1
|
López-Merino E, Cuartero MI, Esteban JA, Briz V. Perinatal exposure to pesticides alters synaptic plasticity signaling and induces behavioral deficits associated with neurodevelopmental disorders. Cell Biol Toxicol 2023; 39:2089-2111. [PMID: 35137321 PMCID: PMC10547633 DOI: 10.1007/s10565-022-09697-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Increasing evidence from animal and epidemiological studies indicates that perinatal exposure to pesticides cause developmental neurotoxicity and may increase the risk for psychiatric disorders such as autism and intellectual disability. However, the underlying pathogenic mechanisms remain largely elusive. This work was aimed at testing the hypothesis that developmental exposure to different classes of pesticides hijacks intracellular neuronal signaling contributing to synaptic and behavioral alterations associated with neurodevelopmental disorders (NDD). Low concentrations of organochlorine (dieldrin, endosulfan, and chlordane) and organophosphate (chlorpyrifos and its oxon metabolite) pesticides were chronically dosed ex vivo (organotypic rat hippocampal slices) or in vivo (perinatal exposure in rats), and then biochemical, electrophysiological, behavioral, and proteomic studies were performed. All the pesticides tested caused prolonged activation of MAPK/ERK pathway in a concentration-dependent manner. Additionally, some of them impaired metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). In the case of the pesticide chlordane, the effect was attributed to chronic modulation of MAPK/ERK signaling. These synaptic alterations were reproduced following developmental in vivo exposure to chlordane and chlorpyrifos-oxon, and were also associated with prototypical behavioral phenotypes of NDD, including impaired motor development, increased anxiety, and social and memory deficits. Lastly, proteomic analysis revealed that these pesticides differentially regulate the expression of proteins in the hippocampus with pivotal roles in brain development and synaptic signaling, some of which are associated with NDD. Based on these results, we propose a novel mechanism of synaptic dysfunction, involving chronic overactivation of MAPK and impaired mGluR-LTD, shared by different pesticides which may have important implications for NDD.
Collapse
Affiliation(s)
| | - María I Cuartero
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| | - Víctor Briz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
2
|
Frau R, Traccis F, Concas L, Cadeddu R, Mosher LJ, Nordkild P, Gaikwad NW, Bortolato M. Prefrontal allopregnanolone synergizes with D 1 receptor activation to disrupt sensorimotor gating in male Sprague-Dawley rats. Psychopharmacology (Berl) 2023; 240:1359-1372. [PMID: 37129616 DOI: 10.1007/s00213-023-06375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
RATIONALE The prepulse inhibition (PPI) of the startle reflex is the best-established index of sensorimotor gating. We documented that the neurosteroid allopregnanolone (AP) is necessary to reduce PPI in response to D1 dopamine receptor agonists. Since Sprague-Dawley (SD) rats are poorly sensitive to the PPI-disrupting effects of these drugs, we hypothesized that AP might increase this susceptibility. OBJECTIVES We tested whether AP is sufficient to increase the vulnerability of SD rats to PPI deficits in response to the D1 receptor full agonist SKF82958. METHODS SD rats were tested for PPI after treatment with SKF82958 (0.05-0.3 mg/kg, SC) in combination with either intraperitoneal (1-10 mg/kg) or intracerebral (0.5 μg/μl/side) AP administration into the medial prefrontal cortex (mPFC) or nucleus accumbens shell. To rule out potential confounds, we measured whether SKF82958 affected the endogenous mPFC levels of AP. RESULTS SD rats exhibited marked PPI deficits in response to the combination of systemic and intra-mPFC AP with SKF82958 but not with the D2 receptor agonist quinpirole (0.3-0.6 mg/kg, SC). SKF82958 did not elevate mPFC levels of AP but enhanced the content of its precursor progesterone. The PPI deficits caused by SKF82958 in combination with AP were opposed by the AP antagonist isoallopregnanolone (10 mg/kg, IP) and the glutamate NMDA receptor positive modulator CIQ (5 mg/kg, IP). CONCLUSION These results suggest that AP enables the detrimental effects of D1 receptor activation on sensorimotor gating. AP antagonism or glutamatergic modulation counters these effects and may have therapeutic potential for neuropsychiatric disorders characterized by gating deficits.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
- Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| | - Francesco Traccis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Luca Concas
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Laura J Mosher
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | | | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
3
|
