1
|
Jia H, Brixius B, Bocianoski C, Ray S, Koes DR, Brixius-Anderko S. Deciphering the Role of Fatty Acid-Metabolizing CYP4F11 in Lung Cancer and Its Potential As a Drug Target. Drug Metab Dispos 2024; 52:69-79. [PMID: 37973374 DOI: 10.1124/dmd.123.001463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. We found that the cytochrome P450 isoform CYP4F11 is significantly overexpressed in patients with lung squamous cell carcinoma. CYP4F11 is a fatty acid ω-hydroxylase and catalyzes the production of the lipid mediator 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid. 20-HETE promotes cell proliferation and migration in cancer. Inhibition of 20-HETE-generating cytochrome P450 enzymes has been implicated as novel cancer therapy for more than a decade. However, the exact role of CYP4F11 and its potential as drug target for lung cancer therapy has not been established yet. Thus, we performed a transient knockdown of CYP4F11 in the lung cancer cell line NCI-H460. Knockdown of CYP4F11 significantly inhibits lung cancer cell proliferation and migration while the 20-HETE production is significantly reduced. For biochemical characterization of CYP4F11-inhibitor interactions, we generated recombinant human CYP4F11. Spectroscopic ligand binding assays were conducted to evaluate CYP4F11 binding to the unselective CYP4A/F inhibitor HET0016. HET0016 shows high affinity to recombinant CYP4F11 and inhibits CYP4F11-mediated 20-HETE production in vitro with a nanomolar IC 50 Cross evaluation of HET0016 in NCI-H460 cells shows that lung cancer cell proliferation is significantly reduced together with 20-HETE production. However, HET0016 also displays antiproliferative effects that are not 20-HETE mediated. Future studies aim to establish the role of CYP4F11 in lung cancer and the underlying mechanism and investigate the potential of CYP4F11 as a therapeutic target for lung cancer. SIGNIFICANCE STATEMENT: Lung cancer is a deadly cancer with limited treatment options. Cytochrome P450 4F11 (CYP4F11) is significantly upregulated in lung squamous cell carcinoma. Knockdown of CYP4F11 in a lung cancer cell line significantly attenuates cell proliferation and migration with reduced production of the lipid mediator 20-hydroxyeicosatetraenoic acid (20-HETE). Studies with the unselective inhibitor HET0016 show a high inhibitory potency of CYP4F11-mediated 20-HETE production using recombinant enzyme. Overall, our studies demonstrate the potential of targeting CYP4F11 for new transformative lung cancer treatment.
Collapse
Affiliation(s)
- Huiting Jia
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| | - Bjoern Brixius
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| | - Caleb Bocianoski
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| | - Sutapa Ray
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| | - David R Koes
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| | - Simone Brixius-Anderko
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (H.J., B.B., S.R., S.B.-A.); Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (D.R.K.); and Elizabeth Forward High School, Elizabeth, Pennsylvania (C.B.)
| |
Collapse
|
2
|
Sumangala N, Im SC, Valentín-Goyco J, Auchus RJ. Influence of cholesterol on kinetic parameters for human aromatase (P450 19A1) in phospholipid nanodiscs. J Inorg Biochem 2023; 247:112340. [PMID: 37544101 PMCID: PMC11260420 DOI: 10.1016/j.jinorgbio.2023.112340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Abstract
Cholesterol, a significant constituent of the endoplasmic reticulum membrane, exerts a substantial effect on the membrane's biophysical and mechanical properties. Cholesterol, however, is often neglected in model systems used to study membrane-bound proteins. For example, the influence of cholesterol on the enzymatic functions of type 2 cytochromes P450, which require a phospholipid bilayer and the redox partner P450-oxidoreductase (POR) for activity, are rarely investigated. Human aromatase (P450 19A1) catalyzes three sequential oxygenations of 19‑carbon steroids to estrogens and is widely expressed across various tissues, which are characterized by varying cholesterol compositions. Our study examined the impact of cholesterol on the functionality of the P450 19A1 complex with POR. Nanodiscs containing P450 19A1 with 20% cholesterol/80% phospholipid had similar rates and affinity of androstenedione binding as phospholipid-only P450 19A1 nanodiscs, and rates of product formation were indistinguishable among these conditions. In contrast, the rate of the first electron transfer from POR to P450 19A1 was 3-fold faster in cholesterol-containing nanodiscs than in phospholipid-only nanodiscs. These results suggest that cholesterol influences some aspects of POR interaction with P450 19A1 and might serve as an additional regulatory mechanism in this catalytic system.
Collapse
Affiliation(s)
- Nirupama Sumangala
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48105, United States
| | - Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48105, United States.
| |
Collapse
|
3
|
Petrunak EM, Bart AG, Peng HM, Auchus RJ, Scott EE. Human cytochrome P450 17A1 structures with metabolites of prostate cancer drug abiraterone reveal substrate-binding plasticity and a second binding site. J Biol Chem 2023; 299:102999. [PMID: 36773804 PMCID: PMC10023946 DOI: 10.1016/j.jbc.2023.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Abiraterone acetate is a first-line therapy for castration-resistant prostate cancer. This prodrug is deacetylated in vivo to abiraterone, which is a potent and specific inhibitor of cytochrome P450 17A1 (CYP17A1). CYP17A1 performs two sequential steps that are required for the biosynthesis of androgens that drive prostate cancer proliferation, analogous to estrogens in breast cancer. Abiraterone can be further metabolized in vivo on the steroid A ring to multiple metabolites that also inhibit CYP17A1. Despite its design as an active-site-directed substrate analog, abiraterone and its metabolites demonstrate mixed competitive/noncompetitive inhibition. To understand their binding, we solved the X-ray structures of CYP17A1 with three primary abiraterone metabolites. Despite different conformations of the steroid A ring and substituents, all three bound in the CYP17A1 active site with the steroid core packed against the I helix and the A ring C3 keto or hydroxyl oxygen forming a hydrogen bond with N202 similar to abiraterone itself. The structure of CYP17A1 with 3-keto, 5α-abiraterone was solved to 2.0 Å, the highest resolution to date for a CYP17A1 complex. This structure had additional electron density near the F/G loop, which is likely a second molecule of the inhibitor and which may explain the noncompetitive inhibition. Mutation of the adjacent Asn52 to Tyr positions its side chain in this space, maintains enzyme activity, and prevents binding of the peripheral ligand. Collectively, our findings provide further insight into abiraterone metabolite binding and CYP17A1 function.
