1
|
Balough JL, Dipali SS, Velez K, Kumar TR, Duncan FE. Hallmarks of female reproductive aging in physiologic aging mice. NATURE AGING 2024; 4:1711-1730. [PMID: 39672896 DOI: 10.1038/s43587-024-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The female reproductive axis is one of the first organ systems to age, which has consequences for fertility and overall health. Here, we provide a comprehensive overview of the biological process of female reproductive aging across reproductive organs, tissues and cells based on research with widely used physiologic aging mouse models, and describe the mechanisms that underpin these phenotypes. Overall, aging is associated with dysregulation of the hypothalamic-pituitary-ovarian axis, perturbations of the ovarian stroma, reduced egg quantity and quality, and altered uterine morphology and function that contributes to reduced capacity for fertilization and impaired embryo development. Ultimately, these age-related phenotypes contribute to altered pregnancy outcomes and adverse consequences in offspring. Conserved mechanisms of aging, as well as those unique to the reproductive system, underlie these phenotypes. The knowledge of such mechanisms will lead to development of therapeutics to extend female reproductive longevity and support endocrine function and overall health.
Collapse
Affiliation(s)
- Julia L Balough
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - Shweta S Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca E Duncan
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Zaniker EJ, Zhang J, Russo D, Huang R, Suritis K, Drake RS, Barlow-Smith E, Shalek AK, Woodruff TK, Xiao S, Goods BA, Duncan FE. Follicle-intrinsic and spatially distinct molecular programs drive follicle rupture and luteinization during ex vivo mammalian ovulation. Commun Biol 2024; 7:1374. [PMID: 39443665 PMCID: PMC11500180 DOI: 10.1038/s42003-024-07074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
During ovulation, the apical wall of the preovulatory follicle breaks down to facilitate gamete release. In parallel, the residual follicle wall differentiates into a progesterone-producing corpus luteum. Disruption of ovulation, whether through contraceptive intervention or infertility, has implications for women's health. In this study, we harness the power of an ex vivo ovulation model and machine-learning guided microdissection to identify differences between the ruptured and unruptured sides of the follicle wall. We demonstrate that the unruptured side exhibits clear markers of luteinization after ovulation while the ruptured side exhibits cell death signals. RNA-sequencing of individual follicle sides reveals 2099 differentially expressed genes (DEGs) between follicle sides without ovulation induction, and 1673 DEGs 12 h after induction of ovulation. Our model validates molecular patterns consistent with known ovulation biology even though this process occurs in the absence of the ovarian stroma, vasculature, and immune cells. We further identify previously unappreciated pathways including amino acid transport and Jag-Notch signaling on the ruptured side and glycolysis, metal ion processing, and IL-11 signaling on the unruptured side of the follicle. This study yields key insights into follicle-inherent, spatially-defined pathways that underlie follicle rupture, which may further understanding of ovulation physiology and advance women's health.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Daniela Russo
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Ruixu Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Kristine Suritis
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Riley S Drake
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Alex K Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Dobranowska K, Plińska S, Dobosz A. Dietary and Lifestyle Management of Functional Hypothalamic Amenorrhea: A Comprehensive Review. Nutrients 2024; 16:2967. [PMID: 39275282 PMCID: PMC11397038 DOI: 10.3390/nu16172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Functional Hypothalamic Amenorrhea (FHA) is a condition characterized by the absence of menstruation, which is increasingly affecting young women. However, specific recommendations for treating and preventing this condition are lacking. Based on a review of the available literature, this article provides practical and feasible dietary management recommendations for healthcare professionals and researchers in women's health and nutrition. It answers the question of what interventions and nutritional recommendations are necessary to restore menstrual function in women struggling with FHA. Physicians recommend an energy availability threshold of 30 kcal/kg FFM/day to prevent FHA. Also, energy availability below and above this threshold can inhibit LH pulsation and cause menstrual disorders. In addition, the risk of menstrual disorders increases with a decrease in the caloric content of the diet and the duration of the energy deficit, and women with FHA have significantly lower energy availability than healthy women. It is essential to ensure that adequate kilocalories are provided throughout the day (regular meals that are a source of proper glucose) to avoid a negative energy balance, as glucose has been proven to affect LH pulses and T3 and cortisol concentrations in the body. Dietary intervention should focus on increasing the caloric content of the diet, thus increasing energy availability and restoring energy balance in the body. Treatment and diagnosis should also focus on body composition, not just body weight. An increase in body fat percentage above 22% may be required to restore menstrual function. In women with FHA, even an increase in body fat mass of one kilogram (kg) increases the likelihood of menstruation by 8%. It is advisable to reduce the intensity of physical activity or training volume, while it is not advisable to give up physical activity altogether. It is also important to ensure adequate intake of micronutrients, reduce stress, and incorporate cognitive-behavioral therapy.
Collapse
Affiliation(s)
- Katarzyna Dobranowska
- Division of Basic Medical Sciences, Department of Basic Medical Sciences and Immunology, Wroclaw Medical University, Borowska 211 Str., 50-556 Wrocław, Poland
| | - Stanisława Plińska
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211a Str., 50-556 Wrocław, Poland
| | - Agnieszka Dobosz
- Division of Basic Medical Sciences, Department of Basic Medical Sciences and Immunology, Wroclaw Medical University, Borowska 211 Str., 50-556 Wrocław, Poland
| |
Collapse
|
4
|
Liu WJ, Li LS, Lan MF, Shang JZ, Zhang JX, Xiong WJ, Lai XL, Duan X. Zinc deficiency deteriorates ovarian follicle development and function by inhibiting mitochondrial function. J Ovarian Res 2024; 17:115. [PMID: 38807213 PMCID: PMC11134637 DOI: 10.1186/s13048-024-01442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Zinc (Zn) is a crucial trace element essential for human growth and development, particularly for reproductive health. Previous research has shown a decrease in serum zinc concentration with age and individuals with conditions such as polycystic ovary syndrome (PCOS) and diabetes mellitus. However, the specific effects of zinc deficiency on the female reproductive system, especially ovarian function, are not fully understood. In our study, we observed a significant reduction in the total number of follicles and mature follicles in the zinc deficiency group. This reduction correlated with decreased level of anti-Mullerian hormone (AMH) and abnormal gene expression affecting hormone secretion regulation. Furthermore, we found that zinc deficiency disrupted mitochondrial dynamics, leading to oxidative stress in the ovaries, which further inhibited autophagy and increased ovarian apoptosis. These changes ultimately resulted in the failure of germinal vesicle breakdown (GVBD) and reduced oocyte quality. Meanwhile, administration of zinc glycine effectively alleviated the oocyte meiotic arrest caused by dietary zinc deficiency. In conclusion, our findings demonstrated that dietary zinc deficiency can affect hormone secretion and follicle maturation by impairing mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Wen-Jiao Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Li-Shu Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Meng-Fan Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jian-Zhou Shang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jin-Xin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Wen-Jie Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xin-Le Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
5
|
Sage MAG, Duffy DM. Novel Plasma Membrane Androgen Receptor SLC39A9 Mediates Ovulatory Changes in Cells of the Monkey Ovarian Follicle. Endocrinology 2024; 165:bqae071. [PMID: 38889246 PMCID: PMC11212825 DOI: 10.1210/endocr/bqae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Follicular androgens are important for successful ovulation and fertilization. The classical nuclear androgen receptor (AR) is a transcription factor expressed in the cells of the ovarian follicle. Androgen actions can also occur via membrane androgen receptor SLC39A9. Studies in fish ovary demonstrated that androgens bind to SLC39A9 and increase intracellular zinc to regulate ovarian cell function. To determine if SLC39A9 is expressed and functional in the key cell types of the mammalian ovulatory follicle, adult female cynomolgus macaques underwent ovarian stimulation. Ovaries or ovarian follicular aspirates were harvested at 0, 12, 24, and 36 hours after human chorionic gonadotropin (hCG). SLC39A9 and AR mRNA and protein were present in granulosa, theca, and vascular endothelial cells across the entire 40-hour ovulatory window. Testosterone, bovine serum albumin-conjugated testosterone (BSA-T), and androstenedione stimulated zinc influx in granulosa, theca, and vascular endothelial cells. The SLC39A9-selective agonist (-)-epicatechin also stimulated zinc influx in vascular endothelial cells. Taken together, these data support the conclusion that SLC39A9 activation via androgen induces zinc influx in key ovarian cells. Testosterone, BSA-T, and androstenedione each increased proliferation in vascular endothelial cells, indicating the potential involvement of SLC39A9 in ovulatory angiogenesis. Vascular endothelial cell migration also increased after treatment with testosterone, but not after treatment with BSA-T or androstenedione, suggesting that androgens stimulate vascular endothelial cell migration through nuclear AR but not SLC39A9. The presence of SLC39A9 receptors and SLC39A9 activation by follicular androstenedione concentrations suggests that androgen activation of ovarian SLC39A9 may regulate ovulatory changes in the mammalian follicle.
Collapse
Affiliation(s)
- Megan A G Sage
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
6
|
Kapper C, Oppelt P, Ganhör C, Gyunesh AA, Arbeithuber B, Stelzl P, Rezk-Füreder M. Minerals and the Menstrual Cycle: Impacts on Ovulation and Endometrial Health. Nutrients 2024; 16:1008. [PMID: 38613041 PMCID: PMC11013220 DOI: 10.3390/nu16071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The role of minerals in female fertility, particularly in relation to the menstrual cycle, presents a complex area of study that underscores the interplay between nutrition and reproductive health. This narrative review aims to elucidate the impacts of minerals on key aspects of the reproductive system: hormonal regulation, ovarian function and ovulation, endometrial health, and oxidative stress. Despite the attention given to specific micronutrients in relation to reproductive disorders, there is a noticeable absence of a comprehensive review focusing on the impact of minerals throughout the menstrual cycle on female fertility. This narrative review aims to address this gap by examining the influence of minerals on reproductive health. Each mineral's contribution is explored in detail to provide a clearer picture of its importance in supporting female fertility. This comprehensive analysis not only enhances our knowledge of reproductive health but also offers clinicians valuable insights into potential therapeutic strategies and the recommended intake of minerals to promote female reproductive well-being, considering the menstrual cycle. This review stands as the first to offer such a detailed examination of minerals in the context of the menstrual cycle, aiming to elevate the understanding of their critical role in female fertility and reproductive health.
