1
|
Tanizaki Y, Zhang H, Shi YB. Complementary and additive functions of TRα and TRβ during intestinal remodeling as revealed by ChIP-Seq analysis on wild type and TR knockout animals. Gen Comp Endocrinol 2025; 360:114645. [PMID: 39592082 DOI: 10.1016/j.ygcen.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Intestinal structure is drastically changed from fetal to adult form during postembryonic development, a period around birth in mammals. This process is regulated by thyroid hormone (T3) via its receptors, T3 receptor (TR) α and TRβ during anuran metamorphosis. Here, we used intestinal remodeling during Xenopus tropicalis metamorphosis, which serves as a model for human postembryonic development, to identify TR-bound genes and determine the relative contribution to target gene binding by TRα and TRβ. We first examined the localization of TRα and TRβ mRNA during metamorphosis in Xenopus tropicalis and found that TRα was broadly expressed in the intestinal tissues from premetamorphosis to the end of metamorphosis, while TRβ was expressed at low levels during premetamorphosis but was upregulated at the climax of metamorphosis when intestinal stem cells are formed and proliferate. Interestingly, both TR genes were co-expressed in different cell types, including stem cells. Chromatin immunoprecipitation (ChIP)-seq analyses of the intestine from wild type, TRα- or TRβ-knockout premetamorphic tadpoles treated with or without T3 for 18 h identified many TR-bound genes and revealed the effects of individual TR knockout on the binding of target genes by TR. We found that individual TR knockout reduced both the number of TR-bound genes and the extent of TR binding to target genes with TRα knockout had a much more dramatic effect than TRβ knockout. On the other hand, the TR-bound genes were largely common among the three genotypes. These findings suggest that both TRα and TRβ contribute to target binding with TRα having a bigger contribution in premetamorphic intestine.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, NICHD, NIH, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Louis E, Fu L, Shi YB, Sachs LM. Functions and Mechanism of Thyroid Hormone Receptor Action During Amphibian Development. Endocrinology 2024; 165:bqae137. [PMID: 39397558 PMCID: PMC11497603 DOI: 10.1210/endocr/bqae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Thyroid hormones and their receptors (TRs) play critical roles during vertebrate development. One of the most dramatic developmental processes regulated by thyroid hormones is frog metamorphosis, which mimics the postembryonic (perinatal) period in mammals. Here, we review some of the findings on the developmental functions of thyroid hormones and TRs as well as their associated mechanisms of action obtained from this model system. More than 2 decades ago, a dual function model was proposed for TR in anuran development. During larval development, unliganded receptors recruit corepressors to repress thyroid hormone response genes to prevent premature metamorphic changes. Subsequently, when thyroid hormone levels rise, liganded receptors recruit coactivators to activate thyroid hormone response genes, leading to metamorphic changes. Over the years, molecular and genetic approaches have provided strong support for this model and have shown that it is applicable to mammalian development as well as to understanding the diverse effects of thyroid hormones in normal physiology and diseases caused by thyroid hormone signaling dysfunction.
Collapse
Affiliation(s)
- Emeric Louis
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, 75231 Paris, France
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Laurent M Sachs
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, 75231 Paris, France
| |
Collapse
|
3
|
Shi YB, Fu L, Tanizaki Y. Intestinal remodeling during Xenopus metamorphosis as a model for studying thyroid hormone signaling and adult organogenesis. Mol Cell Endocrinol 2024; 586:112193. [PMID: 38401883 PMCID: PMC10999354 DOI: 10.1016/j.mce.2024.112193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis. This involved complete degeneration of larval epithelium via programmed cell death and de novo formation of adult epithelium, with concurrent maturation of the muscles and connective tissue. Here, we will summarize our current understanding of the underlying molecular mechanisms, with a focus on more recent genetic and genome-wide studies.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Shi YB, Tanizaki Y, Wang S, Fu L. Essential and subtype-dependent function of thyroid hormone receptors during Xenopus metamorphosis. VITAMINS AND HORMONES 2023; 123:503-523. [PMID: 37717996 PMCID: PMC11285022 DOI: 10.1016/bs.vh.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Thyroid hormone (T3) plays critical roles in organ metabolism and development in vertebrates. Anuran metamorphosis is perhaps the most dramatic and best studied developmental process controlled by T3. Many changes in different organs/tissues during anuran metamorphosis resemble the maturation/remodeling of the corresponding organs/tissues during mammalian postembryonic development. The plasma T3 level peaks during both anuran metamorphosis and mammalian postembryonic development. T3 exerts its developmental function through transcriptional regulation via T3 receptors (TRs). Studies on the metamorphosis of two highly related anurans, pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, have led to a dual function model for TRs during development. This has been supported by strong molecular and genetic evidence. Here we review some of the evidence with a focus on more recent gene knockout studies in Xenopus tropicalis. These studies have not only supported the model but also revealed novel and TR subtype-specific roles during Xenopus development, particularly a critical role of TRα in controlling developmental timing and rate.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Shouhong Wang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
5
|
Tanizaki Y, Bao L, Shi YB. Steroid-receptor coactivator complexes in thyroid hormone-regulation of Xenopus metamorphosis. VITAMINS AND HORMONES 2023; 123:483-502. [PMID: 37717995 PMCID: PMC11274430 DOI: 10.1016/bs.vh.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Anuran metamorphosis is perhaps the most drastic developmental change regulated by thyroid hormone (T3) in vertebrate. It mimics the postembryonic development in mammals when many organs/tissues mature into adult forms and plasma T3 level peaks. T3 functions by regulating target gene transcription through T3 receptors (TRs), which can recruit corepressor or coactivator complexes to target genes in the absence or presence of T3, respectively. By using molecular and genetic approaches, we and others have investigated the role of corepressor or coactivator complexes in TR function during the development of two highly related anuran species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis. Here we will review some of these studies that demonstrate a critical role of coactivator complexes, particularly those containing steroid receptor coactivator (SRC) 3, in regulating metamorphic rate and ensuring the completion of metamorphosis.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
6
|
Hasebe T, Fujimoto K, Ishizuya-Oka A. Stem cell development involves divergent thyroid hormone receptor subtype expression and epigenetic modifications in the amphibian intestine during metamorphosis. VITAMINS AND HORMONES 2023; 122:1-22. [PMID: 36863790 DOI: 10.1016/bs.vh.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the amphibian intestine during metamorphosis, most of the larval epithelial cells undergo apoptosis, while a small number of the epithelial cells dedifferentiate into stem cells (SCs). The SCs actively proliferate and then newly generate the adult epithelium analogous to the mammalian counterpart, which is continuously renewed from the SCs throughout adulthood. This larval-to-adult intestinal remodeling can be experimentally induced by thyroid hormone (TH) through interacting with the surrounding connective tissue that develops as the stem cell niche. Thus, the amphibian intestine provides us a valuable opportunity to study how the SCs and their niche are formed during development. To clarify the TH-induced and evolutionally conserved mechanism of SC development at the molecular level, numerous TH response genes have been identified in the Xenopus laevis intestine over the last three decades and extensively analyzed for their expression and function by using wild-type and transgenic Xenopus tadpoles. Interestingly, accumulating evidence indicates that thyroid hormone receptor (TR) epigenetically regulates the expression of TH response genes involved in the remodeling. In this review, we highlight recent progress in the understanding of SC development, focusing on epigenetic gene regulation by TH/TR signaling in the X. laevis intestine. We here propose that two subtypes of TRs, TRα and TRβ, play distinct roles in the intestinal SC development via different histone modifications in different cell types.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Tokyo, Japan.
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
7
|
Shi YB, Tanizaki Y, Wang S, Fu L. Essential and subtype-dependent function of thyroid hormone receptors during Xenopus metamorphosis. VITAMINS AND HORMONES 2023. [DOI: 10.1016/bs.vh.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Abe K, Li J, Liu YY, Brent GA. Thyroid Hormone-mediated Histone Modification Protects Cortical Neurons From the Toxic Effects of Hypoxic Injury. J Endocr Soc 2022; 6:bvac139. [PMID: 36817622 PMCID: PMC9562813 DOI: 10.1210/jendso/bvac139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Context Thyroid hormone has been shown to have a protective role in neuronal injury, although the mechanisms have not been established. The cellular response to stress that promotes adaptation and survival has been shown to involve epigenetic modifications. Objective We hypothesized that the neuroprotective role of thyroid hormone was associated with epigenetic modifications of histone proteins. We used hypoxic neurons as a model system for hypoxia-induced brain injury. Methods Mouse primary cortical neurons were exposed to 0.2% oxygen for 7 hours, with or without, treatment with triiodothyronine (T3). We analyzed the expression of histone-modifying enzymes by RNA-seq and the post-translationally modified histone 3 proteins by enzyme-linked immunosorbent assay (ELISA) and Western blot. Results We found that methylation of H3K27, associated with inactive promoters, was highly induced in hypoxic neurons, and this histone methylation was reduced by T3 treatment. H3K4 methylation is the hallmark of active promoters. The expression of 3 (Set1db, Kmta2c, and Kmt2e) out of 6 H3K4 methyltransferases was downregulated by hypoxia and expression was restored by T3 treatment. H3K4me3 protein, measured by ELISA, was increased 76% in T3-treated hypoxic neurons compared with the levels without T3 treatment. H3K56ac plays a critical role in transcription initiation and was markedly increased in T3-treated hypoxic neurons compared with those without T3 treatment, indicating stimulation of gene transcription. Additionally, T3 treatment restored hypoxia-induced downregulation of histone acetyltransferase, Kat6a, Kat6b, and Crebbp, which function as transcription factors. Conclusion These findings indicate that T3 treatment mitigates hypoxia-induced histone modifications and protects neurons from hypoxia-induced injury.
Collapse
Affiliation(s)
- Kiyomi Abe
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Jianrong Li
- Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Yan Yun Liu
- Correspondence: Yan-Yun Liu, PhD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. ; or Gregory A. Brent, MD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Gregory A Brent
- Correspondence: Yan-Yun Liu, PhD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. ; or Gregory A. Brent, MD, Division of Endocrinology, Diabetes and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| |
Collapse
|
9
|
Fu L, Crawford L, Tong A, Luu N, Tanizaki Y, Shi YB. Sperm associated antigen 7 is activated by T3 during Xenopus tropicalis metamorphosis via a thyroid hormone response element within the first intron. Dev Growth Differ 2022; 64:48-58. [PMID: 34862790 PMCID: PMC8810736 DOI: 10.1111/dgd.12764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023]
Abstract
Thyroid hormone (T3) affects many diverse physiological processes such as metabolism, organogenesis, and growth. The two highly related frog species, diploid Xenopus tropicalis and pseudo tetraploid Xenopus laevis, have been used as models for analyzing the effects of T3 during vertebrate development. T3 regulates T3-inducible gene transcription through T3 receptor (TR)-binding to T3-response elements (TREs). We have previously identified sperm associated antigen 7 (spag7) as a candidate T3 target gene that is potentially involved in adult stem cell development and/or proliferation during intestinal metamorphosis. To investigate whether T3 regulates spag7 directly at the transcriptional level via TR, we first conducted qRT-PCR to analyze its expression during natural and T3-induced metamorphosis and found that spag7 was up-regulated during natural metamorphosis in the intestine, tail, brain and hindlimb, peaking at the climax of metamorphosis in all those organs, and upon T3 treatment of premetamorphic tadpoles. Next, we demonstrated that an intronic TRE in spag7, first identified through bioinformatic analysis, could bind to TR in vitro and in vivo during metamorphosis. A dual luciferase assay utilizing a reconstituted frog oocyte transcription system showed that the TRE could mediate promoter activation by liganded TR. These results indicate that spag7 expression is directly regulated by T3 through the TRE in the first intron during metamorphosis, implicating a role for spag7 early during T3-regulated tissue remodeling and resorption.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - LaTaijah Crawford
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Tong
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Abstract
Thyroid hormone (T3) is critical not only for organ function and metabolism in the adult but also for animal development. This is particularly true during the neonatal period when T3 levels are high in mammals. Many processes during this postembryonic developmental period resemble those during amphibian metamorphosis. Anuran metamorphosis is perhaps the most dramatic developmental process controlled by T3 and affects essentially all organs/tissues, often in an organ autonomous manner. This offers a unique opportunity to study how T3 regulates vertebrate development. Earlier transgenic studies in the pseudo-tetraploid anuran Xenopus laevis revealed that T3 receptors (TRs) are necessary and sufficient for mediating the effects of T3 during metamorphosis. Recent gene knockout studies with gene-editing technologies in the highly related diploid anuran Xenopus tropicalis showed, surprisingly, that TRs are not required for most metamorphic transformations, although tadpoles lacking TRs are stalled at the climax of metamorphosis and eventually die. Analyses of the changes in different organs suggest that removal of TRs enables premature development of many adult tissues, likely due to de-repression of T3-inducible genes, while preventing the degeneration of tadpole-specific tissues, which is possibly responsible for the eventual lethality. Comparison with findings in TR knockout mice suggests both conservation and divergence in TR functions, with the latter likely due to the greatly reduced need, if any, to remove embryo/prenatal-specific tissues during mammalian postembryonic development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Yun-Bo Shi, Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 6A82, MSC 4480, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Shi YB, Shibata Y, Tanizaki Y, Fu L. The development of adult intestinal stem cells: Insights from studies on thyroid hormone-dependent anuran metamorphosis. VITAMINS AND HORMONES 2021; 116:269-293. [PMID: 33752821 DOI: 10.1016/bs.vh.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vertebrates organ development often takes place in two phases: initial formation and subsequent maturation into the adult form. This is exemplified by the intestine. In mouse, the intestine at birth has villus, where most differentiated epithelial cells are located, but lacks any crypts, where adult intestinal stem cells reside. The crypt is formed during the first 3 weeks after birth when plasma thyroid hormone (T3) levels are high. Similarly, in anurans, the intestine undergoes drastic remodeling into the adult form during metamorphosis in a process completely dependent on T3. Studies on Xenopus metamorphosis have revealed important clues on the formation of the adult intestine during metamorphosis. Here we will review our current understanding on how T3 induces the degeneration of larval epithelium and de novo formation of adult intestinal stem cells. We will also discuss the mechanistic conservations in intestinal development between anurans and mammals.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
12
|
Na W, Fu L, Luu N, Shi YB. Thyroid hormone directly activates mitochondrial fission process 1 (Mtfp1) gene transcription during adult intestinal stem cell development and proliferation in Xenopus tropicalis. Gen Comp Endocrinol 2020; 299:113590. [PMID: 32827515 DOI: 10.1016/j.ygcen.2020.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (T3) regulates vertebrate development via T3 receptors (TRs). T3 level peaks during postembryonic development, a period around birth in mammals or metamorphosis in anurans. Anuran metamorphosis offers many advantages for studying T3 and TR function in vivo largely because of its total dependent on T3 and the dramatic changes affecting essentially all organs/tissues that can be easily manipulated. Earlier studies have shown that TRs are both necessary and sufficient for mediating the metamorphic effects of T3. Many candidate TR target genes have been identified during Xenopus tropicalis intestinal metamorphosis, a process that involves apoptotic degeneration of most of the larval epithelial cells and de novo development of adult epithelial stem cells. Among these putative TR target genes is mitochondrial fission process 1 (Mtfp1), a nuclear-encoded mitochondrial gene. Here, we report that Mtfp1gene expression peaks in the intestine during both natural and T3-induced metamorphosis when adult epithelial stem cell development and proliferation take place. Furthermore, we show that Mtfp1 contains a T3-response element within the first intron that is bound by TR to mediate T3-induced local histone H3K79 methylation and RNA polymerase recruitment in the intestine during metamorphosis. Additionally, we demonstrate that the Mtfp1 promoter can be activated by T3 in a reconstituted frog oocyte system in vivo and that this activation is dependent on the intronic TRE. These findings suggest that T3 activates Mtfp1 gene directly via the intronic TRE and that Mtfp1 in turn facilitate adult intestinal stem cell development/proliferation by affecting mitochondrial fission process.
Collapse
Affiliation(s)
- Wonho Na
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Raj S, Kyono Y, Sifuentes CJ, Arellanes-Licea EDC, Subramani A, Denver RJ. Thyroid Hormone Induces DNA Demethylation in Xenopus Tadpole Brain. Endocrinology 2020; 161:bqaa155. [PMID: 32865566 PMCID: PMC7947600 DOI: 10.1210/endocr/bqaa155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022]
Abstract
Thyroid hormone (T3) plays pivotal roles in vertebrate development, acting via nuclear T3 receptors (TRs) that regulate gene transcription by promoting post-translational modifications to histones. Methylation of cytosine residues in deoxyribonucleic acid (DNA) also modulates gene transcription, and our recent finding of predominant DNA demethylation in the brain of Xenopus tadpoles at metamorphosis, a T3-dependent developmental process, caused us to hypothesize that T3 induces these changes in vivo. Treatment of premetamorphic tadpoles with T3 for 24 or 48 hours increased immunoreactivity in several brain regions for the DNA demethylation intermediates 5-hydroxymethylcytosine (5-hmC) and 5-carboxylcytosine, and the methylcytosine dioxygenase ten-eleven translocation 3 (TET3). Thyroid hormone treatment induced locus-specific DNA demethylation in proximity to known T3 response elements within the DNA methyltransferase 3a and Krüppel-like factor 9 genes, analyzed by 5-hmC immunoprecipitation and methylation sensitive restriction enzyme digest. Chromatin-immunoprecipitation (ChIP) assay showed that T3 induced TET3 recruitment to these loci. Furthermore, the messenger ribonucleic acid for several genes encoding DNA demethylation enzymes were induced by T3 in a time-dependent manner in tadpole brain. A TR ChIP-sequencing experiment identified putative TR binding sites at several of these genes, and we provide multiple lines of evidence to support that tet2 contains a bona fide T3 response element. Our findings show that T3 can promote DNA demethylation in developing tadpole brain, in part by promoting TET3 recruitment to discrete genomic regions, and by inducing genes that encode DNA demethylation enzymes.
Collapse
Affiliation(s)
- Samhitha Raj
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yasuhiro Kyono
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Christopher J Sifuentes
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Hasebe T, Fujimoto K, Buchholz DR, Ishizuya-Oka A. Stem cell development involves divergent thyroid hormone receptor subtype expression and epigenetic modifications in the Xenopus metamorphosing intestine. Gen Comp Endocrinol 2020; 292:113441. [PMID: 32084349 DOI: 10.1016/j.ygcen.2020.113441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
In the intestine during metamorphosis of the frog Xenopus laevis, most of the larval epithelial cells are induced to undergo apoptosis by thyroid hormone (TH), and under continued TH action, the remaining epithelial cells dedifferentiate into stem cells (SCs), which then newly generate an adult epithelium analogous to the mammalian intestinal epithelium. Previously, we have shown that the precursors of the SCs that exist in the larval epithelium as differentiated absorptive cells specifically express receptor tyrosine kinase-like orphan receptor 2 (Ror2). By using Ror2 as a marker, we have immunohistochemically shown here that these SC precursors, but not the larval epithelial cells destined to die by apoptosis, express TH receptor α (TRα). Upon initiation of TH-dependent remodeling, TRα expression remains restricted to the SCs as well as proliferating adult epithelial primordia derived from them. As intestinal folds form, TRα expression becomes localized in the trough of the folds where the SCs reside. In contrast, TRβ expression is transiently up-regulated in the entire intestine concomitantly with the increase of endogenous TH levels and is most highly expressed in the developing adult epithelial primordia. Moreover, we have shown here that global histone H4 acetylation is enhanced in the SC precursors and adult primordia including the SCs, while tri-methylation of histone H3 lysine 27 is lacking in those cells during metamorphosis. Our results strongly suggest distinct roles of TRα and TRβ in the intestinal larval-to-adult remodeling, involving distinctive epigenetic modifications in the SC lineage.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Kyonan-cho, Musashino, Tokyo, Japan
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, Kyonan-cho, Musashino, Tokyo, Japan
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kyonan-cho, Musashino, Tokyo, Japan.
| |
Collapse
|
15
|
Direct activation of tRNA methyltransferase-like 1 (Mettl1) gene by thyroid hormone receptor implicates a role in adult intestinal stem cell development and proliferation during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:60. [PMID: 32391142 PMCID: PMC7197180 DOI: 10.1186/s13578-020-00423-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Thyroid hormone (T3) plays an important role in vertebrate development. Compared to the postembryonic development of uterus-enclosed mammalian embryos, T3-dependent amphibian metamorphosis is advantageous for studying the function of T3 and T3 receptors (TRs) during vertebrate development. The effects of T3 on the metamorphosis of anurans such as Xenopus tropicalis is known to be mediated by TRs. Many putative TR target genes have been identified previously. Among them is the tRNA methyltransferase Mettl1. Results We studied the regulation of Mettl1 gene by T3 during intestinal metamorphosis, a process involves near complete degeneration of the larval epithelial cells via apoptosis and de novo formation of adult epithelial stem cells and their subsequent proliferation and differentiation. We observed that Mettl1 was activated by T3 in the intestine during both natural and T3-induced metamorphosis and that its mRNA level peaks at the climax of intestinal remodeling. We further showed that Mettl1 promoter could be activated by liganded TR via a T3 response element upstream of the transcription start site in vivo. More importantly, we found that TR binding to the TRE region correlated with the increase in the level of H3K79 methylation, a transcription activation histone mark, and the recruitment of RNA polymerase II by T3 during metamorphosis. Conclusions Our findings suggest that Mettl1 is activated by liganded TR directly at the transcriptional level via the TRE in the promoter region in the intestine during metamorphosis. Mettl1 in turn regulate target tRNAs to affect translation, thus facilitating stem cell formation and/or proliferation during intestinal remodeling.
Collapse
|
16
|
Shibata Y, Wen L, Okada M, Shi YB. Organ-Specific Requirements for Thyroid Hormone Receptor Ensure Temporal Coordination of Tissue-Specific Transformations and Completion of Xenopus Metamorphosis. Thyroid 2020; 30:300-313. [PMID: 31854240 PMCID: PMC7047119 DOI: 10.1089/thy.2019.0366] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Thyroid hormone (triiodothyronine [T3]) is essential for the development throughout vertebrates. Anuran metamorphosis mimics mammalian postembryonic development, a period around birth when plasma T3 level peaks and many organs/tissues mature into their adult forms. Compared with the uterus-enclosed mammalian embryos, tadpoles can be easily manipulated to study the roles of T3 and T3 receptors (TRs) in tissue remodeling and adult organ development. We and others have previously knocked out TRα or TRβ in the diploid anuran Xenopus tropicalis and reported distinct effects of the two receptor knockouts on metamorphosis. However, animals lacking either TRα or TRβ can complete metamorphosis and develop into reproductive adults. Methods: We have generated TRα and TRβ double knockout animals and carried out molecular and morphological analyses to determine if TR is required for Xenopus development. Results: We found that the TR double knockout tadpoles do not respond to T3, supporting the view that there are no other TR genes in X. tropicalis and that TR is essential for mediating the effects of T3 in vivo. Surprisingly, the double knockout tadpoles are able to initiate metamorphosis and accomplish many metamorphic changes, such as limb development. However, all double knockout tadpoles stall and eventually die at stage 61, the climax of metamorphosis, before tail resorption takes place. Analyses of the knockout tadpoles at stage 61 revealed various developmental abnormalities, including precocious ossification and extra vertebrae. Conclusions: Our data indicate that TRs are not required for the initiation of metamorphosis but is essential for the completion of metamorphosis. Furthermore, the differential effects of TR knockout on different organs/tissues suggest tissue-specific roles for TR to control temporal coordination and progression of metamorphosis in various organs.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Luan Wen
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Morihiro Okada
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
17
|
Fu L, Li C, Na W, Shi YB. Thyroid hormone activates Xenopus MBD3 gene via an intronic TRE in vivo. Front Biosci (Landmark Ed) 2020; 25:437-451. [PMID: 31585895 DOI: 10.2741/4812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thyroid hormone (T3) is important for adult organ function and vertebrate development. Amphibian metamorphosis is totally dependent on T3 and can be easily manipulated, thus offering a unique opportunity for studying how T3 controls vertebrate development. T3 controls frog metamorphosis through T3 receptor (TR)-mediated regulation of T3 response genes. To identify direct T3 response genes, we previously carried out a ChIP (chromatin immunoprecipitation)-on-chip analysis with a polyclonal anti-TR antibody on the tadpole intestine and identified many putative TR target genes. Among them is the methyl-CpG binding domain protein 3 (MBD3) gene, which has been implicated to play a role in epigenetic regulation of cellular processes as a subunit of the Mi-2/NuRD (Nucleosome Remodeling Deacetylase) complex. We show here that MBD3 is upregulated in the intestine and tail by T3 and its expression peaks at stage 62, the climax of metamorphosis. We further show that a putative TRE within the first intron of the MBD3 gene binds to TR/RXR in vitro and in vivo, and mediates T3 regulation of the MBD3 promoter in vivo.
Collapse
Affiliation(s)
- Liezhen Fu
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA
| | - Christin Li
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA
| | - Wonho Na
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA
| | - Yun-Bo Shi
- NICHD, NIH, bldg 49 Rm6A82, Bethesda, Maryland, 20892, USA,
| |
Collapse
|
18
|
Sachs LM, Buchholz DR. Insufficiency of Thyroid Hormone in Frog Metamorphosis and the Role of Glucocorticoids. Front Endocrinol (Lausanne) 2019; 10:287. [PMID: 31143159 PMCID: PMC6521741 DOI: 10.3389/fendo.2019.00287] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) is the most important hormone in frog metamorphosis, a developmental process which will not occur in the absence of TH but can be induced precociously by exogenous TH. However, such treatments including in-vitro TH treatments often do not replicate the events of natural metamorphosis in many organs, including lung, brain, blood, intestine, pancreas, tail, and skin. A potential explanation for the discrepancy between natural and TH-induced metamorphosis is the involvement of glucocorticoids (GCs). GCs are not able to advance development by themselves but can modulate the rate of developmental progress induced by TH via increased tissue sensitivity to TH. Global gene expression analyses and endocrine experiments suggest that GCs may also have direct actions required for completion of metamorphosis independent of their effects on TH signaling. Here, we provide a new review and analysis of the requirement and necessity of TH signaling in light of recent insights from gene knockout frogs. We also examine the independent and interactive roles GCs play in regulating morphological and molecular metamorphic events dependent upon TH.
Collapse
Affiliation(s)
- Laurent M. Sachs
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'histoire Naturelle, Paris, France
| | - Daniel R. Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
19
|
Fu L, Yin J, Shi YB. Involvement of epigenetic modifications in thyroid hormone-dependent formation of adult intestinal stem cells during amphibian metamorphosis. Gen Comp Endocrinol 2019; 271:91-96. [PMID: 30472386 PMCID: PMC6322911 DOI: 10.1016/j.ygcen.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022]
Abstract
Amphibian metamorphosis has long been used as model to study postembryonic development in vertebrates, a period around birth in mammals when many organs/tissues mature into their adult forms and is characterized by peak levels of plasma thyroid hormone (T3). Of particular interest is the remodeling of the intestine during metamorphosis. In the highly-related anurans Xenopus laevis and Xenopus tropicalis, this remodeling process involves larval epithelial cell death and de novo formation of adult stem cells via dedifferentiation of some larval cells under the induction of T3, making it a valuable system to investigate how adult organ-specific stem cells are formed during vertebrate development. Here, we will review some studies by us and others on how T3 regulates the formation of the intestinal stem cells during metamorphosis. We will highlight the involvement of nucleosome removal and a positive feedback mechanism involving the histone methyltransferases in gene regulation by T3 receptor (TR) during this process.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States
| | - Jessica Yin
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 49 Convent Dr., Bethesda, MD 20892, United States.
| |
Collapse
|
20
|
Functional Studies of Transcriptional Cofactors via Microinjection-Mediated Gene Editing in Xenopus. Methods Mol Biol 2019; 1874:507-524. [PMID: 30353533 DOI: 10.1007/978-1-4939-8831-0_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The anuran Xenopus laevis has been studied for decades as a model for vertebrate cell and developmental biology. More recently, the highly related species Xenopus tropicalis has offered the opportunity to carry out genetic studies due to its diploid genome as compared to the pseudo-tetraploid Xenopus laevis. Amphibians undergo a biphasic development: embryogenesis to produce a free-living tadpoles and subsequent metamorphosis to transform the tadpole to a frog. This second phase mimics the so-called postembryonic development in mammals when many organs/tissues mature into their adult form in the presence of high levels of plasma thyroid hormone (T3). The total dependence of amphibian metamorphosis on T3 offers a unique opportunity to study postembryonic development in vertebrates, especially with the recent development gene editing technologies that function in amphibians. Here, we first review the basic molecular understanding of the regulation of Xenopus metamorphosis by T3 and T3 receptors (TRs), and then describe a detailed method to use CRISPR to knock out the TR-coactivator SRC3 (steroid receptor coactivator 3), a histone acetyltransferase, in order to study its involvement in gene regulation by T3 in vivo and Xenopus development.
Collapse
|
21
|
Haensgen H, Albornoz E, Opazo MC, Bugueño K, Jara Fernández EL, Binzberger R, Rivero-Castillo T, Venegas Salas LF, Simon F, Cabello-Verrugio C, Elorza AA, Kalergis AM, Bueno SM, Riedel CA. Gestational Hypothyroxinemia Affects Its Offspring With a Reduced Suppressive Capacity Impairing the Outcome of the Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:1257. [PMID: 29928277 PMCID: PMC5997919 DOI: 10.3389/fimmu.2018.01257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Hypothyroxinemia (Hpx) is a thyroid hormone deficiency (THD) condition highly frequent during pregnancy, which although asymptomatic for the mother, it can impair the cognitive function of the offspring. Previous studies have shown that maternal hypothyroidism increases the severity of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease model for multiple sclerosis (MS). Here, we analyzed the immune response after EAE induction in the adult offspring gestated in Hpx. Mice gestated in Hpx showed an early appearance of EAE symptoms and the increase of all parameters of the disease such as: the pathological score, spinal cord demyelination, and immune cell infiltration in comparison to the adult offspring gestated in euthyroidism. Isolated CD4+CD25+ T cells from spleen of the offspring gestated in Hpx that suffer EAE showed reduced capacity to suppress proliferation of effector T cells (TEff) after being stimulated with anti-CD3 and anti-CD28 antibodies. Moreover, adoptive transfer experiments of CD4+CD25+ T cells from the offspring gestated in Hpx suffering EAE to mice that were induced with EAE showed that the receptor mice suffer more intense EAE pathological score. Even though, no significant differences were detected in the frequency of Treg cells and IL-10 content in the blood, spleen, and brain between mice gestated in Hpx or euthyroidism, T cells CD4+CD25+ from spleen have reduced capacity to differentiate in vitro to Treg and to produce IL-10. Thus, our data support the notion that maternal Hpx can imprint the immune response of the offspring suffering EAE probably due to a reduced capacity to trigger suppression. Such “imprints” on the immune system could contribute to explaining as to why adult offspring gestated in Hpx suffer earlier and more intense EAE.
Collapse
Affiliation(s)
- Henny Haensgen
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eduardo Albornoz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - María C Opazo
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Katherinne Bugueño
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Evelyn Liliana Jara Fernández
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Tomás Rivero-Castillo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Luis F Venegas Salas
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A Elorza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Centro de Investigaciones Biomédicas, Facultad de Ciencias de la Vida y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
22
|
Genome-wide identification of thyroid hormone receptor targets in the remodeling intestine during Xenopus tropicalis metamorphosis. Sci Rep 2017; 7:6414. [PMID: 28743885 PMCID: PMC5527017 DOI: 10.1038/s41598-017-06679-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
Thyroid hormone (T3) affects development and metabolism in vertebrates. We have been studying intestinal remodeling during T3-dependent Xenopus metamorphosis as a model for organ maturation and formation of adult organ-specific stem cells during vertebrate postembryonic development, a period characterized by high levels of plasma T3. T3 is believed to affect development by regulating target gene transcription through T3 receptors (TRs). While many T3 response genes have been identified in different animal species, few have been shown to be direct target genes in vivo, especially during development. Here we generated a set of genomic microarray chips covering about 8000 bp flanking the predicted transcription start sites in Xenopus tropicalis for genome wide identification of TR binding sites. By using the intestine of premetamorphic tadpoles treated with or without T3 and for chromatin immunoprecipitation assays with these chips, we determined the genome-wide binding of TR in the control and T3-treated tadpole intestine. We further validated TR binding in vivo and analyzed the regulation of selected genes. We thus identified 278 candidate direct TR target genes. We further provided evidence that these genes are regulated by T3 and likely involved in the T3-induced formation of adult intestinal stem cells during metamorphosis.
Collapse
|
23
|
Wen L, Fu L, Shi YB. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development. FASEB J 2017; 31:4821-4831. [PMID: 28739643 DOI: 10.1096/fj.201700131r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
Histone modifications are associated with transcriptional regulation by diverse transcription factors. Genome-wide correlation studies have revealed that histone activation marks and repression marks are associated with activated and repressed gene expression, respectively. Among the histone activation marks is histone H3 K79 methylation, which is carried out by only a single methyltransferase, disruptor of telomeric silencing-1-like (DOT1L). We have been studying thyroid hormone (T3)-dependent amphibian metamorphosis in two highly related species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, as a model for postembryonic development, a period around birth in mammals that is difficult to study. We previously showed that H3K79 methylation levels are induced at T3 target genes during natural and T3-induced metamorphosis and that Dot1L is itself a T3 target gene. These suggest that T3 induces Dot1L expression, and Dot1L in turn functions as a T3 receptor (TR) coactivator to promote vertebrate development. We show here that in cotransfection studies or in the reconstituted frog oocyte in vivo transcription system, overexpression of Dot1L enhances gene activation by TR in the presence of T3. Furthermore, making use of the ability to carry out transgenesis in X. laevis and gene knockdown in X. tropicalis, we demonstrate that endogenous Dot1L is critical for T3-induced activation of endogenous TR target genes while transgenic Dot1L enhances endogenous TR function in premetamorphic tadpoles in the presence of T3. Our studies thus for the first time provide complementary gain- and loss-of functional evidence in vivo for a cofactor, Dot1L, in gene activation by TR during vertebrate development.-Wen, L., Fu, L., Shi, Y.-B. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Wen L, Shibata Y, Su D, Fu L, Luu N, Shi YB. Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis. Endocrinology 2017; 158:1985-1998. [PMID: 28324024 PMCID: PMC5460924 DOI: 10.1210/en.2016-1953] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (T3) receptors (TRs) mediate the effects of T3 on organ metabolism and animal development. There are two TR genes, TRα and TRβ, in all vertebrates. During animal development, TRα expression is activated earlier than zygotic T3 synthesis and secretion into the plasma, implicating a developmental role of TRα both in the presence and absence of T3. Using T3-dependent amphibian metamorphosis as a model, we previously proposed a dual-function model for TRs, in particular TRα, during development. That is, unliganded TR represses the expression of T3-inducible genes during premetamorphosis to ensure proper animal growth and prevent premature metamorphosis, whereas during metamorphosis, liganded TR activates target gene transcription to promote the transformation of the tadpole into a frog. To determine if TRα has such a dual function, we generated homozygous TRα-knockout animal lines. We show that, indeed, TRα knockout affects both premetamorphic animal development and metamorphosis. Surprisingly, we observed that TRα is not essential for amphibian metamorphosis, given that homozygous knockout animals complete metamorphosis within a similar time period after fertilization as their wild-type siblings. On the other hand, the timing of metamorphosis for different organs is altered by the knockout; limb metamorphosis occurs earlier, whereas intestinal metamorphosis is completed later than in wild-type siblings. Thus, our studies have demonstrated a critical role of endogenous TRα, not only in regulating both the timing and rate of metamorphosis, but also in coordinating temporal metamorphosis of different organs.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Dan Su
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Nga Luu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
25
|
Sachs LM, Buchholz DR. Frogs model man: In vivo thyroid hormone signaling during development. Genesis 2017; 55. [PMID: 28109053 DOI: 10.1002/dvg.23000] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (TH) signaling comprises TH transport across cell membranes, metabolism by deiodinases, and molecular mechanisms of gene regulation. Proper TH signaling is essential for normal perinatal development, most notably for neurogenesis and fetal growth. Knowledge of perinatal TH endocrinology needs improvement to provide better treatments for premature infants and endocrine diseases during gestation and to counteract effects of endocrine disrupting chemicals. Studies in amphibians have provided major insights to understand in vivo mechanisms of TH signaling. The frog model boasts dramatic TH-dependent changes directly observable in free-living tadpoles with precise and easy experimental control of the TH response at developmental stages comparable to fetal stages in mammals. The hormones, their receptors, molecular mechanisms, and developmental roles of TH signaling are conserved to a high degree in humans and amphibians, such that with respect to developmental TH signaling "frogs are just little people that hop." The frog model is exceptionally illustrative of fundamental molecular mechanisms of in vivo TH action involving TH receptors, transcriptional cofactors, and chromatin remodeling. This review highlights the current need, recent successes, and future prospects using amphibians as a model to elucidate molecular mechanisms and functional roles of TH signaling during post-embryonic development.
Collapse
Affiliation(s)
- Laurent M Sachs
- UMR 7221 CNRS, Muséum National d'histoire Naturelle, Dépt. Régulation, Développement et Diversité Moléculaire, Sorbonne Universités, Paris, 75005, France
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, 45221
| |
Collapse
|
26
|
Sun G, Roediger J, Shi YB. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis. Rev Endocr Metab Disord 2016; 17:559-569. [PMID: 27554108 DOI: 10.1007/s11154-016-9380-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Julia Roediger
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Tamaoki K, Okada R, Ishihara A, Shiojiri N, Mochizuki K, Goda T, Yamauchi K. Morphological, biochemical, transcriptional and epigenetic responses to fasting and refeeding in intestine of Xenopus laevis. Cell Biosci 2016; 6:2. [PMID: 26798452 PMCID: PMC4721045 DOI: 10.1186/s13578-016-0067-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
Background Amphibians are able to survive for several months without food. However, it is unclear what molecular mechanisms underlie their survival. To characterize the intestinal responses to fasting and refeeding, we investigated morphological, biochemical, transcriptional and epigenetic changes in the intestine from adult male Xenopus laevis. Results Frogs were fed for 22 days, fasted for 22 days, or fasted for 21 days and refed for 1 day. Fasting reduced, and refeeding recovered partially or fully, morphological parameters (wet weight of the intestine, circumference of the epithelial layer and number of troughs in a villus-trough unit), activities of digestive enzymes and plasma biochemical parameters (glucose, triglycerides, cholesterol and free fatty acids). Reverse transcription-quantitative polymerase chain reaction analysis revealed overall suppression of the transcript levels by fasting, with various recovery rates on refeeding. Chromatin immunoprecipitation assays on the selected genes whose transcript levels declined with fasting and recovered quickly with refeeding, showed several euchromatin marks in histone (acetylation and methylation) and RNA polymerase II modifications (phosphorylation) with fasting, and returned to the feeding levels by refeeding. The mRNA levels of these genes responded to fasting and refeeding to greater extents than did the pre-mRNA levels, suggesting the involvement of post-transcriptional regulation. Conclusions Our results demonstrate that the X. laevis intestine may undergo overall metabolic suppression at least at the transcriptional level to save energy during fasting and quickly recovered to moderate nutritional deficiency by refeeding, and suggest that these dietary responses of the intestine are epigenetically and post-transcriptionally regulated. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0067-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiji Tamaoki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Reiko Okada
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529 Japan ; Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Akinori Ishihara
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529 Japan ; Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Nobuyoshi Shiojiri
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529 Japan
| | - Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, 400-8510 Japan
| | - Toshinao Goda
- Laboratory of Nutritional Physiology, School of Food and Nutritional Sciences, The University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Kiyoshi Yamauchi
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529 Japan ; Green Biology Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529 Japan
| |
Collapse
|
28
|
Exposure to 3,3',5-triiodothyronine affects histone and RNA polymerase II modifications, but not DNA methylation status, in the regulatory region of the Xenopus laevis thyroid hormone receptor βΑ gene. Biochem Biophys Res Commun 2015; 467:33-8. [PMID: 26417689 DOI: 10.1016/j.bbrc.2015.09.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
Thyroid hormones (THs) play a critical role in amphibian metamorphosis, during which the TH receptor (TR) gene, thrb, is upregulated in a tissue-specific manner. The Xenopus laevis thrb gene has 3 TH response elements (TREs) in the 5' flanking regulatory region and 1 TRE in the exon b region, around which CpG sites are highly distributed. To clarify whether exposure to 3,3',5-triiodothyronine (T3) affects histone and RNA polymerase II (RNAPII) modifications and the level of DNA methylation in the 5' regulatory region, we conducted reverse transcription-quantitative polymerase chain reaction, bisulfite sequencing and chromatin immunoprecipitation assay using X. laevis cultured cells and premetamorphic tadpoles treated with or without 2 nM T3. Exposure to T3 increased the amount of the thrb transcript, in parallel with enhanced histone H4 acetylation and RNAPII recruitment, and probably phosphorylation of RNAPII at serine 5, in the 5' regulatory and exon b regions. However, the 5' regulatory region remained hypermethylated even with exposure to T3, and there was no significant difference in the methylation status between DNAs from T3-untreated and -treated cultured cells or tadpole tissues. Our results demonstrate that exposure to T3 induced euchromatin-associated epigenetic marks by enhancing histone acetylation and RNAPII recruitment, but not by decreasing the level of DNA methylation, in the 5' regulatory region of the X. laevis thrb gene.
Collapse
|
29
|
Okada M, Miller TC, Fu L, Shi YB. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis. Endocrinology 2015; 156:3381-93. [PMID: 26086244 PMCID: PMC4541628 DOI: 10.1210/en.2015-1190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.
Collapse
Affiliation(s)
- Morihiro Okada
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas C Miller
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
30
|
Abstract
Thyroid hormone (T3) affects adult metabolism and postembryonic development in vertebrates. T3 functions mainly via binding to its receptors (TRs) to regulate gene expression. There are 2 TR genes, TRα and TRβ, with TRα more ubiquitously expressed. During development, TRα expression appears earlier than T3 synthesis and secretion into the plasma. This and the ability of TRs to regulate gene expression both in the presence and absence of T3 have indicated a role for unliganded TR during vertebrate development. On the other hand, it has been difficult to study the role of unliganded TR during development in mammals because of the difficulty to manipulate the uterus-enclosed, late-stage embryos. Here we use amphibian development as a model to address this question. We have designed transcriptional activator-like effector nucleases (TALENs) to mutate the TRα gene in Xenopus tropicalis. We show that knockdown of TRα enhances tadpole growth in premetamorphic tadpoles, in part because of increased growth hormone gene expression. More importantly, the knockdown also accelerates animal development, with the knockdown animals initiating metamorphosis at a younger age and with a smaller body size. On the other hand, such tadpoles are resistant to exogenous T3 treatment and have delayed natural metamorphosis. Thus, our studies not only have directly demonstrated a critical role of endogenous TRα in mediating the metamorphic effect of T3 but also revealed novel functions of unliganded TRα during postembryonic development, that is, regulating both tadpole growth rate and the timing of metamorphosis.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
31
|
Sun G, Fu L, Shi YB. Epigenetic regulation of thyroid hormone-induced adult intestinal stem cell development during anuran metamorphosis. Cell Biosci 2014; 4:73. [PMID: 25937894 PMCID: PMC4417507 DOI: 10.1186/2045-3701-4-73] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022] Open
Abstract
Epigenetic modifications of histones are emerging as key factors in gene regulation by diverse transcription factors. Their roles during vertebrate development and pathogenesis are less clear. The causative effect of thyroid hormone (T3) on amphibian metamorphosis and the ability to manipulate this process for molecular and genetic studies have led to the demonstration that T3 receptor (TR) is necessary and sufficient for Xenopus metamorphosis, a process that resembles the postembryonic development (around birth) in mammals. Importantly, analyses during metamorphosis have provided some of the first in vivo evidence for the involvement of histone modifications in gene regulation by TR during vertebrate development. Furthermore, expression and functional studies suggest that various histone modifying epigenetic enzymes likely participate in multiple steps during the formation of adult intestinal stem cells during metamorphosis. The similarity between intestinal remodeling and the maturation of the mammalian intestine around birth when T3 levels are high suggests conserved roles for the epigenetic enzymes in mammalian adult intestinal stem cell development and/or proliferation.
Collapse
Affiliation(s)
- Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 P.R. China
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, Maryland 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, Maryland 20892 USA
| |
Collapse
|
32
|
Wen L, Fu L, Guo X, Chen Y, Shi YB. Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis. FASEB J 2014; 29:385-93. [PMID: 25366346 DOI: 10.1096/fj.14-252171] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone methylations have been implicated to play important roles in diverse cellular processes. Of particular interest is the methylation of histone H3K79, which is catalyzed by an evolutionarily conserved methyltransferase, disruptor of telomeric silencing (Dot1)-like (Dot1L). To investigate the role of Dot1L during vertebrate development, we have generated a Dot1L-specific transcription activator-like effector nuclease (TALEN) nuclease to knockdown endogenous Dot1L in Xenopus tropicalis, a diploid species highly related to the well-known developmental model Xenopus laevis, a pseudotetraploid amphibian. We show that the TALEN was extremely efficient in mutating Dot1L when expressed in fertilized eggs, creating essentially Dot1L knockout embryos with little H3K79 methylation. Importantly, we observed that Dot1L knockdown had no apparent effect on embryogenesis because normally feeding tadpoles were formed, consistent with the lack of maternal Dot1L expression. On the other hand, Dot1L knockdown severely retarded the growth of the tadpoles and led to tadpole lethality prior to metamorphosis. These findings suggest that Dot1L and H3K79 methylation play an important role for tadpole growth and development prior to metamorphosis into a frog. Our findings further reveal interesting similarities and differences between Xenopus and mouse development and suggest the existence of 2 separate phases of vertebrate development with distinct requirements for epigenetic modifications.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), U.S. National Institutes of Health, Bethesda, Maryland, USA; and
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), U.S. National Institutes of Health, Bethesda, Maryland, USA; and
| | - Xiaogang Guo
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science City, Luogang, Guangzhou, China
| | - