRH, and an absence (p = 0.008) of modest LH elevation following acute progesterone receptor blockade suggestive of diminished progesterone negative feedback. CONCLUSION Such dysregulation of LH release in PCOS-like monkeys implicates impaired feedback control of episodic release of hypothalamic GnRH reminiscent of PCOS neuroendocrinopathy.
Collapse
Affiliation(s)
- David H Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Sarah H Vepraskas
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin, USA
| | - Teresa H Horton
- Department of Neurobiology and Physiology, Institute for Neuroscience, Center for Reproductive Science, Northwestern University, Evanston, Illinois, USA
| | - Ei Terasawa
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Jon E Levine
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Moore AM, Campbell RE. Polycystic ovary syndrome: Understanding the role of the brain. Front Neuroendocrinol 2017; 46:1-14. [PMID: 28551304 DOI: 10.1016/j.yfrne.2017.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 01/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder and the leading cause of anovulatory infertility. Characterised by hyperandrogenism, menstrual dysfunction and polycystic ovaries, PCOS is a broad-spectrum disorder unlikely to stem from a single common origin. Although commonly considered an ovarian disease, the brain is now a prime suspect in both the ontogeny and pathology of PCOS. We discuss here the neuroendocrine impairments present in PCOS that implicate involvement of the brain and review evidence gained from pre-clinical models of the syndrome about the specific brain circuitry involved. In particular, we focus on the impact that developmental androgen excess and adult hyperandrogenemia have in programming and regulating brain circuits important in the central regulation of fertility. The studies discussed here provide compelling support for the importance of the brain in PCOS ontogeny and pathophysiology and highlight the need for a better understanding of the underlying mechanisms involved.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
8
|
Cardoso RC, Burns A, Moeller J, Skinner DC, Padmanabhan V. Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS. Endocrinology 2016; 157:4641-4653. [PMID: 27792406 PMCID: PMC5133353 DOI: 10.1210/en.2016-1613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Department of Pediatrics (R.C.C., A.B., J.M., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Zoology and Physiology (D.C.S.), University of Wyoming, Laramie, Wyoming 82071
| | - Ashleigh Burns
- Department of Pediatrics (R.C.C., A.B., J.M., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Zoology and Physiology (D.C.S.), University of Wyoming, Laramie, Wyoming 82071
| | - Jacob Moeller
- Department of Pediatrics (R.C.C., A.B., J.M., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Zoology and Physiology (D.C.S.), University of Wyoming, Laramie, Wyoming 82071
| | - Donal C Skinner
- Department of Pediatrics (R.C.C., A.B., J.M., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Zoology and Physiology (D.C.S.), University of Wyoming, Laramie, Wyoming 82071
| | - Vasantha Padmanabhan
- Department of Pediatrics (R.C.C., A.B., J.M., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Zoology and Physiology (D.C.S.), University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
9
|
Lim WL, Idris MM, Kevin FS, Soga T, Parhar IS. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat. Front Endocrinol (Lausanne) 2016; 7:117. [PMID: 27630615 PMCID: PMC5005956 DOI: 10.3389/fendo.2016.00117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring's reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.
Collapse
Affiliation(s)
- Wei Ling Lim
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Marshita Mohd Idris
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Felix Suresh Kevin
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Tomoko Soga,
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| |
Collapse
|
10
|
Cernea M, Padmanabhan V, Goodman RL, Coolen LM, Lehman MN. Prenatal Testosterone Treatment Leads to Changes in the Morphology of KNDy Neurons, Their Inputs, and Projections to GnRH Cells in Female Sheep. Endocrinology 2015; 156:3277-91. [PMID: 26061725 PMCID: PMC4541615 DOI: 10.1210/en.2014-1609] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal testosterone (T)-treated ewes display a constellation of reproductive defects that closely mirror those seen in PCOS women, including altered hormonal feedback control of GnRH. Kisspeptin/neurokinin B/dynorphin (KNDy) neurons of the arcuate nucleus (ARC) play a key role in steroid feedback control of GnRH secretion, and prenatal T treatment in sheep causes an imbalance of KNDy peptide expression within the ARC. In the present study, we tested the hypothesis that prenatal T exposure, in addition to altering KNDy peptides, leads to changes in the morphology and synaptic inputs of this population, kisspeptin cells of the preoptic area (POA), and GnRH cells. Prenatal T treatment significantly increased the size of KNDy cell somas, whereas POA kisspeptin, GnRH, agouti-related peptide, and proopiomelanocortin neurons were each unchanged in size. Prenatal T treatment also significantly reduced the total number of synaptic inputs onto KNDy neurons and POA kisspeptin neurons; for KNDy neurons, the decrease was partly due to a decrease in KNDy-KNDy synapses, whereas KNDy inputs to POA kisspeptin cells were unaltered. Finally, prenatal T reduced the total number of inputs to GnRH cells in both the POA and medial basal hypothalamus, and this change was in part due to a decreased number of inputs from KNDy neurons. The hypertrophy of KNDy cells in prenatal T sheep resembles that seen in ARC kisspeptin cells of postmenopausal women, and together with changes in their synaptic inputs and projections to GnRH neurons, may contribute to defects in steroidal control of GnRH observed in this animal model.