Collapse
Affiliation(s)
- Elyse M Petrunak
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Aaron G Bart
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Hwei-Ming Peng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard J Auchus
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA; Endocrinology & Metabolism Section, Medicine Service, LTC Charles S. Kettles Veterans Affairs Medical Center, Ann Arbor, Michigan, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA; Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Bart AG, Morais G, Vangala VR, Loadman PM, Pors K, Scott EE. Cytochrome P450 Binding and Bioactivation of Tumor-Targeted Duocarmycin Agents. Drug Metab Dispos 2022; 50:49-57. [PMID: 34607808 PMCID: PMC8969195 DOI: 10.1124/dmd.121.000642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023] Open
Abstract
Duocarmycin natural products are promising anticancer cytotoxins but too potent for systemic use. Re-engineering of the duocarmycin scaffold has enabled the discovery of prodrugs designed for bioactivation by tissue-specific cytochrome P450 (P450) enzymes. Lead prodrugs bioactivated by both P450 isoforms CYP1A1 and CYP2W1 have shown promising results in xenograft studies; however, to fully understand the potential of these agents it is desirable to compare dual-targeting compounds with isoform-selective analogs. Such redesign requires insight into the molecular interactions with these P450 enzymes. Herein binding and metabolism of the individual stereoisomers of the indole-based duocarmycin prodrug ICT2700 and a nontoxic benzofuran analog ICT2726 were evaluated with CYP1A1 and CYP2W1, revealing differences exploitable for drug design. Although enantiomers of both compounds bound to and were metabolized by CYP1A1, the stereochemistry of the chloromethyl fragment was critical for CYP2W1 interactions. CYP2W1 differentially binds the S enantiomer of ICT2726, and its metabolite profile could potentially be used as a biomarker to identify CYP2W1 functional activity. In contrast to benzofuran-based ICT2726, CYP2W1 differentially binds the R isomer of the indole-based ICT2700 over the S stereoisomer. Thus the ICT2700 R configuration warrants further investigation as a scaffold to favor CYP2W1-selective bioactivation. Furthermore, structures of both duocarmycin S enantiomers with CYP1A1 reveal orientations correlating with nontoxic metabolites, and further drug design optimization could lead to a decrease of CYP1A1 bioactivation. Overall, distinctive structural features present in the two P450 active sites can be useful for improving P450-and thus tissue-selective-bioactivation. SIGNIFICANCE STATEMENT: Prodrug versions of the natural product duocarmycin can be metabolized by human tissue-specific cytochrome P450 (P450) enzymes 1A1 and 2W1 to form an ultrapotent cytotoxin and/or high affinity 2W1 substrates to potentially probe functional activity in situ. The current work defines the binding and metabolism by both P450 enzymes to support the design of duocarmycins selectively activated by only one human P450 enzyme.
Collapse
Affiliation(s)
- Aaron G Bart
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Goreti Morais
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Venu R Vangala
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Paul M Loadman
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Klaus Pors
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| | - Emily E Scott
- Program in Biophysics (A.G.B., E.E.S.) and Departments of Medicinal Chemistry and Pharmacology and Biological Chemistry (E.E.S.), University of Michigan, Ann Arbor, Michigan; Institute of Cancer Therapeutics (G.M., P.M.L., K.P.), Centre for Pharmaceutical Engineering Science (V.R.V.), Faculty of Life Sciences, University of Bradford, United Kingdom
| |
Collapse
|
5
|
Putkaradze N, Hartz P, Hutter MC, Zapp J, Thevis M, Bernhardt R. Metabolism of oral turinabol by the human brain cholesterol 24-hydroxylase CYP46A1. J Steroid Biochem Mol Biol 2021; 212:105927. [PMID: 34089835 DOI: 10.1016/j.jsbmb.2021.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022]
Abstract
The human microsomal cytochrome P450 enzyme CYP46A1 plays a crucial role in cholesterol elimination from the brain. It performs a 24-hydroxylation of cholesterol and is of outstanding significance for memory and cognition. This study demonstrates the catalytic activity of human CYP46A1 towards an anabolic androgenic steroid, oral turinabol (dehydrochloromethyltestosterone, 4-chloro-17β-dihydroxy,17α-methylandrosta-1,4-dien-3-one), which is a doping substance. CYP46A1 is the first human microsomal steroid-converting P450 showing activity towards this xenobiotic compound. Furthermore, the inhibitory effect of oral turinabol on the cholesterol conversion has been investigated in vitro demonstrating competition of the two substrates on the active site of CYP46A1 which might be of importance for potential pathogenic effects of oral turinabol. The conversion of oral turinabol was found to be selective resulting in the formation of only one product, as shown by HPLC analysis. To produce sufficient amounts of this product for NMR analysis, a system expressing human full-length CYP46A1 and CPR on a bicistronic vector was successfully developed realizing the selective cholesterol 24-hydroxylation in E. coli in mg amounts. Using this novel whole-cell system, the conversion of oral turinabol was performed and the product of this conversion by CYP46A1 was isolated and identified as 16β-hydroxy oral turinabol by NMR.
Collapse
Affiliation(s)
- Natalia Putkaradze
- Institute of Biochemistry, Saarland University, D-66123, Saarbruecken, Germany
| | - Philip Hartz
- Institute of Biochemistry, Saarland University, D-66123, Saarbruecken, Germany
| | - Michael C Hutter
- Center for Bioinformatics, Saarland University, D-66123, Saarbruecken, Germany
| | - Josef Zapp
- Institute of Pharmaceutical Biology, Saarland University, D-66123, Saarbruecken, Germany
| | - Mario Thevis
- Institute of Biochemistry, German Sport University Cologne, D-50933, Cologne, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, D-66123, Saarbruecken, Germany.
| |
Collapse
|
6
|
Peng HM, Valentín-Goyco J, Im SC, Han B, Liu J, Qiao J, Auchus RJ. Expression in Escherichia Coli, Purification, and Functional Reconstitution of Human Steroid 5α-Reductases. Endocrinology 2020; 161:bqaa117. [PMID: 32716491 PMCID: PMC7383974 DOI: 10.1210/endocr/bqaa117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
The potent androgen 5α-dihydrotestosterone irreversibly derives from testosterone via the activity of steroid 5α-reductases (5αRs). The major 5αR isoforms in most species, 5αR1 and 5αR2, have not been purified to homogeneity. We report here the heterologous expression of polyhistidine-tagged, codon-optimized human 5αR1 and 5αR2 cDNAs in Escherichia coli. A combination of the nonionic detergents Triton X-100 and Nonidet P-40 enabled solubilization of these extremely hydrophobic integral membrane proteins and facilitated purification with affinity and cation-exchange chromatography methods. For functional reconstitution, we incorporated the purified isoenzymes into Triton X-100-saturated dioleoylphosphatidylcholine liposomes and removed excess detergent with polystyrene beads. Kinetic studies indicated that the 2 isozymes differ in biochemical properties, with 5αR2 having a lower apparent Km for testosterone, androstenedione, progesterone, and 17-hydroxyprogesterone than 5αR1; however, 5αR1 had a greater capacity for steroid conversion, as reflected by a higher Vmax than 5αR2. Both enzymes preferred progesterone as substrate over other steroids, and the catalytic efficiency of purified reconstituted 5αR2 exhibited a sharp pH optimum at pH 5. Intriguingly, we found that the prostate-cancer drug-metabolite 3-keto-∆ 4-abiraterone is metabolized by 5αR1 but not 5αR2, which may serve as a structural basis for isoform selectivity and inhibitor design. The functional characterization results with the purified reconstituted isoenzymes paralleled trends obtained with HEK-293 cell lines stably expressing native 5αR1 and 5αR2. Access to purified human 5αR1 and 5αR2 will advance studies of these important enzymes and might help to clarify their contributions to steroid anabolism and catabolism.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Veterans Affairs Medical Center, Ann Arbor, MI
| | - Bing Han
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jiayan Liu
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Jie Qiao
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Veterans Affairs Medical Center, Ann Arbor, MI
| |
Collapse
|
7
|
König L, Brixius‐Anderko S, Milhim M, Tavouli‐Abbas D, Hutter MC, Hannemann F, Bernhardt R. Identification and circumvention of bottlenecks in CYP21A2‐mediated premedrol production using recombinantEscherichia coli. Biotechnol Bioeng 2019; 117:901-911. [DOI: 10.1002/bit.27246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Lisa König
- Department of Biochemistry Saarland University Saarbrücken Germany
| | | | - Mohammed Milhim
- Department of Biochemistry Saarland University Saarbrücken Germany
| | | | | | - Frank Hannemann
- Department of Biochemistry Saarland University Saarbrücken Germany
| | - Rita Bernhardt
- Department of Biochemistry Saarland University Saarbrücken Germany
| |
Collapse
|
8
|
Zarate-Perez F, Velázquez-Fernández JB, Jennings GK, Shock LS, Lyons CE, Hackett JC. Biophysical characterization of Aptenodytes forsteri cytochrome P450 aromatase. J Inorg Biochem 2018; 184:79-87. [PMID: 29684698 PMCID: PMC5964043 DOI: 10.1016/j.jinorgbio.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 19 (CYP19, aromatase) catalyzes the conversion of androgens to estrogens in a sequence of three reactions that each depend on NADPH and O2. Aromatase is a phylogenetically-ancient enzyme and its breadth of expression in other species has highlighted distinct physiological functions. In songbirds, estrogen production is required for programming the neural circuits controlling song and in the determination of sex in fish and reptiles. This work describes the expression, purification, and biophysical characterization of Aptenodytes forsteri (Emperor penguin, af) aromatase. Using human cytochrome P450 reductase as a redox partner, afCYP19 displayed similar substrate turnover and LC/MS/MS confirmed that afCYP19 catalyzes the transformations through the intermediates 19-hydroxy- and 19-oxo-androstenedione. Androstenedione and anastrozole had the highest affinity for the enzyme and were followed closely by 19-hydroxyandrostenedione and testosterone. The affinity of 19-oxo-androstenedione for afCYP19 was ten-fold lower. The time-dependent changes in the Soret bands observed in stopped-flow mixing experiments of the steroidal ligands and the inhibitor anastrozole with afCYP19 were best described by a two-step binding mechanism. In summary, these studies describe the first biophysical characterization of an avian aromatase that displays strikingly similar enzyme kinetics and ligand binding properties to the human enzyme and could serve as a convenient model system for studies of the enigmatic transformation of androgens to estrogens.
Collapse
Affiliation(s)
- Francisco Zarate-Perez
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Jesús B Velázquez-Fernández
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Gareth K Jennings
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Lisa S Shock
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States; Department of Microbiology and Immunology, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - Charles E Lyons
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States
| | - John C Hackett
- Department of Physiology and Biophysics, the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0035, United States.
| |
Collapse
|
9
|
Peng HM, Barlow C, Auchus RJ. Catalytic modulation of human cytochromes P450 17A1 and P450 11B2 by phospholipid. J Steroid Biochem Mol Biol 2018; 181:63-72. [PMID: 29548669 PMCID: PMC5992074 DOI: 10.1016/j.jsbmb.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/19/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Unlike most of the drug-metabolizing cytochrome P450s, microsomal P450 17A1 and mitochondrial P450 11B2 catalyze sequential multi-step reactions in steroid biosynthesis. The membrane phospholipid composition might be one parameter that modulates the efficiency and processivity of specific pathways. Here we systematically examined the effects of physiologically relevant phospholipids on the catalysis of purified P450 17A1, P450 11B2, and P450 11B1 in reconstituted assay systems. Both dioleoylphosphatidylcholine (DOPC, 18:1) and dilauroylphosphatidylcholine (DLPC, 12:0) were found to be very efficient in reconstituting 17-hydroxylase and 1720-lyase reactions of P450 17A1. Phosphatidylethanolamine (PE) specifically enhanced 1720-lyase activity up to 2.4-fold in the presence of phosphatidylcholine. On the other hand, P450 11B2-catalyzed production of aldosterone from 11-deoxycorticosterone was very low and from 18-hydroxycorticosterone nil, implying low processivity. DOPC or cardiolipin, which is exclusively located in the inner mitochondrial membrane, maximized aldosterone yield. In sharp contrast, reconstitution of homologous P450 11B1 with DOPC significantly decreased corticosterone formation without affecting the synthesis of 18-hydroxycorticosterone. The intrinsic fluorescence of P450 17A1 and 11B2 increased in the presence of DOPC, DLPC and PE. Acrylamide quenching studies showed that PE decreased solvent accessibility for tryptophan in P450 17A1, as did 20:4 PC or 18:2 PC for P450 11B2. A moderately positive correlation between the proportion of high-spin substrate-bound species and catalytic activity was only observed in the presence of phosphatidylcholines with low-temperature phase transition. These results demonstrate the potential for phospholipids to regulate the activity of steroidogenic P450 activities and thereby steroid hormone biosynthetic pathways.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Chase Barlow
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
10
|
Klymiuk MC, Neunzig J, Bernhardt R, Sánchez-Guijo A, Hartmann MF, Wudy SA, Schuler G. Efficiency of the sulfate pathway in comparison to the Δ4- and Δ5-pathway of steroidogenesis in the porcine testis. J Steroid Biochem Mol Biol 2018; 179:64-72. [PMID: 29107177 DOI: 10.1016/j.jsbmb.2017.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Sulfonated steroids are increasingly recognized as a circulating reservoir of precursors for the local production of active steroids in certain target tissues. As an alternative to sulfonation of unconjugated steroids by cytosolic sulfotransferases, their direct formation from sulfonated precursors has been described. However, productivity and physiological relevance of this sulfate pathway of steroidogenesis are still widely unclear. Applying the porcine testis as a model, conversion of pregnenolone sulfate (P5S, sulfate pathway) by CYP17A1 was assessed in comparison to the parallel conversions of pregnenolone (P5, Δ5-pathway) and progesterone (P4, Δ4-pathway). To characterize conversions in the virtual absence of competing enzyme activities, in a first series of experiments porcine recombinant CYP17A1 was incubated with the respective substrate in the presence of bovine recombinant cytochrome P450 oxidoreductase (CPR) and cytochrome b5 (b5). Moreover, porcine testicular microsomal fractions were used as a source of homologous CYP17A1, CPR and b5. Invariably 17α-hydroxylation of P5S was, if at all, only minimal and no formation of dehydroepiandrosterone sulfate from P5S was detectable. Consistent with earlier studies porcine CYP17A1 efficiently metabolized P4 and P5 in both assay systems. Metabolism of P4 and P5 by testicular microsomal protein varied substantially between the five animals tested. In conclusion, a physiologically relevant sulfate pathway for the production of C19-steroids from P5S via CYP17A1 is very unlikely in the porcine testis.