Collapse
Affiliation(s)
- Celine Kapper
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Peter Oppelt
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
- Department for Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Clara Ganhör
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Ayberk Alp Gyunesh
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Barbara Arbeithuber
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Patrick Stelzl
- Department for Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Marlene Rezk-Füreder
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| |
Collapse
|
7
|
Keane JA, Ealy AD. An Overview of Reactive Oxygen Species Damage Occurring during In Vitro Bovine Oocyte and Embryo Development and the Efficacy of Antioxidant Use to Limit These Adverse Effects. Animals (Basel) 2024; 14:330. [PMID: 38275789 PMCID: PMC10812430 DOI: 10.3390/ani14020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The in vitro production (IVP) of bovine embryos has gained popularity worldwide and in recent years and its use for producing embryos from genetically elite heifers and cows has surpassed the use of conventional superovulation-based embryo production schemes. There are, however, several issues with the IVP of embryos that remain unresolved. One limitation of special concern is the low efficiency of the IVP of embryos. Exposure to reactive oxygen species (ROS) is one reason why the production of embryos with IVP is diminished. These highly reactive molecules are generated in small amounts through normal cellular metabolism, but their abundances increase in embryo culture because of oocyte and embryo exposure to temperature fluctuations, light exposure, pH changes, atmospheric oxygen tension, suboptimal culture media formulations, and cryopreservation. When uncontrolled, ROS produce detrimental effects on the structure and function of genomic and mitochondrial DNA, alter DNA methylation, increase lipid membrane damage, and modify protein activity. Several intrinsic enzymatic pathways control ROS abundance and damage, and antioxidants react with and reduce the reactive potential of ROS. This review will focus on exploring the efficiency of supplementing several of these antioxidant molecules on oocyte maturation, sperm viability, fertilization, and embryo culture.
Collapse
Affiliation(s)
| | - Alan D. Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| |
Collapse
|
8
|
Hu Y, Zhang D, Zhang Q, Yin T, Jiang T, He S, Li M, Yue X, Luo G, Tao F, Cao Y, Ji D, Ji Y, Liang C. Serum Cu, Zn and IL-1β Levels May Predict Fetal Miscarriage Risk After IVF Cycles: A Nested Case-Control Study. Biol Trace Elem Res 2023; 201:5561-5574. [PMID: 36964416 DOI: 10.1007/s12011-023-03621-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
To explore the association between serum-related indicators (levels of inflammatory cytokines and essential trace elements) and miscarriage risk among infertile women undergoing assisted reproductive techniques (ART) on the 14th day after embryo transfer, and to develop and establish a multivariable algorithm model that might predict pregnancy outcome. According to a nested case-control study design, a total of 100 miscarriage cases and 100 live birth controls were included in this study, and women in both groups were infertile and have underwent in vitro fertilization (IVF). Pregnancy tests were performed and serum levels of five essential trace elements (vanadium (V), copper (Cu), zinc (Zn), selenium (Se) and molybdenum (Mo)) and five inflammatory cytokines (interleukin-1β (IL-1β), IL-6, IL-8, IL-10 and tumor necrosis factor-α (TNF-α)) of the participants were measured on the 14th day after embryo transfer. The serum levels of five inflammatory cytokines were determined by multiple magnetic bead enzyme immunity analyzer; and the serum concentrations of five elements were determined simultaneously by inductively coupled plasma‒mass spectrometry (ICP ‒ MS). The logistic regression was used to evaluate the relationship between these serum indices and miscarriage risk among women undergoing ART, and a predictive model of pregnancy outcome based on these indices was established. The levels of IL-10, IL-1β and TNF-α of infertile women in the live birth group were significantly higher than those in the miscarriage group (p = 0.009, p < 0.001, p = 0.006), and the levels of V, Cu, Zn and Se of infertile women in the live birth group were also significantly higher than those in the miscarriage group (all p < 0.001). Through logistic regression analyses, we found that serum levels of IL-1β, TNF-α, V, Cu, Zn and Se were significantly and negatively associated with miscarriage risk. Different combination prediction models were generated according to the results of logistic regression analyses, and the combination of IL-1β, Cu and Zn had the best prediction performance. The area under the curve (AUC) was 0.776, the sensitivity of the model was 60% and the specificity was 84%. In conclusion, the serum-related indicators of women undergoing ART on the 14th day after embryo transfer, including the inflammatory cytokines such as IL-1β and TNF-α and the essential trace metal elements such as V, Cu, Zn and Se, were negatively correlated with miscarriage risk. A multivariate algorithm model to predict pregnancy outcome among women undergoing ART was established, which showed that IL-1β, Cu and Zn might synergistically predict pregnancy outcome.
Collapse
Affiliation(s)
- Yuan Hu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongyang Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Tao Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mengzhu Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Yue
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guiying Luo
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yanli Ji
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
9
|
Dong Z, Zhang L, Wang W, Jiang F, Ai H. ZnSO 4 Protects against premature ovarian failure through PI3K/AKT/GSK3β signaling pathway. Theriogenology 2023; 207:61-71. [PMID: 37269597 DOI: 10.1016/j.theriogenology.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Zinc (Zn) is an essential trace element with anti-inflammatory and antioxidant effects and plays a crucial role in the female reproductive system. We aimed to investigate the protective effect of ZnSO4 on premature ovarian failure (POF) in SD rats and granulosa cells (GCs) treated with cisplatin. We also explored the underlying mechanisms. In vivo experiments showed that ZnSO4 increased the serum levels of Zn2+, increased estrogen (E2) secretion, and decreased follicle-stimulating hormone (FSH) secretion in rats. ZnSO4 increased ovarian index, protected ovarian tissues and blood vessels, reduced excessive follicular atresia, and maintained follicular development. At the same time, ZnSO4 inhibited apoptosis in the ovaries. In vitro experiments showed that ZnSO4 combination treatment restored the intracellular levels of Zn2+ and inhibited the apoptosis of GCs. ZnSO4 inhibited cisplatin-induced reactive oxygen species (ROS) production and preserved mitochondrial membrane potential (MMP). We also found that ZnSO4 protected against POF by activating the PI3K/AKT/GSK3β signaling pathway and reducing apoptosis of GCs. These data suggest that ZnSO4 may be a potential therapeutic agent for protecting the ovaries and preserving fertility during chemotherapy.
Collapse
Affiliation(s)
- Zhe Dong
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Lu Zhang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Wang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan Jiang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Hao Ai
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
10
|
Camp OG, Bembenek JN, Goud PT, Awonuga AO, Abu-Soud HM. The Implications of Insufficient Zinc on the Generation of Oxidative Stress Leading to Decreased Oocyte Quality. Reprod Sci 2023; 30:2069-2078. [PMID: 36920672 PMCID: PMC11047769 DOI: 10.1007/s43032-023-01212-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Zinc is a transition metal that displays wide physiological implications ranging from participation in hundreds of enzymes and proteins to normal growth and development. In the reproductive tract of both sexes, zinc maintains a functional role in spermatogenesis, ovulation, fertilization, normal pregnancy, fetal development, and parturition. In this work, we review evidence to date regarding the importance of zinc in oocyte maturation and development, with emphasis on the role of key zinc-binding proteins, as well as examine the effects of zinc and reactive oxygen species (ROS) on oocyte quality and female fertility. We summarize our current knowledge about the participation of zinc in the developing oocyte bound to zinc finger proteins as well as loosely bound zinc ion in the intracellular and extracellular environments. These include aspects related to (1) the impact of zinc deficiency and overwhelming production of ROS under inflammatory conditions on the offset of the physiological antioxidant machinery disturbing biomolecules, proteins, and cellular processes, and their role in contributing to further oxidative stress; (2) the role of ROS in modulating damage to proteins containing zinc, such as zinc finger proteins and nitric oxide synthases (NOS), and expelling the zinc resulting in loss of protein function; and (3) clarify the different role of oxidative stress and zinc deficiency in the pathophysiology of infertility diseases with special emphasis on endometriosis-associated infertility.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Joshua N Bembenek
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Pravin T Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA
- Laurel Fertility Care, San Francisco, CA, 94109, USA
- California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
11
|
Yao Y, Tang Y, Qin H, Meng R, Zhang C, Zhang Y, Yang Y, Qiao P, Liu J, Su J. Zinc supplementation promotes oocyte maturation and subsequent embryonic development in sheep. Theriogenology 2023; 206:161-169. [PMID: 37210940 DOI: 10.1016/j.theriogenology.2023.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Zinc plays a crucial role in the growth and reproductive functions of animals. Despite the positive effects of zinc that have been reported in oocytes of cows, pigs, yaks, and other animals, the influence of zinc on sheep is little known. To investigate the effect of zinc on the in vitro maturation of sheep oocytes and subsequent parthenogenesis-activated embryonic development, we added different concentrations of zinc sulfate to the in vitro maturation (IVM) culture medium. The IVM culture medium with zinc improved the maturation of sheep oocytes and the subsequent blastocyst rate after parthenogenesis activation. Notably, it also enhanced the level of glutathione and mitochondrial activity while reducing levels of reactive oxygen species. Thus, zinc addition to the IVM medium improved the quality of oocytes with a positive effect on the subsequent development of oocytes and embryos.
Collapse
Affiliation(s)
- Yupei Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi Province, 712100, PR China
| | - Yujie Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi Province, 712100, PR China
| | - Haoqiang Qin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi Province, 712100, PR China
| | - Ru Meng
- Xining Animal Disease Prevention and Control Center, Xining, Qinghai Province, 810003, PR China
| | - Chengtu Zhang
- Xining Animal Disease Prevention and Control Center, Xining, Qinghai Province, 810003, PR China
| | - Yingbing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi Province, 712100, PR China
| | - Ying Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi Province, 712100, PR China
| | - Peipei Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi Province, 712100, PR China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi Province, 712100, PR China.