Collapse
Affiliation(s)
- Maria Cernea
- Department of Neurobiology and Anatomical Sciences (M.C., L.M.C., M.N.L.), The University of Mississippi Medical Center, Jackson, Mississippi 39232; Department of Obstetrics and Gynecology, Pediatrics, and Reproductive Sciences Program (V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University, Morgantown, West Virginia 26506
| | - Vasantha Padmanabhan
- Department of Neurobiology and Anatomical Sciences (M.C., L.M.C., M.N.L.), The University of Mississippi Medical Center, Jackson, Mississippi 39232; Department of Obstetrics and Gynecology, Pediatrics, and Reproductive Sciences Program (V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University, Morgantown, West Virginia 26506
| | - Robert L Goodman
- Department of Neurobiology and Anatomical Sciences (M.C., L.M.C., M.N.L.), The University of Mississippi Medical Center, Jackson, Mississippi 39232; Department of Obstetrics and Gynecology, Pediatrics, and Reproductive Sciences Program (V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University, Morgantown, West Virginia 26506
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences (M.C., L.M.C., M.N.L.), The University of Mississippi Medical Center, Jackson, Mississippi 39232; Department of Obstetrics and Gynecology, Pediatrics, and Reproductive Sciences Program (V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University, Morgantown, West Virginia 26506
| | - Michael N Lehman
- Department of Neurobiology and Anatomical Sciences (M.C., L.M.C., M.N.L.), The University of Mississippi Medical Center, Jackson, Mississippi 39232; Department of Obstetrics and Gynecology, Pediatrics, and Reproductive Sciences Program (V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
11
|
Roland AV, Moenter SM. Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models. Front Neuroendocrinol 2014; 35:494-511. [PMID: 24747343 PMCID: PMC4175187 DOI: 10.1016/j.yfrne.2014.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/15/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy with elusive origins. A clinically heterogeneous disorder, PCOS is likely to have multiple etiologies comprised of both genetic and environmental factors. Reproductive neuroendocrine dysfunction involving increased frequency and amplitude of gonadotropin-releasing hormone (GnRH) release, as reflected by pulsatile luteinizing hormone (LH) secretion, is an important pathophysiologic component in PCOS. Whether this defect is primary or secondary to other changes in PCOS is unclear, but it contributes significantly to ongoing reproductive dysfunction. This review highlights recent work in animal models, with a particular emphasis on the mouse, demonstrating the ability of pre- and postnatal steroidal and metabolic factors to drive changes in GnRH/LH pulsatility and GnRH neuron function consistent with the observed abnormalities in PCOS. This work has begun to elucidate how a complex interplay of ovarian, metabolic, and neuroendocrine factors culminates in this syndrome.