Collapse
Affiliation(s)
- M C Klymiuk
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - J Neunzig
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, Saarbruecken, Germany
| | - R Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, Saarbruecken, Germany
| | - A Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, Giessen, Germany
| | - M F Hartmann
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, Giessen, Germany
| | - S A Wudy
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, Giessen, Germany
| | - G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
11
|
Petrunak EM, Rogers SA, Aubé J, Scott EE. Structural and Functional Evaluation of Clinically Relevant Inhibitors of Steroidogenic Cytochrome P450 17A1. Drug Metab Dispos 2017; 45:635-645. [PMID: 28373265 DOI: 10.1124/dmd.117.075317] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/31/2017] [Indexed: 01/05/2023] Open
Abstract
Human steroidogenic cytochrome P450 17A1 (CYP17A1) is a bifunctional enzyme that performs both hydroxylation and lyase reactions, with the latter required to generate androgens that fuel prostate cancer proliferation. The steroid abiraterone, the active form of the only CYP17A1 inhibitor approved by the Food and Drug Administration, binds the catalytic heme iron, nonselectively impeding both reactions and ultimately causing undesirable corticosteroid imbalance. Some nonsteroidal inhibitors reportedly inhibit the lyase reaction more than the preceding hydroxylase reaction, which would be clinically advantageous, but the mechanism is not understood. Thus, the nonsteroidal inhibitors seviteronel and orteronel and the steroidal inhibitors abiraterone and galeterone were compared with respect to their binding modes and hydroxylase versus lyase inhibition. Binding studies and X-ray structures of CYP17A1 with nonsteroidal inhibitors reveal coordination to the heme iron like the steroidal inhibitors. (S)-seviteronel binds similarly to both observed CYP17A1 conformations. However, (S)-orteronel and (R)-orteronel bind to distinct CYP17A1 conformations that differ in a region implicated in ligand entry/exit and the presence of a peripheral ligand. To reconcile these binding modes with enzyme function, side-by-side enzymatic analysis was undertaken and revealed that neither the nonsteroidal seviteronel nor the (S)-orteronel inhibitors demonstrated significant lyase selectivity, but the less potent (R)-orteronel was 8- to 11-fold selective for lyase inhibition. While active-site iron coordination is consistent with competitive inhibition, conformational selection for binding of some inhibitors and the differential presence of a peripheral ligand molecule suggest the possibility of CYP17A1 functional modulation by features outside the active site.
Collapse
Affiliation(s)
- Elyse M Petrunak
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| | - Steven A Rogers
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| | - Jeffrey Aubé
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| |
Collapse
|
12
|
Neunzig J, Milhim M, Schiffer L, Khatri Y, Zapp J, Sánchez-Guijo A, Hartmann MF, Wudy SA, Bernhardt R. The steroid metabolite 16(β)-OH-androstenedione generated by CYP21A2 serves as a substrate for CYP19A1. J Steroid Biochem Mol Biol 2017; 167:182-191. [PMID: 28065637 DOI: 10.1016/j.jsbmb.2017.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 12/29/2022]
Abstract
The 21-hydroxylase (CYP21A2) is a steroidogenic enzyme crucial for the synthesis of mineralo- and glucocorticoids. It is described to convert progesterone as well as 17-OH-progesterone, through a hydroxylation at position C21, into 11-deoxycorticosterone (DOC) and 11-deoxycortisol (RSS), respectively. In this study we unraveled CYP21A2 to have a broader steroid substrate spectrum than assumed. Utilizing a reconstituted in vitro system, consisting of purified human CYP21A2 and human cytochrome P450 reductase (CPR) we demonstrated that CYP21A2 is capable to metabolize DOC, RSS, androstenedione (A4) and testosterone (T). In addition, the conversion of A4 rendered a product whose structure was elucidated through NMR spectroscopy, showing a hydroxylation at position C16-beta. The androgenic properties of this steroid metabolite, 16(β)-OH-androstenedione (16bOHA4), were investigated and compared with A4. Both steroid metabolites were shown to be weak agonists for the human androgen receptor. Moreover, the interaction of 16bOHA4 with the aromatase (CYP19A1) was compared to that of A4, indicating that the C16 hydroxyl group does not influence the binding with CYP19A1. In contrast, the elucidation of the kinetic parameters showed an increased Km and decreased kcat value resulting in a 2-fold decreased catalytic efficiency compared to A4. These findings were in accordance with our docking studies, revealing a similar binding conformation and distance to the heme iron of both steroids. Furthermore, the product of 16bOHA4, presumably 16-hydroxy-estrone (16bOHE1), was investigated with regard to its estrogenic activity, which was negligible compared to estradiol and estrone. Finally, 16bOHA4 was found to be present in a patient with 11-hydroxylase deficiency and in a patient with an endocrine tumor. Taken together, this study provides novel information on the steroid hormone biosynthesis and presents a new method to detect further potential relevant novel steroid metabolites.
Collapse
Affiliation(s)
- J Neunzig
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - M Milhim
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - L Schiffer
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - Y Khatri
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - J Zapp
- Institute of Pharmaceutical Biology, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - A Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany
| | - M F Hartmann
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany
| | - S A Wudy
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, 35392 Giessen, Germany
| | - R Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
13
|
Peng HM, Im SC, Pearl NM, Turcu AF, Rege J, Waskell L, Auchus RJ. Cytochrome b5 Activates the 17,20-Lyase Activity of Human Cytochrome P450 17A1 by Increasing the Coupling of NADPH Consumption to Androgen Production. Biochemistry 2016; 55:4356-65. [PMID: 27426448 PMCID: PMC5287367 DOI: 10.1021/acs.biochem.6b00532] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cytochrome P450 17A1 is required for all androgen biosynthesis and is the target of abiraterone, a drug used widely to treat advanced prostate cancer. P450 17A1 catalyzes both 17-hydroxylation and subsequent 17,20-lyase reactions with pregnenolone, progesterone, and allopregnanolone. The presence of cytochrome b5 (b5) markedly stimulates the 17,20-lyase reaction, with little effect on 17-hydroxylation; however, the mechanism of this b5 effect is not known. We determined the influence of b5 on coupling efficiency-defined as the ratio of product formation to NADPH consumption-in a reconstituted system using these 3 pairs of substrates for the 2 reactions. Rates of NADPH consumption ranged from 4 to 13 nmol/min/nmol P450 with wild-type P450 17A1. For the 17-hydroxylase reaction, progesterone oxidation was the most tightly coupled (∼50%) and negligibly changed upon addition of b5. Rates of NADPH consumption were similar for the 17-hydroxylase and corresponding 17,20-lyase reactions for each steroid series, and b5 only slightly increased NADPH consumption. For the 17,20-lyase reactions, b5 markedly increased product formation and coupling in parallel with all substrates, from 6% to 44% with the major substrate 17-hydroxypregnenolone. For the naturally occurring P450 17A1 mutations E305G and R347H, which impair 17,20-lyase activity, b5 failed to rescue the poor coupling with 17-hydroxypregnenolone (2-4%). When the conserved active-site threonine was mutated to alanine (T306A), both the activity and coupling were markedly decreased with all substrates. We conclude that b5 stimulation of the 17,20-lyase reaction primarily derives from more efficient use of NADPH for product formation rather than side products.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | - Sang-Choul Im
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
- Department of Anesthesiology, University of Michigan and the VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States
| | - Naw May Pearl
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
- Department of Anesthesiology, University of Michigan and the VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States
| | - Adina F. Turcu
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Juilee Rege
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Lucy Waskell
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
- Department of Anesthesiology, University of Michigan and the VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States
| | - Richard J. Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
14
|
Estrada DF, Laurence JS, Scott EE. Cytochrome P450 17A1 Interactions with the FMN Domain of Its Reductase as Characterized by NMR. J Biol Chem 2015; 291:3990-4003. [PMID: 26719338 DOI: 10.1074/jbc.m115.677294] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
To accomplish key physiological processes ranging from drug metabolism to steroidogenesis, human microsomal cytochrome P450 enzymes require the sequential input of two electrons delivered by the FMN domain of NADPH-cytochrome P450 reductase. Although some human microsomal P450 enzymes can instead accept the second electron from cytochrome b5, for human steroidogenic CYP17A1, the cytochrome P450 reductase FMN domain delivers both electrons, and b5 is an allosteric modulator. The structural basis of these key but poorly understood protein interactions was probed by solution NMR using the catalytically competent soluble domains of each protein. Formation of the CYP17A1·FMN domain complex induced differential line broadening of the NMR signal for each protein. Alterations in the exchange dynamics generally occurred for residues near the surface of the flavin mononucleotide, including 87-90 (loop 1), and for key CYP17A1 active site residues. These interactions were modulated by the identity of the substrate in the buried CYP17A1 active site and by b5. The FMN domain outcompetes b5 for binding to CYP17A1 in the three-component system. These results and comparison with previous NMR studies of the CYP17A1·b5 complex suggest a model of CYP17A1 enzyme regulation.
Collapse
Affiliation(s)
- D Fernando Estrada
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Jennifer S Laurence
- the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Emily E Scott
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| |
Collapse
|
15
|
Schiffer L, Brixius-Anderko S, Hannemann F, Zapp J, Neunzig J, Thevis M, Bernhardt R. Metabolism of Oral Turinabol by Human Steroid Hormone-Synthesizing Cytochrome P450 Enzymes. Drug Metab Dispos 2015; 44:227-37. [DOI: 10.1124/dmd.115.066829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023] Open
|
16
|
Electron transfer by human wild-type and A287P mutant P450 oxidoreductase assessed by transient kinetics: functional basis of P450 oxidoreductase deficiency. Biochem J 2015; 468:25-31. [PMID: 25728647 DOI: 10.1042/bj20141410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) is a 2-flavin protein that transfers electrons from NADPH via its FAD and FMN moieties to all microsomal cytochrome P450 enzymes, including steroidogenic and drug-metabolizing P450s. Defects in the POR gene can cause POR deficiency (PORD), manifested clinically by disordered steroidogenesis, genital anomalies and skeletal malformations. We examined the POR mutant A287P, which is the most frequent cause of PORD in patients of European ancestry and partially disrupts most P450 activities in vitro. Flavin content analysis showed that A287P is deficient in FAD and FMN binding, although the mutation site is distant from the binding sites of both flavins. Externally added flavin partially restored the cytochrome c reductase activity of A287P, suggesting that flavin therapy may be useful for this frequent form of PORD. Transient kinetic dissection of the reaction of POR with NADPH and the reduction in cytochrome c by POR using stopped-flow techniques revealed defects in individual electron transfer steps mediated by A287P. A287P had impaired ability to accept electrons from NADPH, but was capable of a fast FMN → cytochrome c electron donation reaction. Thus the reduced rates of P450 activities with A287P may be due to deficient flavin and impaired electron transfer from NADPH.
Collapse
|
17
|
Miller WL, Tee MK. The post-translational regulation of 17,20 lyase activity. Mol Cell Endocrinol 2015; 408:99-106. [PMID: 25224484 DOI: 10.1016/j.mce.2014.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 01/20/2023]
Abstract
A single enzyme, microsomal P450c17, catalyzes the 17α-hydroxylase activity needed to make cortisol and the subsequent 17,20 lyase activity needed to produce the 19-carbon precursors of sex steroids. The biochemical decision concerning whether P450c17 stops after 17α-hydroxylation or proceeds to 17,20 lyase activity is largely dependent on three post-translational factors. First, 17,20 lyase activity is especially sensitive to the molar abundance of the electron-transfer protein P450 oxidoreductase (POR). Second, cytochrome b5 strongly promotes 17,20 lyase activity, principally by acting as an allosteric factor promoting the interaction of P450c17 with POR, although a minor role as an alternative electron-transfer protein has not been wholly excluded. Third, the serine/threonine phosphorylation of P450c17 itself promotes 17,20 lyase activity, again apparently by promoting the interaction of P450c17 with POR. The principal kinase that phosphorylates P450c17 to confer 17,20 lyase activity appears to be p38α (MAPK14), which increases the maximum velocity of the 17,20 lyase reaction, while having no effect on the Michaelis constant for 17,20 lyase or any detectable effect on the 17α-hydroxylase reaction. Other kinases can also phosphorylate P450c17, but only p38α has been shown to affect its enzymology. Understanding the mechanisms regulating 17,20 lyase activity is essential for the understanding of hyperandrogenic disorders such as premature, exaggerated adrenarche and the polycystic ovary syndrome, and also for the design of selective 17,20 lyase inhibitors for use in hyperandrogenic states and in sex-steroid dependent cancers.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California, San Francisco, CA 94143-0978, USA.
| | - Meng Kian Tee
- Department of Pediatrics, University of California, San Francisco, CA 94143-0978, USA
| |
Collapse
|
18
|
Yoshimoto FK, Peng HM, Zhang H, Anderson SM, Auchus RJ. Epoxidation activities of human cytochromes P450c17 and P450c21. Biochemistry 2014; 53:7531-40. [PMID: 25386927 PMCID: PMC4263428 DOI: 10.1021/bi5011865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Some cytochrome P450 enzymes epoxidize
unsaturated substrates,
but this activity has not been described for the steroid hydroxylases.
Physiologic steroid substrates, however, lack carbon–carbon
double bonds in the parts of the pregnane molecules where steroidogenic
hydroxylations occur. Limited data on the reactivity of steroidogenic
P450s toward olefinic substrates exist, and the study of occult activities
toward alternative substrates is a fundamental aspect of the growing
field of combinatorial biosynthesis. We reasoned that human P450c17
(steroid 17-hydroxylase/17,20-lyase, CYP17A1), which 17- and 16α-hydroxylates
progesterone, might catalyze the formation of the 16α,17-epoxide
from 16,17-dehydroprogesterone (pregna-4,16-diene-3,20-dione). CYP17A1
catalyzed the novel 16α,17-epoxidation and the ordinarily minor
21-hydroxylation of 16,17-dehydroprogesterone in a 1:1 ratio. CYP17A1
mutation A105L, which has reduced progesterone 16α-hydroxylase
activity, gave a 1:5 ratio of epoxide:21-hydroxylated products. In
contrast, human P450c21 (steroid 21-hydroxylase, CYP21A2) converted
16,17-dehydroprogesterone to the 21-hydroxylated product and only
a trace of epoxide. CYP21A2 mutation V359A, which has significant
16α-hydroxylase activity, likewise afforded the 21-hydroxylated
product and slightly more epoxide. CYP17A1 wild-type and mutation
A105L do not 21- or 16α-hydroxylate pregnenolone, but the enzymes
21-hydroxylated and 16α,17-epoxidized 16,17-dehydropregnenolone
(pregna-5,16-diene-3β-ol-20-one) in 4:1 or 12:1 ratios, respectively.
Catalase and superoxide dismutase did not prevent epoxide formation.
The progesterone epoxide was not a time-dependent, irreversible CYP17A1
inhibitor. Our substrate modification studies have revealed occult
epoxidase and 21-hydroxylase activities of CYP17A1, and the fraction
of epoxide formed correlated with the 16α-hydroxylase activity
of the enzymes.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine and ‡Department of Pharmacology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | |
Collapse
|
19
|
Peng HM, Liu J, Forsberg SE, Tran HT, Anderson SM, Auchus RJ. Catalytically relevant electrostatic interactions of cytochrome P450c17 (CYP17A1) and cytochrome b5. J Biol Chem 2014; 289:33838-49. [PMID: 25315771 DOI: 10.1074/jbc.m114.608919] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two acidic residues, Glu-48 and Glu-49, of cytochrome b5 (b5) are essential for stimulating the 17,20-lyase activity of cytochrome P450c17 (CYP17A1). Substitution of Ala, Gly, Cys, or Gln for these two glutamic acid residues abrogated all capacity to stimulate 17,20-lyase activity. Mutations E49D and E48D/E49D retained 23 and 38% of wild-type activity, respectively. Using the zero-length cross-linker ethyl-3-(3-dimethylaminopropyl)carbodiimide, we obtained cross-linked heterodimers of b5 and CYP17A1, wild-type, or mutations R347K and R358K. In sharp contrast, the b5 double mutation E48G/E49G did not form cross-linked complexes with wild-type CYP17A1. Mass spectrometric analysis of the CYP17A1-b5 complexes identified two cross-linked peptide pairs as follows: CYP17A1-WT: (84)EVLIKK(89)-b5: (53)EQAGGDATENFEDVGHSTDAR(73) and CYP17A1-R347K: (341)TPTISDKNR(349)-b5: (40)FLEEHPGGEEVLR(52). Using these two sites of interaction and Glu-48/Glu-49 in b5 as constraints, protein docking calculations based on the crystal structures of the two proteins yielded a structural model of the CYP17A1-b5 complex. The appositional surfaces include Lys-88, Arg-347, and Arg-358/Arg-449 of CYP17A1, which interact with Glu-61, Glu-42, and Glu-48/Glu-49 of b5, respectively. Our data reveal the structural basis of the electrostatic interactions between these two proteins, which is critical for 17,20-lyase activity and androgen biosynthesis.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- From the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine
| | - Jiayan Liu
- From the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine
| | - Sarah E Forsberg
- From the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine
| | | | - Sean M Anderson
- From the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine
| | - Richard J Auchus
- From the Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
20
|
Petrunak EM, DeVore NM, Porubsky PR, Scott EE. Structures of human steroidogenic cytochrome P450 17A1 with substrates. J Biol Chem 2014; 289:32952-64. [PMID: 25301938 DOI: 10.1074/jbc.m114.610998] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The human cytochrome P450 17A1 (CYP17A1) enzyme operates at a key juncture of human steroidogenesis, controlling the levels of mineralocorticoids influencing blood pressure, glucocorticoids involved in immune and stress responses, and androgens and estrogens involved in development and homeostasis of reproductive tissues. Understanding CYP17A1 multifunctional biochemistry is thus integral to treating prostate and breast cancer, subfertility, blood pressure, and other diseases. CYP17A1 structures with all four physiologically relevant steroid substrates suggest answers to four fundamental aspects of CYP17A1 function. First, all substrates bind in a similar overall orientation, rising ∼60° with respect to the heme. Second, both hydroxylase substrates pregnenolone and progesterone hydrogen bond to Asn(202) in orientations consistent with production of 17α-hydroxy major metabolites, but functional and structural evidence for an A105L mutation suggests that a minor conformation may yield the minor 16α-hydroxyprogesterone metabolite. Third, substrate specificity of the subsequent 17,20-lyase reaction may be explained by variation in substrate height above the heme. Although 17α-hydroxyprogesterone is only observed farther from the catalytic iron, 17α-hydroxypregnenolone is also observed closer to the heme. In conjunction with spectroscopic evidence, this suggests that only 17α-hydroxypregnenolone approaches and interacts with the proximal oxygen of the catalytic iron-peroxy intermediate, yielding efficient production of dehydroepiandrosterone as the key intermediate in human testosterone and estrogen synthesis. Fourth, differential positioning of 17α-hydroxypregnenolone offers a mechanism whereby allosteric binding of cytochrome b5 might selectively enhance the lyase reaction. In aggregate, these structures provide a structural basis for understanding multiple key reactions at the heart of human steroidogenesis.
Collapse
Affiliation(s)
- Elyse M Petrunak
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Natasha M DeVore
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Patrick R Porubsky
- the Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047
| | - Emily E Scott
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| |
Collapse
|
21
|
Zheng J, Liu H, Wang Y, Wang L, Chang X, Jing R, Hao C, Zhang X. TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2014. [PMID: 25056774 DOI: 10.1093/jxb/eru3060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this study, TaTEF-7A, a member of the transcript elongation factor gene family, and its flanking sequences were isolated. TaTEF-7A was located on chromosome 7A and was flanked by markers Xwmc83 and XP3156.3. Subcellular localization revealed that TaTEF-7A protein was localized in the nucleus. This gene was expressed in all organs, but the highest expression occurred in young spikes and developing seeds. Overexpression of TaTEF-7A in Arabidopsis thaliana produced pleiotropic effects on vegetative and reproductive development that enhanced grain length, silique number, and silique length. No diversity was found in the coding region of TaTEF-7A, but 16 single nucleotide polymorphisms and Indels were detected in the promoter regions of different cultivars. Markers based on sequence variations in the promoter regions (InDel-629 and InDel-604) were developed, and three haplotypes were identified based on those markers. Haplotype-trait association analysis of the Chinese wheat mini core collection revealed that TaTEF-7A was significantly associated with grain number per spike. Phenotyping of near-isogenic lines (NILs) confirmed that TaTEF-7A increases potential grain yield and yield-related traits. Frequency changes in favoured haplotypes gradually increased in cultivars released in China from the 1940s. Geographic distributions of favoured haplotypes were characterized in six major wheat production regions worldwide. The presence of Hap-7A-3, the favoured haplotype, showed a positive correlation with yield in a global set of breeding lines. These results suggest that TaTEF-7A is a functional regulatory factor for grain number per spike and provide a basis for marker-assisted selection.
Collapse
Affiliation(s)
- Jun Zheng
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen 041000, China
| | - Hong Liu
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuquan Wang
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lanfen Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Chang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyong Zhang
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
22
|
Zheng J, Liu H, Wang Y, Wang L, Chang X, Jing R, Hao C, Zhang X. TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5351-65. [PMID: 25056774 PMCID: PMC4157721 DOI: 10.1093/jxb/eru306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 05/20/2023]
Abstract
In this study, TaTEF-7A, a member of the transcript elongation factor gene family, and its flanking sequences were isolated. TaTEF-7A was located on chromosome 7A and was flanked by markers Xwmc83 and XP3156.3. Subcellular localization revealed that TaTEF-7A protein was localized in the nucleus. This gene was expressed in all organs, but the highest expression occurred in young spikes and developing seeds. Overexpression of TaTEF-7A in Arabidopsis thaliana produced pleiotropic effects on vegetative and reproductive development that enhanced grain length, silique number, and silique length. No diversity was found in the coding region of TaTEF-7A, but 16 single nucleotide polymorphisms and Indels were detected in the promoter regions of different cultivars. Markers based on sequence variations in the promoter regions (InDel-629 and InDel-604) were developed, and three haplotypes were identified based on those markers. Haplotype-trait association analysis of the Chinese wheat mini core collection revealed that TaTEF-7A was significantly associated with grain number per spike. Phenotyping of near-isogenic lines (NILs) confirmed that TaTEF-7A increases potential grain yield and yield-related traits. Frequency changes in favoured haplotypes gradually increased in cultivars released in China from the 1940s. Geographic distributions of favoured haplotypes were characterized in six major wheat production regions worldwide. The presence of Hap-7A-3, the favoured haplotype, showed a positive correlation with yield in a global set of breeding lines. These results suggest that TaTEF-7A is a functional regulatory factor for grain number per spike and provide a basis for marker-assisted selection.
Collapse
Affiliation(s)
- Jun Zheng
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen 041000, China
| | - Hong Liu
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuquan Wang
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lanfen Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Chang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyong Zhang
- Crop Genomics and Bioinformatics Center and National Key Lab of Crop Genetics and Germplasm Enhancement, College of Agricultural Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China Key Laboratory of Crop Gene Resources and Germplasm Enhancment, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Neunzig J, Sánchez-Guijo A, Mosa A, Hartmann MF, Geyer J, Wudy SA, Bernhardt R. A steroidogenic pathway for sulfonated steroids: the metabolism of pregnenolone sulfate. J Steroid Biochem Mol Biol 2014; 144 Pt B:324-33. [PMID: 25038322 DOI: 10.1016/j.jsbmb.2014.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
In many tissues sulfonated steroids exceed the concentration of free steroids and recently they were also shown to fulfill important physiological functions. While it was previously demonstrated that cholesterol sulfate (CS) is converted by CYP11A1 to pregnenolone sulfate (PregS), further conversion of PregS has not been studied in detail. To investigate whether a steroidogenic pathway for sulfonated steroids exists similar to the one described for free steroids, we examined the interaction of PregS with CYP17A1 in a reconstituted in-vitro system. Difference spectroscopy revealed a Kd-value of 74.8±4.2μM for the CYP17A1-PregS complex, which is 2.5-fold higher compared to the CYP17A1-pregnenolone (Preg) complex. Mass spectrometry experiments proved for the first time that PregS is hydroxylated by CYP17A1 at position C17, identically to pregnenolone. A higher Km- and a lower kcat-value for CYP17A1 using PregS compared with Preg were observed, indicating a 40% reduced catalytic efficiency when using the sulfonated steroid. Furthermore, we analyzed whether the presence of cytochrome b5 (b5) has an influence on the CYP17A1 dependent conversion of PregS, as was demonstrated for Preg. Interestingly, with 17OH-PregS no scission of the 17,20-carbon-carbon bond occurs, when b5 is added to the reconstituted in-vitro system, while b5 promotes the formation of DHEA from 17OH-Preg. When using human SOAT-HEK293 cells expressing CYP17A1 and CPR, we could confirm that PregS is metabolized to 17OH-PregS, strengthening the potential physiological meaning of a pathway for sulfonated steroids.
Collapse
Affiliation(s)
- J Neunzig
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - A Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - A Mosa
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany
| | - M F Hartmann
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - J Geyer
- Institute of Pharmacology and Toxicology, Justus-Liebig University of Giessen, 35392 Giessen, Germany
| | - S A Wudy
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - R Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
24
|
Peng HM, Auchus RJ. Two surfaces of cytochrome b5 with major and minor contributions to CYP3A4-catalyzed steroid and nifedipine oxygenation chemistries. Arch Biochem Biophys 2013; 541:53-60. [PMID: 24256945 DOI: 10.1016/j.abb.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Conserved human cytochrome b5 (b5) residues D58 and D65 are critical for interactions with CYP2E1 and CYP2C19, whereas E48 and E49 are essential for stimulating the 17,20-lyase activity of CYP17A1. Here, we show that b5 mutations E48G, E49G, D58G, and D65G have reduced capacity to stimulate CYP3A4-catalyzed progesterone and testosterone 6β-hydroxylation or nifedipine oxidation. The b5 double mutation D58G/D65G fails to stimulate these reactions, similar to CYP2E1 and CYP2C19, whereas mutation E48G/E49G retains 23-42% of wild-type stimulation. Neither mutation impairs the activity stimulation of wild-type b5, nor does mutation D58G/D65G impair the partial stimulation of mutations E48G or E48G/E49G. For assays reconstituted with a single phospholipid, phosphatidyl serine afforded the highest testosterone 6β-hydroxylase activity with wild-type b5 but the poorest activity with b5 mutation E48G/E49G, and the activity stimulation of mutation E48G/E49G was lost at [NaCl]>50mM. Cross-linking of CYP3A4 and b5 decreased in the order wild-type>E48G/E49G>D58G/D65G and varied with phospholipid. We conclude that two b5 acidic surfaces, primarily the domain including residues D58-D65, participate in the stimulation of CYP3A4 activities. Our data suggest that a minor population of CYP3A4 molecules remains sensitive to b5 mutation E48G/E49G, consistent with phospholipid-dependent conformational heterogeneity of CYP3A4.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
25
|
Tee MK, Miller WL. Phosphorylation of human cytochrome P450c17 by p38α selectively increases 17,20 lyase activity and androgen biosynthesis. J Biol Chem 2013; 288:23903-13. [PMID: 23836902 DOI: 10.1074/jbc.m113.460048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cytochrome P450c17, a steroidogenic enzyme encoded by the CYP17A1 gene, catalyzes the steroid 17α-hydroxylation needed for glucocorticoid synthesis, which may or may not be followed by 17,20 lyase activity needed for sex steroid synthesis. Whether or not P450c17 catalyzes 17,20 lyase activity is determined by three post-translational mechanisms influencing availability of reducing equivalents donated by P450 oxidoreductase (POR). These are increased amounts of POR, the allosteric action of cytochrome b5 to promote POR-P450c17 interaction, and Ser/Thr phosphorylation of P450c17, which also appears to promote POR-P450c17 interaction. The kinase(s) that phosphorylates P450c17 is unknown. In a series of kinase inhibition experiments, the pyridinyl imidazole drugs SB202190 and SB203580 inhibited 17,20 lyase but not 17α-hydroxylase activity in human adrenocortical HCI-H295A cells, suggesting an action on p38α or p38β. Co-transfection of non-steroidogenic COS-1 cells with P450c17 and p38 expression vectors showed that p38α, but not p38β, conferred 17,20 lyase activity on P450c17. Antiserum to P450c17 co-immunoprecipitated P450c17 and both p38 isoforms; however, knockdown of p38α, but not knockdown of p38β, inhibited 17,20 lyase activity in NCI-H295A cells. Bacterially expressed human P450c17 was phosphorylated by p38α in vitro at a non-canonical site, conferring increased 17,20 lyase activity. This phosphorylation increased the maximum velocity, but not the Michaelis constant, of the 17,20 lyase reaction. p38α phosphorylates P450c17 in a fashion that confers increased 17,20 lyase activity, implying that the production of adrenal androgens (adrenarche) is a regulated event.
Collapse
Affiliation(s)
- Meng Kian Tee
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
26
|
Engineering and application of P450 monooxygenases in pharmaceutical and metabolite synthesis. Curr Opin Chem Biol 2013; 17:271-5. [DOI: 10.1016/j.cbpa.2013.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 11/21/2022]
|
27
|
Agrawal V, Miller WL. P450 oxidoreductase: genotyping, expression, purification of recombinant protein, and activity assessments of wild-type and mutant protein. Methods Mol Biol 2013; 987:225-237. [PMID: 23475681 DOI: 10.1007/978-1-62703-321-3_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
P450 oxidoreductase (POR) is the flavoprotein that transfers electrons from NADPH to microsomal cytochrome P450 enzymes and to some other proteins. Protocols for genotyping human POR for common polymorphisms are described. Expression in E. coli of recombinant human POR, its purification, and different methods of assessing the effect of amino-acid sequence variants of POR on the activity of various cytochromes P450 are also described.
Collapse
Affiliation(s)
- Vishal Agrawal
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
28
|
Yoshimoto FK, Zhou Y, Peng HM, Stidd D, Yoshimoto JA, Sharma KK, Matthew S, Auchus RJ. Minor activities and transition state properties of the human steroid hydroxylases cytochromes P450c17 and P450c21, from reactions observed with deuterium-labeled substrates. Biochemistry 2012; 51:7064-77. [PMID: 22873692 DOI: 10.1021/bi300895w] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The steroid hydroxylases CYP17A1 (P450c17, 17-hydroxylase/17,20-lyase) and CYP21A2 (P450c21, 21-hydroxylase) catalyze progesterone hydroxylation at one or more sites within a 2 Å radius. We probed their hydrogen atom abstraction mechanisms and regiochemical plasticity with deuterium-labeled substrates: 17-[(2)H]-pregnenolone; 17-[(2)H]-, 16α-[(2)H]-, 21,21,21-[(2)H(3)]-, and 21-[(2)H]-progesterone; and 21,21,21-[(2)H(3)]-17-hydroxyprogesterone. Product distribution and formation rates with recombinant human P450-oxidoreductase and wild-type human CYP17A1 or mutation A105L (reduced progesterone 16α-hydroxylation) and wild-type human CYP21A2 or mutation V359A (substantial progesterone 16α-hydroxylation) were used to calculate intramolecular and intermolecular kinetic isotope effects (KIEs). The intramolecular KIEs for CYP17A1 and mutation A105L were 4.1 and 3.8, respectively, at H-17 and 2.9 and 5.1, respectively, at H-16α. Mutation A105L 21-hydroxylates progesterone (5% of products), and wild-type CYP17A1 also catalyzes a trace of 21-hydroxylation, which increases with 16α-[(2)H]- and 17-[(2)H]-progesterone. The intramolecular KIEs with CYP21A2 mutation V359A and progesterone were 6.2 and 3.8 at H-21 and H-16α, respectively. Wild-type CYP21A2 also forms a trace of 16α-hydroxyprogesterone, which increased with 21,21,21-[(2)H(3)]-progesterone substrate. Competitive intermolecular KIEs paralleled the intramolecular KIE values, with (D)V values of 1.4-5.1 and (D)V/K values of 1.8-5.1 for these reactions. CYP17A1 and CYP21A2 mutation V359A both 16α-hydroxylate 16α-[(2)H]-progesterone with 33-44% deuterium retention, indicating stereochemical inversion. We conclude that human CYP17A1 has progesterone 21-hydroxylase activity and human CYP21A2 has progesterone 16α-hydroxylase activity, both of which are enhanced with deuterated substrates. The transition states for C-H bond cleavage in these hydroxylation reactions are either significantly nonlinear and/or asymmetric, and C-H bond breakage is partially rate-limiting for all reactions.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|