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi Province, 712100, PR China.
| |
Collapse
|
12
|
Lai XL, Xiong WJ, Li LS, Lan MF, Zhang JX, Zhou YT, Niu D, Duan X. Zinc deficiency compromises the maturational competence of porcine oocyte by inducing mitophagy and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114593. [PMID: 36724708 DOI: 10.1016/j.ecoenv.2023.114593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Zinc, an essential trace mineral, plays a pivotal role in cell proliferation, maintenance of redox homeostasis, apoptosis, and aging. Serum zinc concentrations are reduced in patients with polycystic ovary syndrome (PCOS). However, the underlying mechanism of the effects of zinc deficiency on the female reproductive system, especially oocyte quality, has not been fully elucidated. Thus, we established an in vitro experimental model by adding N,N,N',N'-Tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) into the culture medium, and to determine the potential regulatory function of zinc during porcine oocytes maturation. In the present study, we found that zinc deficiency caused aberrant meiotic progress, accompanied by the disrupted cytoskeleton structure in porcine oocytes. Zinc deficiency impaired mitochondrial function and dynamics, leading to the increase of reactive oxygen species (ROS) and acetylation level of the antioxidative enzyme superoxide dismutase 2 (SOD2), eventually induced the occurrence of oxidative stress and early apoptosis. Moreover, zinc deficiency perturbed cytosolic Ca2+ homeostasis, lipid droplets formation, demonstrating the aberrant mitochondrial function in porcine oocytes. Importantly, we found that zinc deficiency in porcine oocytes induced the occurrence of mitophagy by activating the PTEN-induced kinase 1/Parkin signaling pathway. Collectively, our findings demonstrated that zinc was a critical trace mineral for maintaining oocyte quality by regulating mitochondrial function and autophagy in porcine oocytes.
Collapse
Affiliation(s)
- Xin-Le Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Wen-Jie Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Li-Shu Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Meng-Fan Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin-Xin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu-Ting Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
13
|
Liao X, Wu L, Yin D, Tian D, Zhou C, Liu J, Li S, Zhou J, Nie Y, Liao H, Peng C. The role of zinc in follicular development. Mol Biol Rep 2023; 50:4527-4534. [PMID: 36848006 DOI: 10.1007/s11033-023-08331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023]
Abstract
Follicles consist of specialized somatic cells that encase a single oocyte. Follicle development is a process regulated by a variety of endocrine, paracrine, and secretory factors that work together to select follicles for ovulation. Zinc is an essential nutrient for the human body and is involved in many physiological processes, such as follicle development, immune response, homeostasis, oxidative stress, cell cycle progression, DNA replication, DNA damage repair, apoptosis, and aging. Zinc deficiency can lead to blocked oocyte meiotic process, cumulus expansion, and follicle ovulation. In this mini-review, we summarize the the role of zinc in follicular development.
Collapse
Affiliation(s)
- Xingyue Liao
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Liujianxiong Wu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Dan Yin
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Dewei Tian
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Cuilan Zhou
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Suyun Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, 421001, Hunan, PR China
| | - Yulin Nie
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, 421001, Hunan, PR China
| | - Hongqing Liao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, 421001, Hunan, PR China.
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Dise Ases Prevention of Hunan Province, Department of Education, Key Laboratory of Hengyang City On Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
14
|
Otávio KS, Passos JRS, Silva RF, Lima LF, Cadenas J, Paes VM, Correia HHV, Ferreira ACA, Canafístula FG, Bezerra MJB, Oliveira LLB, Carvalho GGC, Paier CRK, Pessoa C, Guerreiro DG, Moraes MEA, Figueiredo JR, Moura AA. Comprehensive proteomic profiling of early antral follicles from sheep. Anim Reprod Sci 2023; 248:107153. [PMID: 36502761 DOI: 10.1016/j.anireprosci.2022.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The present study evaluates the proteome of early antral follicles from Ovis aries. Fifty follicles were collected from ovaries of adult ewes and extracted proteins were trypsin-digested, desalted and analyzed by LC-MS/MS. Genes were screened for potential modulation by miRNAs and protein data, subjected to functional enrichment analysis. Label-free mass spectrometry allowed the identification of 2503 follicle proteins, confirming vimentin, actin, lamin, heat shock proteins and histones as the most abundant ones. In silico analyses indicated that miRNAs modulate the expression of genes coding proteins of the sheep follicles involved in cell cycle, cell differentiation, aging, apoptosis, cell death, adipocyte differentiation, cell division. The most important biological processes associated with the follicle proteins were innate immune response, translation, adaptive immune response and protein folding, while molecular functions linked to the proteome of sheep antral follicles related to metal ion binding, ATP binding, oxygen binding, RNA binding and GTP binding, among others. Upload of 2503 Uniport accession codes through DAVID platform matched 1274 genes, associated with translation, metabolic process, proteolysis involved in cellular protein catabolic process, zona pellucida receptor complex and others. KEEG pathways analysis indicated genes correlated with ovine follicular development, with major pathways listed as carbon metabolism, biosynthesis of amino acids, glutathione metabolism, oxidative phosphorylation, fatty acid degradation and oocyte meiosis. This represents a comprehensive atlas of proteins expressed in sheep early antral follicles and will contribute to future identification of biomarkers for follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Kamila S Otávio
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - José R S Passos
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Renato F Silva
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Laritza F Lima
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Jesús Cadenas
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Victor M Paes
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Hudson H V Correia
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | | | | | | | - Laís L B Oliveira
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Guilherme G C Carvalho
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos R K Paier
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Denise G Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Elisabete A Moraes
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
15
|
Renteria M, Belkin O, Aickareth J, Jang D, Hawwar M, Zhang J. Zinc's Association with the CmPn/CmP Signaling Network in Breast Cancer Tumorigenesis. Biomolecules 2022; 12:1672. [PMID: 36421686 PMCID: PMC9687477 DOI: 10.3390/biom12111672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 08/24/2023] Open
Abstract
It is well-known that serum and cellular concentrations of zinc are altered in breast cancer patients. Specifically, there are notable zinc hyper-aggregates in breast tumor cells when compared to normal mammary epithelial cells. However, the mechanisms responsible for zinc accumulation and the consequences of zinc dysregulation are poorly understood. In this review, we detailed cellular zinc regulation/dysregulation under the influence of varying levels of sex steroids and breast cancer tumorigenesis to try to better understand the intricate relationship between these factors based on our current understanding of the CmPn/CmP signaling network. We also made some efforts to propose a relationship between zinc signaling and the CmPn/CmP signaling network.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
16
|
Yang B, Gong J, Jing J, Hao Y, Li S, Liu G, Feng Z, Zhao G. Effects of Zinc Methionine Hydroxy Analog Chelate on Laying Performance, Serum Hormone Levels, and Expression of Reproductive Axis Related Genes in Aged Broiler Breeders. Front Vet Sci 2022; 9:918283. [PMID: 35859808 PMCID: PMC9289673 DOI: 10.3389/fvets.2022.918283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inorganic zinc (Zn) supplements are commonly used in poultry feeds, but their low utilization results in the increase of Zn excretion. Thus, to provide a new perspective for the substitution of inorganic Zn, a novel Zn methionine hydroxy analog chelate (Zn-MHA) was studied in the present study to evaluate its effects on laying performance, serum hormone indexes and reproductive axis-related genes in broilers breeders. A total of 480 Hubbard breeders (56-week-old) were fed a basal diet (containing 27.81 mg Zn/kg) without Zn addition for 2 weeks, and then allocated to 4 groups with 6 replicates (each replicate consisting of 10 cages and 2 breeders per cage) for 10 weeks. Four treatment diets given to broiler breeders included the basal diet added with 25, 50, and 75 mg/kg of Zn-MHA and 100 mg/kg of Zn sulfate (ZnSO4). The laying rate, egg weight and feed conversation ratio increased in the 75 mg/kg Zn-MHA group compared to the ZnSO4 group. The eggshell thickness was not decreased with the addition of 50 mg/kg and 75 mg/kg Zn-MHA in the diet compared to the 100 mg/kg ZnSO4 group. There was a significant improvement in the reproductive performance of breeders in the 75 mg/kg Zn-MHA group, including the fertility and 1-day-old offspring weight. Besides, serum sex hormone levels including FSH and P4 increased significantly in 75 mg/kg Zn-MHA group. No significant effect on the ovarian weight or the number of follicles in broiler breeders was observed by supplementing Zn-MHA. Compared to the 100 mg/kg ZnSO4 group, dietary supplementation with 75 mg/kg of Zn-MHA showed an up-regulation of the FSHR mRNA in the granular layer of follicles. However, dietary supplementation of Zn-MHA had no effects on mRNA expressions of the ovarian LHR and PRLR genes. These findings reinforce the suggestion that Zn-MHA (75 mg/kg) could replace ZnSO4 (100 mg/kg) as a Zn supplement in diet of broiler breeders, which resulted in better laying and reproduction performances by regulating the expression levels of reproductive axis related genes and serum hormone levels.
Collapse
Affiliation(s)
- Bowen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jialin Jing
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanshuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shupeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guanzhong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhihua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- *Correspondence: Zhihua Feng
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Guoxian Zhao
| |
Collapse
|
17
|
Lee JH, van der Linden C, Diaz FJ, Wong PK. A reconfigurable microfluidic building block platform for high-throughput nonhormonal contraceptive screening. LAB ON A CHIP 2022; 22:2531-2539. [PMID: 35678283 DOI: 10.1039/d2lc00424k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identifying nonhormonal contraceptives will have profound impacts on avoiding side effects of hormonal birth control methods, minimizing pregnancy complications and infant mortality rates, and promoting family planning. However, phenotypic screening of contraceptives is challenging due to the diverse procedures associated with oocyte culture, biochemical assays, and molecular imaging. This study reports a multifunctional microfluidic platform comprising reconfigurable building blocks and interfaces to implement various cell-based drug screening protocols. This versatile platform has three major layers. The top layer consists of interchangeable 3D microfluidic building blocks (e.g., branching microchannels, chemical gradient generators, pumpless flow controllers, and emulsion generators) or an open interface. The middle layer incorporates a multiwell array with embedded membrane filters for live cell culture, medium exchange, enzymatic cumulus cell removal, washing, and fluorescence staining. The bottom layer is also reconfigurable for waste collection, oocyte culture, plate reader measurement, and high-resolution microscopy. We demonstrate an 8 by 16 (128 wells) system for performing the cumulus-oocyte complex (COC) expansion and oocyte maturation assays for screening nonhormonal contraceptives. The microfluidic building block platform is scalable and can be reconfigured for a variety of drug screening applications in the future.