McCarthny CR, Du X, Wu YC, Hill RA. Investigating the Interactive Effects of Sex Steroid Hormones and Brain-Derived Neurotrophic Factor during Adolescence on Hippocampal NMDA Receptor Expression. Int J Endocrinol 2018; 2018:7231915. [PMID: 29666640 PMCID: PMC5831834 DOI: 10.1155/2018/7231915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/05/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Sex steroid hormones have neuroprotective properties which may be mediated by brain-derived neurotrophic factor (BDNF). This study sought to determine the interactive effects of preadolescent hormone manipulation and BDNF heterozygosity (+/-) on hippocampal NMDA-R expression. Wild-type and BDNF+/- mice were gonadectomised, and females received either 17β-estradiol or progesterone treatment, while males received either testosterone or dihydrotestosterone (DHT) treatment. Dorsal (DHP) and ventral hippocampus (VHP) were dissected, and protein expression of GluN1, GluN2A, GluN2B, and PSD-95 was assessed by Western blot analysis. Significant genotype × OVX interactions were found for GluN1 and GluN2 expression within the DHP of female mice, suggesting modulation of select NMDA-R levels by female sex hormones is mediated by BDNF. Furthermore, within the DHP BDNF+/- mice show a hypersensitive response to hormone treatment on GluN2 expression which may result from upstream alterations in TrkB phosphorylation. In contrast to the DHP, the VHP showed no effects of hormone manipulation but significant effects of genotype on NMDA-R expression. Castration had no effect on NMDA-R expression; however, androgen treatment had selective effects on GluN2B. These data show case distinct, interactive roles for sex steroid hormones and BDNF in the regulation of NMDA-R expression that are dependent on dorsal versus ventral hippocampal region.
Collapse
Affiliation(s)
- Cushla R. McCarthny
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Xin Du
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - YeeWen Candace Wu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel A. Hill
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Wang Y, Zhang X, Song Z, Gu F. An anti-CAPN5 intracellular antibody acts as an inhibitor of CAPN5-mediated neuronal degeneration. Oncotarget 2017; 8:100312-100325. [PMID: 29245980 PMCID: PMC5725022 DOI: 10.18632/oncotarget.22221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
CAPN5 has been linked to autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV). Activation of CAPN5 may increase proteolysis and degradation of a wide range of substrates to induce degeneration in the retina and the nerve system. Thus, we developed an inhibitory intracellular single chain variable fragment (scFv) against CAPN5 as a potential way to rescue degeneration in ADNIV disease or in neuronal degeneration. We report that overexpression CAPN5 increases the levels of the auto-inflammatory factors toll like receptor 4 (TLR4), interleukin 1 alpha (IL1alpha), tumor necrosis factor alpha (TNFalpha) and activated caspase 3 in 661W photoreceptor-like cells and SHSY5Y neuronal-like cells. Both C4 and C8 scFvs specifically recognize human/mouse CAPN5 in 661W cells and SHSY5Y cells, moreover, both the C4 and C8 scFvs protected cells from CAPN5-induced apoptosis by reducing the levels of activated caspase 3 and caspase 9. The cellular expression C4 scFv reduced levels of the pro-inflammatory factor IL1-alpha activated caspase 3 in cells after CAPN5 overexpression. We suggest that CAPN5 expression has important functional consequences in auto-inflammatory processes, and apoptosis in photoreceptor like cells and neural-like cells. Importantly, the specific intracellular targeting of antibody fragments blocking activation of CAPN5 act as inhibitors of CAPN5 functions in neural like cells, thus, our data provides a novel potential tool for therapy in CAPN5-mediated ADNIV or neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory, Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao Zhang
- State Key Laboratory, Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zongming Song
- State Key Laboratory, Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.,Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Feng Gu
- State Key Laboratory, Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
5
|
Calpain-1 and Calpain-2: The Yin and Yang of Synaptic Plasticity and Neurodegeneration. Trends Neurosci 2016; 39:235-245. [PMID: 26874794 DOI: 10.1016/j.tins.2016.01.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/09/2023]
Abstract
Many signaling pathways participate in both synaptic plasticity and neuronal degeneration. While calpains participate in these phenomena, very few studies have evaluated the respective roles of the two major calpain isoforms in the brain, calpain-1 and calpain-2. We review recent studies indicating that calpain-1 and calpain-2 exhibit opposite functions in both synaptic plasticity and neurodegeneration. Calpain-1 activation is required for the induction of long-term potentiation (LTP) and is generally neuroprotective, while calpain-2 activation limits the extent of potentiation and is neurodegenerative. This duality of functions is related to their associations with different PDZ-binding proteins, resulting in differential subcellular localization, and offers new therapeutic opportunities for a number of indications in which these proteases have previously been implicated.
Collapse
|
6
|
Marx CE, Lee J, Subramaniam M, Rapisarda A, Bautista DCT, Chan E, Kilts JD, Buchanan RW, Wai EP, Verma S, Sim K, Hariram J, Jacob R, Keefe RSE, Chong SA. Proof-of-concept randomized controlled trial of pregnenolone in schizophrenia. Psychopharmacology (Berl) 2014; 231:3647-62. [PMID: 25030803 DOI: 10.1007/s00213-014-3673-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/22/2014] [Indexed: 11/28/2022]
Abstract
RATIONALE Preclinical and clinical data suggest that pregnenolone may be a promising therapeutic in schizophrenia. Pregnenolone is neuroprotective and enhances learning and memory, myelination, and microtubule polymerization. Treatment with pregnenolone elevates allopregnanolone (a neurosteroid that enhances GABAA receptor responses) and pregnenolone sulfate (a positive NMDA receptor modulator). Pregnenolone could thus potentially mitigate GABA dysregulation and/or NMDA receptor hypofunction in schizophrenia via metabolism to other neurosteroids. OBJECTIVE The objective of this study is to conduct a randomized controlled trial of adjunctive pregnenolone in schizophrenia. METHODS Following a placebo lead-in, 120 participants were randomized to pregnenolone or placebo for 8 weeks (Institute for Mental Health, Singapore). Primary endpoints were changes in MATRICS Consensus Cognitive Battery (MCCB) composite scores (cognitive symptoms), UCSD Performance-based Skills Assessment-Brief (UPSA-B) composite scores (functional capacity), and Scale for Assessment of Negative Symptoms (SANS) total scores (negative symptoms). A modified intent-to-treat analysis approach was utilized. RESULTS No significant changes compared to placebo were demonstrated in composite MCCB scores. In contrast, participants randomized to pregnenolone (n = 56) demonstrated greater improvements in functional capacity (UPSA-B composite changes) compared to placebo (n = 55), p = 0.03. Pregnenolone was also superior to placebo in the communication subscale of the UPSA-B (p < 0.001). Serum pregnenolone changes post-treatment were correlated with UPSA-B composite score changes in females (r s = 0.497, p < 0.042, n = 17) but not in males. Mean total SANS scores were very low at baseline and did not improve further post-treatment. Pregnenolone was well-tolerated. CONCLUSIONS Pregnenolone improved functional capacity in participants with schizophrenia, but did not improve cognitive symptoms over an 8-week treatment period. Neurosteroid changes correlated with functional improvements in female participants. Neurosteroid interventions may exhibit promise as new therapeutic leads for schizophrenia.
Collapse
Affiliation(s)
- Christine E Marx
- Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Distinct roles for μ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci 2014; 33:18880-92. [PMID: 24285894 DOI: 10.1523/jneurosci.3293-13.2013] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prolonged calpain activation is widely recognized as a key component of neurodegeneration in a variety of pathological conditions. Numerous reports have also indicated that synaptic activation of NMDA receptors (NMDARs) provides neuroprotection against a variety of insults. Here, we report the paradoxical finding that such neuroprotection involves calpain activation. NMDAR activation in cultured rat cortical neurons was neuroprotective against starvation and oxidative stress-induced damage. It also resulted in the degradation of two splice variants of PH domain and Leucine-rich repeat Protein Phosphatase 1 (PHLPP1), PHLPP1α and PHLPP1β, which inhibit the Akt and ERK1/2 pathways. Synaptic NMDAR-induced neuroprotection and PHLPP1 degradation were blocked by calpain inhibition. Lentiviral knockdown of PHLPP1 mimicked the neuroprotective effects of synaptic NMDAR activation and occluded the effects of calpain inhibition on neuroprotection. In contrast to synaptic NMDAR activation, extrasynaptic NMDAR activation had no effect on PHLPP1 and the Akt and ERK1/2 pathways, but resulted in calpain-mediated degradation of striatal-enriched protein tyrosine phosphatase (STEP) and neuronal death. Using μ-calpain- and m-calpain-selective inhibitors and μ-calpain and m-calpain siRNAs, we found that μ-calpain-dependent PHLPP1 cleavage was involved in synaptic NMDAR-mediated neuroprotection, while m-calpain-mediated STEP degradation was associated with extrasynaptic NMDAR-induced neurotoxicity. Furthermore, m-calpain inhibition reduced while μ-calpain knockout exacerbated NMDA-induced neurotoxicity in acute mouse hippocampal slices. Thus, synaptic NMDAR-coupled μ-calpain activation is neuroprotective, while extrasynaptic NMDAR-coupled m-calpain activation is neurodegenerative. These results help to reconcile a number of contradictory results in the literature and have critical implications for the understanding and potential treatment of neurodegenerative diseases.
Collapse
|
8
|
Briz V, Baudry M. Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons through Different Molecular Mechanisms. Front Endocrinol (Lausanne) 2014; 5:22. [PMID: 24611062 PMCID: PMC3933789 DOI: 10.3389/fendo.2014.00022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/13/2014] [Indexed: 12/21/2022] Open
Abstract
Estrogen rapidly modulates hippocampal synaptic plasticity by activating selective membrane-associated receptors. Reorganization of the actin cytoskeleton and stimulation of mammalian target of rapamycin (mTOR)-mediated protein synthesis are two major events required for the consolidation of hippocampal long-term potentiation and memory. Estradiol regulates synaptic plasticity by interacting with both processes, but the underlying molecular mechanisms are not yet fully understood. Here, we used acute rat hippocampal slices to analyze the mechanisms underlying rapid changes in mTOR activity and actin polymerization elicited by estradiol. Estradiol-induced mTOR phosphorylation was preceded by rapid and transient activation of both extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) and by phosphatase and tensin homolog (PTEN) degradation. These effects were prevented by calpain and ERK inhibitors. Estradiol-induced mTOR stimulation did not require activation of classical estrogen receptors (ER), as specific ERα and ERβ agonists (PPT and DPN, respectively) failed to mimic this effect, and ER antagonists could not block it. Estradiol rapidly activated both RhoA and p21-activated kinase (PAK). Furthermore, a specific inhibitor of RhoA kinase (ROCK), H1152, and a potent and specific PAK inhibitor, PF-3758309, blocked estradiol-induced cofilin phosphorylation and actin polymerization. ER antagonists also blocked these effects of estrogen. Consistently, both PPT and DPN stimulated PAK and cofilin phosphorylation as well as actin polymerization. Finally, the effects of estradiol on actin polymerization were insensitive to protein synthesis inhibitors, but its stimulation of mTOR activity was impaired by latrunculin A, a drug that disrupts actin filaments. Taken together, our results indicate that estradiol regulates local protein synthesis and cytoskeletal reorganization via different molecular mechanisms and signaling pathways.
Collapse
Affiliation(s)
- Victor Briz
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- *Correspondence: Michel Baudry, Graduate College of Biomedical Sciences, Western University of Health Sciences, NSC, Room 102C, 309 E. 2nd Street, Pomona, CA 91766-1854, USA e-mail:
| |
Collapse
|