Collapse
Affiliation(s)
- Alison V Roland
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Pohl A, Cassidy S, Auyeung B, Baron-Cohen S. Uncovering steroidopathy in women with autism: a latent class analysis. Mol Autism 2014; 5:27. [PMID: 24717046 PMCID: PMC4022124 DOI: 10.1186/2040-2392-5-27] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 03/10/2014] [Indexed: 11/30/2022] Open
Abstract
Background Prenatal exposure to increased androgens has been implicated in both polycystic ovary syndrome (PCOS) and autism spectrum conditions (ASC), suggesting that PCOS may be increased among women with ASC. One study suggested elevated steroidopathic symptoms (‘steroidopathy’) in women with ASC. As the symptoms are not independent, we conducted a latent class analysis (LCA). The objectives of the current study are: (1) to test if these findings replicate in a larger sample; and (2) to use LCA to uncover affected clusters of women with ASC. Methods We tested two groups of women, screened using the Autism Spectrum Quotient - Group 1: n = 415 women with ASC (mean age 36.39 ± 11.98 years); and Group 2: n = 415 controls (mean age 39.96 ± 11.92 years). All participants completed the Testosterone-related Medical Questionnaire online. A multiple-group LCA was used to identify differences in latent class structure between women with ASC and controls. Results There were significant differences in frequency of steroid-related conditions and symptoms between women with ASC and controls. A two-class semi-constrained model best fit the data. Based on response patterns, we identified the classes as ‘Typical’ and ‘Steroidopathic’. The prevalence of the ‘Steroidopathic’ class was significantly increased within the ASC group (ΔG2 = 15, df =1, P = 0.0001). In particular, we confirmed higher frequencies of epilepsy, amenorrhea, dysmenorrhea, severe acne, gender dysphoria, and transsexualism, and differences in sexual preference in women with ASC. Conclusions Women with ASC are at increased risk for symptoms and conditions linked to steroids. LCA revealed this steroidopathy despite the apparent underdiagnosis of PCOS.
Collapse
Affiliation(s)
- Alexa Pohl
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK
| | - Sarah Cassidy
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK ; Department of Psychology and Behavioural Sciences, Coventry University, James Starley Building, Cox Street, Coventry CV1 5LW, UK
| | - Bonnie Auyeung
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK ; Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9 AD, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK ; CLASS Clinic, Cambridgeshire and Peterborough Mental Health Foundation NHS Trust, The Chitra Sethia Autism Centre, The Gatehouse, Fulborn Hospital, Fulborn, Cambridge CB21 5EF, UK
| |
Collapse
|
13
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:233-47. [PMID: 22531108 DOI: 10.1097/med.0b013e3283542fb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Chinnathambi V, Balakrishnan M, Yallampalli C, Sathishkumar K. Prenatal testosterone exposure leads to hypertension that is gonadal hormone-dependent in adult rat male and female offspring. Biol Reprod 2012; 86:137, 1-7. [PMID: 22302690 DOI: 10.1095/biolreprod.111.097550] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Prenatal testosterone exposure impacts postnatal reproductive and endocrine function, leading to alterations in sex steroid levels. Because gonadal steroids are key regulators of cardiovascular function, it is possible that alteration in sex steroid hormones may contribute to development of hypertension in prenatally testosterone-exposed adults. The objectives of this study were to evaluate whether prenatal testosterone exposure leads to development of hypertension in adult males and females and to assess the influence of gonadal hormones on arterial pressure in these animals. Offspring of pregnant rats treated with testosterone propionate or its vehicle (controls) were examined. Subsets of male and female offspring were gonadectomized at 7 wk of age, and some offspring from age 7 to 24 wk received hormone replacement, while others did not. Testosterone exposure during prenatal life significantly increased arterial pressure in both male and female adult offspring; however, the effect was greater in males. Prenatal androgen-exposed males and females had more circulating testosterone during adult life, with no change in estradiol levels. Gonadectomy prevented hyperandrogenism and also reversed hypertension in these rats. Testosterone replacement in orchiectomized males restored hypertension, while estradiol replacement in ovariectomized females was without effect. Steroidal changes were associated with defective expression of gonadal steroidogenic genes, with Star, Sf1, and Hsd17b1 upregulation in testes. In ovaries, Star and Cyp11a1 genes were upregulated, while Cyp19 was downregulated. This study showed that prenatal testosterone exposure led to development of gonad-dependent hypertension during adult life. Defective steroidogenesis may contribute in part to the observed steroidal changes.
Collapse
Affiliation(s)
- Vijayakumar Chinnathambi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University of Texas Medical Branch, Galveston, Texas 77555-1062, USA
| | | | | | | |
Collapse
|