Collapse
Affiliation(s)
- Jyong-Huei Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Carl van der Linden
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Francisco J Diaz
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
18
|
Begum MR, Ehsan M, Ehsan N. Impact of Environmental Pollution on Female Reproduction. FERTILITY & REPRODUCTION 2022. [DOI: 10.1142/s266131822230001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The increased pollution in the world atmosphere is a global concern. Water, air, and soil are polluted by various sources, such as farm fertilizer, sewage industrial waste products, fumes, and plastics, which in turn impact human health. Plastics and other mixtures of waste affect live in the water. Moreover, the ecosystem is disrupted by the use of heavy metal-containing chemicals in agriculture, and those are eventually consumed by humans. The consequences are a significant negative impact on health including reproductive health, which impairs fertility in the human population. Reproductive functions are severely affected by different chemicals which may interfere with hormonal functions. Greater consequences are faced by the women as the number of germ cells present in the ovary is fixed during fetal life, and which are nonrenewable. From the production of ovum to fertilization, to implantation, and finally continuation of pregnancy, all are affected by the heavy metals and endocrine disruptors. Lifestyle modifications such as consumption of organic foods, plastic product avoidance, separation of residential areas from industrial/agricultural areas, proper waste disposal, and so on, may help to improve the situation.
Collapse
Affiliation(s)
| | - Mariya Ehsan
- Infertility Care and Research Center (ICRC), Dhaka, Bangladesh
| | - Nazia Ehsan
- Infertility Care and Research Center (ICRC), Dhaka, Bangladesh
| |
Collapse
|
19
|
Xiong Y, Li J, He S. Zinc Protects against Heat Stress-Induced Apoptosis via the Inhibition of Endoplasmic Reticulum Stress in TM3 Leydig Cells. Biol Trace Elem Res 2022; 200:728-739. [PMID: 33738683 DOI: 10.1007/s12011-021-02673-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 01/19/2023]
Abstract
Heat stress (HS)-induced apoptosis in Leydig cells is mediated by various molecular mechanisms, including endoplasmic reticulum (ER) stress. Zinc, an inorganic mineral element, exhibits several cytoprotective properties, but its potential protective action against Leydig cell apoptosis and the related molecular mechanisms has not been fully elucidated. In this study, we evaluated the effects of zinc sulfate, a predominant chemical form of zinc, exerted on cell viability, apoptosis, and testosterone production in HS-treated TM3 Leydig cells and investigated the underlying signaling pathways. HS treatment inhibited cell viability and induced apoptosis, which was accompanied by the induction of the activity of caspase 3, an executioner of apoptosis, involved in the expression of pro-apoptotic protein B cell lymphoma 2-associated X protein (Bax), and in the reduction of the expression of anti-apoptotic protein B cell lymphoma 2 (Bcl-2), thereby activating ER stress marker protein expression (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)). However, zinc sulfate led to the attenuation of deleterious effects, including increases in apoptosis, caspase-3 activity, Bax, GRP78, and CHOP expression, and decreases in cell viability and Bcl-2 protein expression in cells treated with HS or thapsigargin (an ER stress activator). Furthermore, 4-phenylbutyric acid (an ER stress inhibitor) treatment markedly alleviated the HS-induced adverse effects in cells exposed to HS, which was similar to zinc sulfate. Additionally, zinc sulfate supplementation in the culture medium effectively restored the HS-induced decrease in testosterone levels in HS-treated cells. In summary, these findings indicate that HS triggers apoptosis in TM3 Leydig cells via the ER stress pathway and that zinc confers protection against these detrimental effects. This study provides new insights into the benefits of using zinc against HS-induced apoptosis and cell injury.
Collapse
Affiliation(s)
- Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Jing Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| |
Collapse
|
20
|
Kageyama A, Suyama A, Kinoshita R, Ito J, Kashiwazaki N. Dynamic changes of intracellular zinc ion level during maturation, fertilization, activation, and development in mouse oocytes. Anim Sci J 2022; 93:e13759. [PMID: 35880318 DOI: 10.1111/asj.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
Although it is well known that calcium oscillations are required for fertilization in all mammalian species studied to date, recent studies also showed the ejection of zinc into the extracellular milieu in a series of coordinated events, called "zinc spark," during mammalian fertilization. These results led us to the hypothesis that a zinc ion-dependent signal is important for oocyte maturation, fertilization (activation), and further embryonic development. In this study, we evaluated the amounts and localization of intracellular zinc ions during maturation, fertilization, activation, and embryonic development in mouse oocytes. Our results show that abundant zinc ions are present in both immature and mature oocytes. After in vitro fertilization, the amounts of zinc ions were dramatically decreased at the pronuclear (PN) stage. Artificial activation by cycloheximide, SrCl2 , and TPEN also reduced the amounts of zinc ions in the PN stage. On the other hand, PN embryos derived from sperm injection still showed high level of zinc ions. However, the amounts of zinc ions rapidly increased at the blastocysts regardless of activation method. We showed here that the amounts of zinc ions dramatically changed during maturation, fertilization, activation, and development in mouse oocytes.
Collapse
Affiliation(s)
- Atsuko Kageyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Ayumi Suyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan
| | - Ruka Kinoshita
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan.,School of Veterinary Medicine, Azabu University, Sagamihara, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Azabu University, Sagamihara, Japan.,School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
21
|
Wang L, Liang R, Zhang G, Ren M, Long M, Na J, Li Z, Wang B, Zhuang L, Lu Q. Serum zinc concentration and risk of adverse outcomes to in vitro fertilization and embryo transfer: A prospective cohort study in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148405. [PMID: 34153763 DOI: 10.1016/j.scitotenv.2021.148405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Zinc (Zn) plays an important role in female reproductive health. Few studies have currently assessed the effects of female Zn level on the outcome of in vitro fertilization-embryo transfer (IVF-ET). This study investigated the association between serum Zn concentration and IVF-ET outcomes, and the potential effects of some lifestyles on this association. A prospective cohort study design was adopted, and 305 women undergoing IVF-ET were recruited from two cities, Beijing and Shandong, in northern China. Fasting blood specimens were obtained on the day prior to the first treatment cycle. A questionnaire was used to collect demographic characteristics and lifestyle information. Serum Zn concentration was measured using inductively coupled plasma-mass spectrometry. Female serum Zn levels in Beijing center were found to be significantly higher than those in Shandong center. Women who failed to achieve clinical pregnancy had significantly lower Zn concentrations among Shandong subjects, but not in Beijing or the total participants in both centers. For Beijing participants, no statistically significant associations were found between Zn concentrations and the failure risk of IVF-ET [adjusted relative risk (aRR) = 0.65, 95% confidence interval (CI): 0.37-1.15]. For Shandong participants, lower Zn concentrations (< 610.3 ng/mL) were associated with a 66% increased risk of IVF-ET failure (aRR = 1.66, 95% CI: 1.10-2.51). Also, significantly positive correlations were observed between Zn concentrations and the habitual consumption of two food types, including fresh vegetables and beans or bean products, but this was not the case in Beijing. It was concluded that the effect of serum Zn concentrations on IVF-ET outcome may vary by the geographic location. Lower Zn levels might be a risk factor for IVF-ET failure among Shandong women, which can be addressed by adjusting the food intakes. These findings have implications for human infertility treatment and public health problem addressing.
Collapse
Affiliation(s)
- Lu Wang
- Center of Reproductive Medicine, Peking University People's Hospital, Beijing 100044, PR China
| | - Rong Liang
- Center of Reproductive Medicine, Peking University People's Hospital, Beijing 100044, PR China
| | - Guohuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Mengyuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Manman Long
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Jigen Na
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Zhiwen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China; Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, PR China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, PR China
| | - Qun Lu
- Center of Reproductive Medicine, Peking University People's Hospital, Beijing 100044, PR China.
| |
Collapse
|
22
|
Camaioni A, Massimiani M, Lacconi V, Magrini A, Salustri A, Sotiriou GA, Singh D, Bitounis D, Bocca B, Pino A, Barone F, Prota V, Iavicoli I, Scimeca M, Bonanno E, Cassee FR, Demokritou P, Pietroiusti A, Campagnolo L. Silica encapsulation of ZnO nanoparticles reduces their toxicity for cumulus cell-oocyte-complex expansion. Part Fibre Toxicol 2021; 18:33. [PMID: 34479598 PMCID: PMC8414698 DOI: 10.1186/s12989-021-00424-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background Metal oxide nanoparticles (NPs) are increasingly used in many industrial and biomedical applications, hence their impact on occupational and public health has become a concern. In recent years, interest on the effect that exposure to NPs may exert on human reproduction has grown, however data are still scant. In the present work, we investigated whether different metal oxide NPs interfere with mouse cumulus cell-oocyte complex (COC) expansion. Methods Mouse COCs from pre-ovulatory follicles were cultured in vitro in the presence of various concentrations of two types of TiO2 NPs (JRC NM-103 and NM-104) and four types of ZnO NPs (JRC NM-110, NM-111, and in-house prepared uncoated and SiO2-coated NPs) and the organization of a muco-elastic extracellular matrix by cumulus cells during the process named cumulus expansion was investigated. Results We show that COC expansion was not affected by the presence of both types of TiO2 NPs at all tested doses, while ZnO NM-110 and NM-111 induced strong toxicity and inhibited COCs expansion at relatively low concentration. Medium conditioned by these NPs showed lower toxicity, suggesting that, beside ion release, inhibition of COC expansion also depends on NPs per se. To further elucidate this, we compared COC expansion in the presence of uncoated or SiO2-coated NPs. Differently from the uncoated NPs, SiO2-coated NPs underwent slower dissolution, were not internalized by the cells, and showed an overall lower toxicity. Gene expression analysis demonstrated that ZnO NPs, but not SiO2-coated ZnO NPs, affected the expression of genes fundamental for COC expansion. Dosimetry analysis revealed that the delivered-to-cell mass fractions for both NPs was very low. Conclusions Altogether, these results suggest that chemical composition, dissolution, and cell internalization are all responsible for the adverse effects of the tested NPs and support the importance of a tailored, safer-by-design production of NPs to reduce toxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00424-z.
Collapse
Affiliation(s)
- Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Micol Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131, Rome, Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Antonietta Salustri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-1, 71 77, Stockholm, Sweden.,Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Dilpreet Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-1, 71 77, Stockholm, Sweden
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Anna Pino
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Flavia Barone
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Valentina Prota
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Flemming R Cassee
- Department of Inhalation Toxicology, National Institute for Public Health and Environment, 3721, MA, Bilthoven, The Netherlands
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131, Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
23
|
Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod 2021; 104:976-994. [PMID: 33598687 PMCID: PMC8599883 DOI: 10.1093/biolre/ioab023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Zinc is a critical component in a number of conserved processes that regulate female germ cell growth, fertility, and pregnancy. During follicle development, a sufficient intracellular concentration of zinc in the oocyte maintains meiotic arrest at prophase I until the germ cell is ready to undergo maturation. An adequate supply of zinc is necessary for the oocyte to form a fertilization-competent egg as dietary zinc deficiency or chelation of zinc disrupts maturation and reduces the oocyte quality. Following sperm fusion to the egg to initiate the acrosomal reaction, a quick release of zinc, known as the zinc spark, induces egg activation in addition to facilitating zona pellucida hardening and reducing sperm motility to prevent polyspermy. Symmetric division, proliferation, and differentiation of the preimplantation embryo rely on zinc availability, both during the oocyte development and post-fertilization. Further, the fetal contribution to the placenta, fetal limb growth, and neural tube development are hindered in females challenged with zinc deficiency during pregnancy. In this review, we discuss the role of zinc in germ cell development, fertilization, and pregnancy with a focus on recent studies in mammalian females. We further detail the fundamental zinc-mediated reproductive processes that have only been explored in non-mammalian species and speculate on the role of zinc in similar mechanisms of female mammals. The evidence collected over the last decade highlights the necessity of zinc for normal fertility and healthy pregnancy outcomes, which suggests zinc supplementation should be considered for reproductive age women at risk of zinc deficiency.
Collapse
Affiliation(s)
- Tyler Bruce Garner
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - James Malcolm Hester
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Allison Carothers
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Francisco J Diaz
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
24
|
Female Fertility and Environmental Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238802. [PMID: 33256215 PMCID: PMC7730072 DOI: 10.3390/ijerph17238802] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
A realistic picture of our world shows that it is heavily polluted everywhere. Coastal regions and oceans are polluted by farm fertilizer, manure runoff, sewage and industrial discharges, and large isles of waste plastic are floating around, impacting sea life. Terrestrial ecosystems are contaminated by heavy metals and organic chemicals that can be taken up by and accumulate in crop plants, and water tables are heavily contaminated by untreated industrial discharges. As deadly particulates can drift far, poor air quality has become a significant global problem and one that is not exclusive to major industrialized cities. The consequences are a dramatic impairment of our ecosystem and biodiversity and increases in degenerative or man-made diseases. In this respect, it has been demonstrated that environmental pollution impairs fertility in all mammalian species. The worst consequences are observed for females since the number of germ cells present in the ovary is fixed during fetal life, and the cells are not renewable. This means that any pollutant affecting hormonal homeostasis and/or the reproductive apparatus inevitably harms reproductive performance. This decline will have important social and economic consequences that can no longer be overlooked.
Collapse
|
25
|
Converse A, Thomas P. The zinc transporter ZIP9 (Slc39a9) regulates zinc dynamics essential to egg activation in zebrafish. Sci Rep 2020; 10:15673. [PMID: 32973303 PMCID: PMC7518430 DOI: 10.1038/s41598-020-72515-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/02/2020] [Indexed: 01/22/2023] Open
Abstract
The zinc transporter ZIP9 (SLC39A9) was recently characterized as a membrane androgen receptor in various teleost and mammalian cell models. ZIP9 shows the highest expression in ovaries of teleosts, a tissue in which both androgen signaling and zinc dynamics have significant roles. To examine the role of ZIP9 in ovarian physiology, we generated a ZIP9-mutant zebrafish strain using a CRISPR/Cas9 system. zip9-/- females showed significant reductions in fecundity, embryo viability, and growth of their offspring compared to wildtype (WT) fish. Furthermore, a high proportion of zip9-/- eggs failed to undergo normal chorion elevation during activation. In WT eggs, zinc was detected in cortically-localized vesicles which underwent exocytosis upon activation. zip9-/- eggs showed abnormal cortical vesicle development and had a significantly depressed activation-induced zinc release compared to WT eggs. Moreover, pharmacologically sustained elevation of zinc in WT eggs prior to activation resulted in abnormal chorion elevation similar to that observed in zip9-/- eggs. These results indicate that ZIP9 is essential for proper zinc modulation during zebrafish egg activation and presents the first evidence of zinc modulation during egg activation in a non-mammalian species.
Collapse
Affiliation(s)
- Aubrey Converse
- Marine Science Institute, The University of Texas at Austin, 750 Channelview Dr., Port Aransas, TX, 78373, USA.
| | - Peter Thomas
- Marine Science Institute, The University of Texas at Austin, 750 Channelview Dr., Port Aransas, TX, 78373, USA
| |
Collapse
|
26
|
DeWitt NA, Whirledge S, Kallen AN. Updates on molecular and environmental determinants of luteal progesterone production. Mol Cell Endocrinol 2020; 515:110930. [PMID: 32610113 PMCID: PMC7484338 DOI: 10.1016/j.mce.2020.110930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
Progesterone, a critical hormone in reproduction, is a key sex steroid in the establishment and maintenance of early pregnancy and serves as an intermediary for synthesis of other steroid hormones. Progesterone production from the corpus luteum is a tightly regulated process which is stimulated and maintained by multiple factors, both systemic and local. Multiple regulatory systems, including classic mediators of gonadotropin stimulation such as the cAMP/PKA pathway and TGFβ-mediated signaling pathways, as well as local production of hormonal factors, exist to promote granulosa cell function and physiological fine-tuning of progesterone levels. In this manuscript, we provide an updated narrative review of the known mediators of human luteal progesterone and highlight new observations regarding this important process, focusing on studies published within the last five years. We will also review recent evidence suggesting that this complex system of progesterone production is sensitive to disruption by exogenous environmental chemicals that can mimic or interfere with the activities of endogenous hormones.
Collapse
Affiliation(s)
- Natalie A DeWitt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Amanda N Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
27
|
Hu Q, Duncan FE, Nowakowski AB, Antipova OA, Woodruff TK, O'Halloran TV, Wolfner MF. Zinc Dynamics during Drosophila Oocyte Maturation and Egg Activation. iScience 2020; 23:101275. [PMID: 32615472 PMCID: PMC7330606 DOI: 10.1016/j.isci.2020.101275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Temporal fluctuations in zinc concentration are essential signals, including during oogenesis and early embryogenesis. In mammals, zinc accumulation and release are required for oocyte maturation and egg activation, respectively. Here, we demonstrate that zinc flux occurs in Drosophila oocytes and activated eggs, and that zinc is required for female fertility. Our synchrotron-based X-ray fluorescence microscopy reveals zinc as the most abundant transition metal in Drosophila oocytes. Its levels increase during oocyte maturation, accompanied by the appearance of zinc-enriched intracellular granules in the oocyte, which depend on transporters. Subsequently, in egg activation, which mediates the transition from oocyte to embryo, oocyte zinc levels decrease significantly, as does the number of zinc-enriched granules. This pattern of zinc dynamics in Drosophila oocytes follows a similar trajectory to that in mammals, extending the parallels in female gamete processes between Drosophila and mammals and establishing Drosophila as a model for dissecting reproductive roles of zinc.
Collapse
Affiliation(s)
- Qinan Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew B Nowakowski
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Olga A Antipova
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Kiser JN, Keuter EM, Seabury CM, Neupane M, Moraes JGN, Dalton J, Burns GW, Spencer TE, Neibergs HL. Validation of 46 loci associated with female fertility traits in cattle. BMC Genomics 2019; 20:576. [PMID: 31299913 PMCID: PMC6624949 DOI: 10.1186/s12864-019-5935-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background Subfertility is one challenge facing the dairy industry as the average Holstein heifer conception rate (HCR), the proportion of heifers that conceive and maintain a pregnancy per breeding, is estimated at 55–60%. Of the loci associated with HCR, few have been validated in an independent cattle population, limiting their usefulness for selection or furthering our understanding of the mechanisms involved in successful pregnancy. Therefore, the objectives here were to identify loci associated with HCR: 1) to the first artificial insemination (AI) service (HCR1), 2) to repeated AI services required for a heifer to conceive (TBRD) and 3) to validate loci previously associated with fertility. Breeding and health records from 3359 Holstein heifers were obtained after heifers were bred by AI at observed estrus, with pregnancy determined at day 35 via palpation. Heifer DNA was genotyped using the Illumina BovineHD BeadChip, and genome-wide association analyses (GWAA) were performed with additive, dominant and recessive models using the Efficient Mixed Model Association eXpedited (EMMAX) method with a relationship matrix for two phenotypes. The HCR1 GWAA compared heifers that were pregnant after the first AI service (n = 497) to heifers that were open following the first AI service (n = 405), which included those that never conceived. The TBRD GWAA compared only those heifers which did conceive, across variable numbers of AI service (n = 712). Comparison of loci previously associated with fertility, HCR1 or TBRD were considered the same locus for validation when in linkage disequilibrium (D’ > 0.7). Results The HCR1 GWAA identified 116, 187 and 28 loci associated (P < 5 × 10− 8) in additive, dominant and recessive models, respectively. The TBRD GWAA identified 235, 362, and 69 QTL associated (P < 5 × 10− 8) with additive, dominant and recessive models, respectively. Loci previously associated with fertility were in linkage disequilibrium with 22 loci shared with HCR1 and TBRD, 5 HCR1 and 19 TBRD loci. Conclusions Loci associated with HCR1 and TBRD that have been identified and validated can be used to improve HCR through genomic selection, and to better understand possible mechanisms associated with subfertility. Electronic supplementary material The online version of this article (10.1186/s12864-019-5935-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer N Kiser
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Elizabeth M Keuter
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Christopher M Seabury
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Mahesh Neupane
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Joseph Dalton
- Department of Animal and Veterinary Sciences, University of Idaho, Caldwell, ID, USA
| | - Gregory W Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Holly L Neibergs
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
29
|
Li H, Garner T, Diaz F, Wong PK. A Multiwell Microfluidic Device for Analyzing and Screening Nonhormonal Contraceptive Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901910. [PMID: 31162807 PMCID: PMC8996375 DOI: 10.1002/smll.201901910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 05/03/2023]
Abstract
Birth control and family planning play pivotal roles in the economic growth and reduction of maternal, infant, and child mortality. Current contraceptives, such as hormonal agents and intrauterine devices, target only a small subset of reproductive processes and can have serious side effects on the health of women. To develop novel contraceptive agents, a scalable microfluidic device is established for analyzing and screening the effects of potential contraceptive agents on the maturation of the cumulus-oocyte complex. The microfluidic device performs on-chip incubation for studying oocyte maturation and cumulus expansion and isolates the microwells by oil-water interfaces to avoid crosstalk between the wells. A filter membrane is incorporated in the device to simplify incubation, medium exchange, washing, and fluorescence staining of oocytes. Cumulus expansion can be monitored directly in the device and oocyte maturation can be examined after enzymatic removal of cumulus cells and on-chip fluorescence staining. The performance of the device is evaluated by studying the influence of three drugs known to block oocyte maturation and/or cumulus expansion.
Collapse
Affiliation(s)
- Hui Li
- Department of Biomedical Engineering, The Pennsylvania State University, 517 CBEB Building, University Park, PA, 16802, USA
| | - Tyler Garner
- Department of Animal Science, The Pennsylvania State University, 335 ASI Building, University Park, PA, 16802, USA
| | - Francisco Diaz
- Department of Animal Science, The Pennsylvania State University, 335 ASI Building, University Park, PA, 16802, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, 517 CBEB Building, University Park, PA, 16802, USA
- Department of Mechanical Engineering and Surgery, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
30
|
Tulić L, Vidaković S, Tulić I, Ćurčić M, Bulat Z. Toxic Metal and Trace Element Concentrations in Blood and Outcome of In Vitro Fertilization in Women. Biol Trace Elem Res 2019; 188:284-294. [PMID: 29951726 DOI: 10.1007/s12011-018-1421-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 01/20/2023]
Abstract
The aim of this study was to investigate the association of trace element and toxic metal concentrations in blood and the outcome of in vitro fertilization (IVF). The study included 104 consecutive patients that underwent assisted reproductive technology (ART) procedures. The following parameters were determined: cadmium (Cd), mercury (Hg), arsenic (As), and lead (Pb); and copper (Cu), zinc (Zn), selenium (Se), and magnesium (Mg). Serum samples were obtained before commencing stimulation. Patients with smoking habit had significantly higher Pb concentrations (P = 0.022), as well as higher concentrations of As and Hg but not significantly. All subjects were divided into groups of pregnant and nonpregnant patients. Pregnant patients had lower mean values of Mg (P = 0.009), As (P < 0.05), and Pb (P = 0.034), compared to nonpregnant, and a significant correlation between pregnancy outcome and concentrations of Mg, Cd, and Pb was found. Women who had had delivered had lower Mg (P = 0.009) and Cd (P = 0.014) concentrations. There was a significant correlation of the negative outcome of IVF procedure with higher concentrations of Pb (P = 0.046) and Cd (P = 0.012). In conclusion, our results suggest that there is a difference in Mg, Pb, and Cd concentrations between pregnant and nonpregnant women. There was no association between toxic metals and number and quality of oocytes and embryos, while there was with fertilization rate. Concerning trace elements, we did not find the correlation of trace elements with oocyte number and quality, nor with a number of fertilized oocytes, except for Cu. Patients who were pregnant had lower concentrations of Mg.
Collapse
Affiliation(s)
- Lidija Tulić
- Department of In Vitro Fertilization, Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, Koste Todorovica 26, Belgrade, 11000, Serbia.
- Gynecology and Obstetrics, Faculty of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia.
| | - Snezana Vidaković
- Department of In Vitro Fertilization, Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, Koste Todorovica 26, Belgrade, 11000, Serbia
- Gynecology and Obstetrics, Faculty of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
| | - Ivan Tulić
- Department of In Vitro Fertilization, Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, Koste Todorovica 26, Belgrade, 11000, Serbia
- Gynecology and Obstetrics, Faculty of Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović," Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović," Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, 11221, Serbia
| |
Collapse
|
31
|
Que EL, Duncan FE, Lee HC, Hornick JE, Vogt S, Fissore RA, O'Halloran TV, Woodruff TK. Bovine eggs release zinc in response to parthenogenetic and sperm-induced egg activation. Theriogenology 2018; 127:41-48. [PMID: 30639695 DOI: 10.1016/j.theriogenology.2018.12.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Upon fertilization or parthenogenesis, zinc is released into the extracellular space through a series of exocytic events termed zinc sparks, which are tightly coordinated with intracellular calcium transients. The zinc spark reduces the total amount of intracellular zinc, and this reduction is necessary and sufficient to induce egg activation even in the absence of calcium transients. In addition, this zinc release contributes to the block to polyspermy through modification of the zona pellucida. The zinc spark has been documented in all organisms examined to date including the mouse, two species of nonhuman primates, and human. Here we determined whether zinc sparks occur in the bovine, an important model of gamete development in mono-ovulatory mammalian species. We obtained metaphase II-arrested (MII) bovine eggs following in vitro maturation. Total zinc, assessed in single cells using X-Ray Fluorescence Microscopy, was significantly more abundant in the bovine egg compared to iron and copper. Studies with intracellular fluorescent probes revealed that labile zinc pools are localized to discrete cytoplasmic punctae enriched at the cortex. To determine whether zinc undergoes dynamic fluxes during egg activation, we parthenogenetically activated bovine eggs using two approaches: ionomycin or bovine phospholipase C zeta (bPlcζ). Both these methods induced zinc sparks coordinately with intracellular calcium transients. The zinc spark was also observed in bovine eggs following intracytoplasmic sperm injection. These results establish that zinc is the most abundant transition metal in the bovine egg, and zinc flux during egg activation - induced by chemical activation or sperm - is a highly conserved event across mammalian species.
Collapse
Affiliation(s)
- Emily L Que
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hoi Chang Lee
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jessica E Hornick
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Stefan Vogt
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Teresa K Woodruff
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
32
|
Li J, Huang D, Sun X, Li X, Cheng CHK. Zinc mediates the action of androgen in acting as a downstream effector of luteinizing hormone on oocyte maturation in zebrafish†. Biol Reprod 2018; 100:468-478. [DOI: 10.1093/biolre/ioy224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/01/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Duo Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xiao Sun
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xuehui Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
33
|
Xiong X, Lan D, Li J, Lin Y, Zi X. Effects of Zinc Supplementation During In Vitro Maturation on Meiotic Maturation of Oocytes and Developmental Capacity in Yak. Biol Trace Elem Res 2018; 185:89-97. [PMID: 29247445 DOI: 10.1007/s12011-017-1217-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
Zinc (Zn) is an essential trace element that is required during mammalian developmental processes. The objective of this study was to investigate the effects of Zn supplementation during in vitro maturation (IVM) on the developmental capacity of yak (Bos grunniens) oocytes. Cumulus expansion, nuclear maturation, intracellular glutathione (GSH), reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, subsequent embryonic development, and the expression of Zn transporters (ZnTs) and Zrt and Irt-like proteins (ZiPs) were evaluated. The Zn concentrations in yak plasma and follicular fluid were 0.740 ± 0.012 and 0.382 ± 0.009 μg/mL, respectively. The cumulus expansion did not show significant differences in COCs after matured with or without Zn supplementation (P > 0.05). The intracellular GSH was higher in oocytes matured with 1 or 2 mg/L Zn than in control group (0 mg/L) (P < 0.05). However, ROS levels of oocytes matured with 1 or 2 mg/L Zn were reduced significantly compared with the control and 0.5 mg/L groups (P < 0.05). The SOD activity was increased significantly after Zn supplementation. The cleavage rate was not significantly different after Zn supplementation (P > 0.05). Percentages of matured oocytes that developed into the blastocyst stage after IVF were 47.9, 50.5, 60.4, and 58.9% for 0, 0.5, 1, and 2 mg/L Zn groups, respectively. Gene expression analysis revealed that the expression patterns associated with Zn were changed after Zn supplementation. In conclusion, Zn supplementation to IVM improved yak oocyte maturation and subsequent development by increasing GSH and SOD activity, decreasing ROS in oocytes.
Collapse
Affiliation(s)
- Xianrong Xiong
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Daoliang Lan
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Jian Li
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan, 610041, China.
| | - Yaqiu Lin
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xiangdong Zi
- College of Life Science and Technology, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
34
|
Aripin SA, Jintasatap O, Yoonpundh R. Effects of Melatonin and Zinc Amino Acid on Female Walking Catfish (Clarias macrocephalus) Broodstock Performance. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/jbs.2018.289.296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
EFFECT OF ORGANIC MICROELEMENTS IN LIPOSOMAL FORM ON FERTILIZING ABILITY AND THE LEVEL OF ANTIOXIDANT REACTIONS OF FEMALE RABBITS. BIOTECHNOLOGIA ACTA 2018. [DOI: 10.15407/biotech11.04.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
37
|
Que EL, Duncan FE, Bayer AR, Philips SJ, Roth EW, Bleher R, Gleber SC, Vogt S, Woodruff TK, O'Halloran TV. Zinc sparks induce physiochemical changes in the egg zona pellucida that prevent polyspermy. Integr Biol (Camb) 2017; 9:135-144. [PMID: 28102396 DOI: 10.1039/c6ib00212a] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During fertilization or chemically-induced egg activation, the mouse egg releases billions of zinc atoms in brief bursts known as 'zinc sparks.' The zona pellucida (ZP), a glycoprotein matrix surrounding the egg, is the first structure zinc ions encounter as they diffuse away from the plasma membrane. Following fertilization, the ZP undergoes changes described as 'hardening', which prevent multiple sperm from fertilizing the egg and thereby establish a block to polyspermy. A major event in zona hardening is cleavage of ZP2 proteins by ovastacin; however, the overall physiochemical changes contributing to zona hardening are not well understood. Using X-ray fluorescence microscopy, transmission and scanning electron microscopy, and biological function assays, we tested the hypothesis that zinc release contributes to ZP hardening. We found that the zinc content in the ZP increases by 300% following activation and that zinc exposure modulates the architecture of the ZP matrix. Importantly, zinc-induced structural changes of the ZP have a direct biological consequence; namely, they reduce the ability of sperm to bind to the ZP. These results provide a paradigm-shifting model in which fertilization-induced zinc sparks contribute to the polyspermy block by altering conformations of the ZP matrix. This adds a previously unrecognized factor, namely zinc, to the process of ZP hardening.
Collapse
Affiliation(s)
- Emily L Que
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 303 East Superior Street, Lurie 10-121, Chicago, IL 60611, USA.
| | - Amanda R Bayer
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Steven J Philips
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Eric W Roth
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL 60208, USA
| | - Reiner Bleher
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL 60208, USA
| | - Sophie C Gleber
- X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Teresa K Woodruff
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 303 East Superior Street, Lurie 10-121, Chicago, IL 60611, USA. and Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, 2170 North Campus Drive, Silverman 4611, Evanston, IL 60208, USA. and Department of Chemistry, Northwestern University, Evanston, IL 60208, USA and Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
38
|
Tian X, Anthony K, Diaz FJ. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea. Biol Trace Elem Res 2017; 176:374-383. [PMID: 27604975 DOI: 10.1007/s12011-016-0841-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.
Collapse
Affiliation(s)
- X Tian
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, 206 Henning Building, University Park, PA, 16802, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, 2236 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - K Anthony
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, 206 Henning Building, University Park, PA, 16802, USA
| | - Francisco J Diaz
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, 206 Henning Building, University Park, PA, 16802, USA.
| |
Collapse
|
39
|
Hester J, Hanna-Rose W, Diaz F. Zinc deficiency reduces fertility in C. elegans hermaphrodites and disrupts oogenesis and meiotic progression. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:203-209. [PMID: 27663471 PMCID: PMC5945198 DOI: 10.1016/j.cbpc.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 11/19/2022]
Abstract
Zinc is necessary for successful gametogenesis in mammals; however the role of zinc in the gonad function of non-mammalian species has not been investigated. The genetic tractability, short generation time, and hermaphroditic reproduction of the nematode C. elegans offer distinct advantages for the study of impaired gametogenesis as a result of zinc deficiency. However the phenotypic reproductive effects arising from zinc restriction have not been established in this model. We therefore examined the effect of zinc deficiency on C. elegans reproduction by exposing worms to the zinc chelator N,N,N',N'-tetrakis (2-pyridylmethyl)ethane-1,2-diamine (TPEN). Treatment began at the early larval stage and continued until reproductive senescence. TPEN treatment reduced the total number of progeny produced by C. elegans hermaphrodites compared with control subjects, with the largest difference in output observed 48h after larval stage 4. At this time-point, zinc deficient worms displayed fewer embryos in the uterus and disorganized oocyte development when observed under DIC microscopy. DAPI staining revealed impaired oogenesis and chromosome dynamics with an expanded region of pachytene stage oocytes extending into the proximal arm of the gonad. This phenotype was not seen in control or zinc-rescue subjects. This study demonstrates that reproduction in C. elegans is sensitive to environmental perturbations in zinc, indicating that this is a good model for future studies in zinc-mediated subfertility. Aberrant oocyte development and disruption of the pachytene-diplotene transition indicate that oogenesis in particular is affected by zinc deficiency in this model.
Collapse
Affiliation(s)
- James Hester
- Intercollege Program in Physiology, The Pennsylvania State University, University Park, PA 16802
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Francisco Diaz
- Intercollege Program in Physiology, The Pennsylvania State University, University Park, PA 16802; Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
40
|
Mendoza AD, Woodruff TK, Wignall SM, O'Halloran TV. Zinc availability during germline development impacts embryo viability in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:194-202. [PMID: 27664515 PMCID: PMC5210184 DOI: 10.1016/j.cbpc.2016.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/29/2022]
Abstract
Zinc is an essential metal that serves as a cofactor in a variety of cellular processes, including meiotic maturation. Cellular control of zinc uptake, availability and efflux is closely linked to meiotic progression in rodent and primate reproduction where large fluctuations in zinc levels are critical at several steps in the oocyte-to-embryo transition. Despite these well-documented roles of zinc fluxes during meiosis, only a few of the genes encoding key zinc receptors, membrane-spanning transporters, and downstream signaling pathway factors have been identified to date. Furthermore, little is known about analogous roles for zinc fluxes in the context of a whole organism. Here, we evaluate whether zinc availability regulates germline development and oocyte viability in the nematode Caenorhabditis elegans, an experimentally flexible model organism. We find that similar to mammals, mild zinc limitation in C. elegans profoundly impacts the reproductive axis: the brood size is significantly reduced under conditions of zinc limitation where other physiological functions are not perturbed. Zinc limitation in this organism has a more pronounced impact on oocytes than sperm and this leads to the decrease in viable embryo production. Moreover, acute zinc limitation of isolated zygotes prevents extrusion of the second polar body during meiosis and leads to aneuploid embryos. Thus, the zinc-dependent steps in C. elegans gametogenesis roughly parallel those described in meiotic-to-mitotic transitions in mammals.
Collapse
Affiliation(s)
- Adelita D Mendoza
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Teresa K Woodruff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Thomas V O'Halloran
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
41
|
Kala M, Shaikh MV, Nivsarkar M. Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation. Reprod Med Biol 2016; 16:28-35. [PMID: 29259447 PMCID: PMC5715868 DOI: 10.1002/rmb2.12013] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/28/2016] [Indexed: 01/22/2023] Open
Abstract
Reactive oxygen species (ROS) are required for cellular functioning and are controlled by anti‐oxidants. The ROS influence the follicles, oocytes, endometrium, and their environment. The luteinizing hormone surge initiates a massive recruitment of ROS that modulates major reproductive functions namely, oocyte maturation, ovarian steroidogenesis, corpus luteal function, and luteolysis. The anti‐oxidant system balances ROS generation and maintains the cellular functions. Both enzymatic and non‐enzymatic anti‐oxidants namely, vitamins and minerals are present in the follicles and protect the oocytes from the damaging effects of ROS. The overproduction of ROS leads to oxidative stress that affects the quality of oocytes and subsequent anovulation. Although researchers have tried to establish the role of ROS and anti‐oxidants in oocyte development, still this aspect needs to be revisited. This review discusses the importance of the ROS and anti‐oxidant balance that is required for the development and maturation of oocytes. There are increasing data on the activity of ROS and anti‐oxidants in supporting oocyte development and maturation. However, extensive research is required to identify the safe physiological concentration and duration of both the ROS and anti‐oxidants that are required to facilitate oocyte development and maturation during in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Manika Kala
- Department of Pharmacology and Toxicology B. V. Patel Pharmaceutical Education and Research Development Centre Ahmedabad India.,Faculty of Pharmacy NIRMA University Ahmedabad India
| | - Muhammad Vaseem Shaikh
- Department of Pharmacology and Toxicology B. V. Patel Pharmaceutical Education and Research Development Centre Ahmedabad India.,Faculty of Pharmacy NIRMA University Ahmedabad India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology B. V. Patel Pharmaceutical Education and Research Development Centre Ahmedabad India
| |
Collapse
|
42
|
Dieci C, Lodde V, Labreque R, Dufort I, Tessaro I, Sirard MA, Luciano AM. Differences in cumulus cell gene expression indicate the benefit of a pre-maturation step to improve in-vitro bovine embryo production. Mol Hum Reprod 2016; 22:882-897. [PMID: 27559149 DOI: 10.1093/molehr/gaw055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/21/2016] [Accepted: 08/20/2016] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does the gene expression profile of cumulus cells (CC) accompanying oocytes with different degrees of chromatin compaction within the germinal vesicle (GV) reflect the oocyte's quality and response in culture during in-vitro embryo production (IVP). SUMMARY ANSWER The transcriptomic profile of the CC is related to oocyte competence, setting the stage for the development of customized pre-maturation strategies to improve IVP. WHAT IS KNOWN ALREADY Oocytes complete the acquisition of their competence during antral follicle development. During this period, the chromatin configuration within the GV changes dynamically and is indicative of oocyte's developmental potential. The interactions between somatic and germ cells modulate chromatin morphology and function and are critical for acquisition of oocyte competence. STUDY DESIGN, SIZE, DURATION Bovine cumulus-oocyte complexes (COC) were isolated from 0.5 to 6 mm antral follicles. Surrounding CC were separated from the oocyte and classified as GV0, GV1, GV2 and GV3 according to the degree of the oocyte's chromatin compaction. PARTICIPANTS/MATERIALS, SETTING, METHOD RNA extracted from CC of each group was amplified and hybridized on a bovine embryo-specific 44 K Agilent slide. The CC_GV1, CC_GV2 and CC_GV3 classes were each hybridized against the CC_GV0 class, representing an early oocyte differentiation stage with poor development competence. The data were normalized and fold changes of the differentially expressed genes were determined. Microarray data were validated using quantitative RT-PCR on selected targets. Microarray data were further analyzed through: (i) between-group analysis (BGA), which classifies the samples according to their transcriptomic profiles; (ii) cluster analysis according to the expression profile of each gene; and (iii) Ingenuity Pathway Analysis (IPA) to study gene regulation patterns and predicted functions. Furthermore, CC of each GV group were cultured and apoptotic cells were assessed after 3 h by caspase analysis. Finally, based on the analysis of CC transcriptomic profiles and the relationship between morphological features of the COC and the oocyte chromatin configuration, a customized, stage-dependent oocyte pre-maturation (pre-IVM) system was used to improve oocyte developmental potential before IVM. For this, the blastocyst rate and quality were assessed after in-vitro maturation and fertilization of pre-matured oocytes. MAIN RESULTS AND THE ROLE OF CHANCE Overall, quantitative RT-PCR results of a subset of five selected genes were consistent with the microarray data. Clustering analysis generated 16 clusters representing the main profiles of transcription modulation. Of the 5571 significantly differentially expressed probes, the majority (25.49%) best fitted with cluster #6 (downregulation between CC_GV0 and CC_GV1 and stable low levels in successive groups). IPA identified the most relevant functions associated with each cluster. Genes included in cluster #1 were mostly related to biological processes such as 'cell cycle' and 'cell death and survival', whereas genes included in cluster #5 were mostly related to 'gene expression'. Interestingly, 'lipid metabolism' was the most significant function identified in clusters #6, #9 and #12. IPA of gene lists obtained from each contrast (i.e., CC_GV0 vs. CC_GV1; CC_GV0 vs. CC_GV2; CC_GV0 vs. CC_GV3) revealed that the main affected function in each contrast was 'cell death and survival'. Importantly, apoptosis was predicted to be inhibited in CC_GV1 and CC_GV2, but activated in CC_GV3. Caspase analysis indicated that a low percentage of CC_GV0 was prone to undergo apoptosis but apoptosis increased significantly in CC from oocytes with condensed chromatin, reaching a peak in CC_GV3 (P < 0.05). Finally, the tailored oocyte pre-maturation strategy, based on morphological features of the COC and the oocyte chromatin configuration, demonstrated that pre-IVM improved the developmental capability of oocytes at early stages of differentiation (GV1-enriched COC) but was detrimental for oocytes at more advanced stages of development (GV2 and GV3-enriched COC). LARGE SCALE DATA The data are available through the GEO series accession number GSE79886. LIMITATIONS, REASONS FOR CAUTION This study was conducted with bovine samples. Whether or not the results are applicable to human oocytes requests further elucidation. Embryo transfer experiments are required to determine whether the improvement in blastocyst rates in the tailored system leads to increased live birth rates. WIDER IMPLICATIONS OF THE FINDINGS The identification of multiple non-invasive biomarkers predictive of oocyte quality can greatly strengthen the pre-IVM approach aimed to improve IVM outcomes. These results have potentially important implications in treating human infertility and in developing breeding schemes for domestic mammals. STUDY FUNDING/COMPETING INTERESTS This work was supported in part by NSERC Strategic Network EmbryoGENE, Canada and in part by CIG-Marie Curie Actions-Reintegration Grants within the EU 7FP (n. 303640, 'Pro-Ovum'). The authors declare no potential conflict of interest.
Collapse
Affiliation(s)
- Cecilia Dieci
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy
| | - Rémi Labreque
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, 2440, boulevard Hochelaga, Québec, (Québec) G1V 0A6, Canada
| | - Isabelle Dufort
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, 2440, boulevard Hochelaga, Québec, (Québec) G1V 0A6, Canada
| | - Irene Tessaro
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy.,Present address: I.R.C.C.S. Istituto Ortopedico Galeazzi, Via R. Galeazzi, 4, 20161 Milan, Italy
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, 2440, boulevard Hochelaga, Québec, (Québec) G1V 0A6, Canada
| | - Alberto M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133 Milan, Italy
| |
Collapse
|
43
|
The zinc spark is an inorganic signature of human egg activation. Sci Rep 2016; 6:24737. [PMID: 27113677 PMCID: PMC4845039 DOI: 10.1038/srep24737] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/01/2016] [Indexed: 12/04/2022] Open
Abstract
Egg activation refers to events required for transition of a gamete into an embryo, including establishment of the polyspermy block, completion of meiosis, entry into mitosis, selective recruitment and degradation of maternal mRNA, and pronuclear development. Here we show that zinc fluxes accompany human egg activation. We monitored calcium and zinc dynamics in individual human eggs using selective fluorophores following activation with calcium-ionomycin, ionomycin, or hPLCζ cRNA microinjection. These egg activation methods, as expected, induced rises in intracellular calcium levels and also triggered the coordinated release of zinc into the extracellular space in a prominent “zinc spark.” The ability of the gamete to mount a zinc spark response was meiotic-stage dependent. Moreover, chelation of intracellular zinc alone was sufficient to induce cell cycle resumption and transition of a meiotic cell into a mitotic one. Together, these results demonstrate critical functions for zinc dynamics and establish the zinc spark as an extracellular marker of early human development.
Collapse
|
44
|
Ceko MJ, O'Leary S, Harris HH, Hummitzsch K, Rodgers RJ. Trace Elements in Ovaries: Measurement and Physiology1. Biol Reprod 2016; 94:86. [DOI: 10.1095/biolreprod.115.137240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
|
45
|
The fertilization-induced zinc spark is a novel biomarker of mouse embryo quality and early development. Sci Rep 2016; 6:22772. [PMID: 26987302 PMCID: PMC4796984 DOI: 10.1038/srep22772] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/12/2016] [Indexed: 01/30/2023] Open
Abstract
Upon activation, mammalian eggs release billions of zinc ions in an exocytotic event termed the “zinc spark.” The zinc spark is dependent on and occurs coordinately with intracellular calcium transients, which are tightly associated with embryonic development. Thus, we hypothesized that the zinc spark represents an early extracellular physicochemical marker of the developmental potential of the zygote. To test this hypothesis, we monitored zinc exocytosis in individual mouse eggs following parthenogenetic activation or in vitro fertilization (IVF) and tracked their development. Retrospective analysis of zinc spark profiles revealed that parthenotes and zygotes that developed into blastocysts released more zinc than those that failed to develop. Prospective selection of embryos based on their zinc spark profile significantly improved developmental outcomes and more than doubled the percentage of embryos that reached the blastocyst stage. Moreover, the zinc spark profile was also associated with embryo quality as the total cell number in the resulting morulae and blastocysts positively correlated with the zinc spark amplitude (R = 0.9209). Zinc sparks can thus serve as an early biomarker of zygote quality in mouse model.
Collapse
|
46
|
Kong BY, Duncan FE, Que EL, Xu Y, Vogt S, O'Halloran TV, Woodruff TK. The inorganic anatomy of the mammalian preimplantation embryo and the requirement of zinc during the first mitotic divisions. Dev Dyn 2015; 244:935-47. [PMID: 25903945 DOI: 10.1002/dvdy.24285] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Zinc is the most abundant transition metal in the mammalian oocyte, and dynamic fluxes in intracellular concentration are essential for regulating both meiotic progression and fertilization. Whether the defined pathways of zinc utilization in female meiosis directly translate to mitotic cells, including the mammalian preimplantation embryo, has not been studied previously. RESULTS We determined that zinc is the most abundant transition metal in the preimplantation embryo, with levels an order of magnitude higher than those of iron or copper. Using a zinc-specific fluorescent probe, we demonstrated that labile zinc is distributed in vesicle-like structures in the cortex of cells at all stages of preimplantation embryo development. To test the importance of zinc during this period, we induced zinc insufficiency using the heavy metal chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN). Incubation of embryos in media containing TPEN resulted in a developmental arrest that was specific to zinc chelation and associated with compromised mitotic parameters. The developmental arrest due to zinc insufficiency was associated with altered chromatin structure in the blastomere nuclei and decreased global transcription. CONCLUSIONS These results demonstrate for the first time that the preimplantation embryo requires tight zinc regulation and homeostasis for the initial mitotic divisions of life.
Collapse
Affiliation(s)
- Betty Y Kong
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Emily L Que
- Department of Chemistry, Northwestern University, Evanston, Illinois
| | - Yuanming Xu
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Thomas V O'Halloran
- Department of Chemistry, Northwestern University, Evanston, Illinois.,Department of Molecular Biosciences, Evanston, Illinois
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois.,Department of Molecular Biosciences, Evanston, Illinois
| |
Collapse
|
47
|
Clarke HJ, Vieux KF. Epigenetic inheritance through the female germ-line: The known, the unknown, and the possible. Semin Cell Dev Biol 2015; 43:106-116. [DOI: 10.1016/j.semcdb.2015.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023]
|
48
|
Velazquez MA. Impact of maternal malnutrition during the periconceptional period on mammalian preimplantation embryo development. Domest Anim Endocrinol 2015; 51:27-45. [PMID: 25498236 DOI: 10.1016/j.domaniend.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023]
Abstract
During episodes of undernutrition and overnutrition the mammalian preimplantation embryo undergoes molecular and metabolic adaptations to cope with nutrient deficits or excesses. Maternal adaptations also take place to keep a nutritional microenvironment favorable for oocyte development and embryo formation. This maternal-embryo communication takes place via several nutritional mediators. Although adaptive responses to malnutrition by both the mother and the embryo may ensure blastocyst formation, the resultant quality of the embryo can be compromised, leading to early pregnancy failure. Still, studies have shown that, although early embryonic mortality can be induced during malnutrition, the preimplantation embryo possesses an enormous plasticity that allows it to implant and achieve a full-term pregnancy under nutritional stress, even in extreme cases of malnutrition. This developmental strategy, however, may come with a price, as shown by the adverse developmental programming induced by even subtle nutritional challenges exerted exclusively during folliculogenesis and the preimplantation period, resulting in offspring with a higher risk of developing deleterious phenotypes in adulthood. Overall, current evidence indicates that malnutrition during the periconceptional period can induce cellular and molecular alterations in preimplantation embryos with repercussions for fertility and postnatal health.
Collapse
Affiliation(s)
- M A Velazquez
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK.
| |
Collapse
|
49
|
Que EL, Bleher R, Duncan FE, Kong BY, Gleber SC, Vogt S, Chen S, Garwin SA, Bayer AR, Dravid V, Woodruff TK, O’Halloran TV. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nat Chem 2015; 7:130-9. [PMID: 25615666 PMCID: PMC4315321 DOI: 10.1038/nchem.2133] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/11/2014] [Indexed: 12/22/2022]
Abstract
Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.
Collapse
Affiliation(s)
- Emily L. Que
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Reiner Bleher
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL 60208, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Betty Y. Kong
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sophie C. Gleber
- X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Seth A. Garwin
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Amanda R. Bayer
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Vinayak Dravid
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University; Evanston, IL 60208, USA
| | - Teresa K. Woodruff
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Thomas V. O’Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
50
|
Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci 2014; 72:251-71. [PMID: 25280482 DOI: 10.1007/s00018-014-1739-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023]
Abstract
Obesity, diabetes, and related metabolic disorders are major health issues worldwide. As the epidemic of metabolic disorders continues, the associated medical co-morbidities, including the detrimental impact on reproduction, increase as well. Emerging evidence suggests that the effects of maternal nutrition on reproductive outcomes are likely to be mediated, at least in part, by oocyte metabolism. Well-balanced and timed energy metabolism is critical for optimal development of oocytes. To date, much of our understanding of oocyte metabolism comes from the effects of extrinsic nutrients on oocyte maturation. In contrast, intrinsic regulation of oocyte development by metabolic enzymes, intracellular mediators, and transport systems is less characterized. Specifically, decreased acid transport proteins levels, increased glucose/lipid content and elevated reactive oxygen species in oocytes have been implicated in meiotic defects, organelle dysfunction and epigenetic alteration. Therefore, metabolic disturbances in oocytes may contribute to the diminished reproductive potential experienced by women with metabolic disorders. In-depth research is needed to further explore the underlying mechanisms. This review also discusses several approaches for metabolic analysis. Metabolomic profiling of oocytes, the surrounding granulosa cells, and follicular fluid will uncover the metabolic networks regulating oocyte development, potentially leading to the identification of oocyte quality markers and prevention of reproductive disease and poor outcomes in offspring.
Collapse
Affiliation(s)
- Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China,
| | | | | | | | | | | |
Collapse
|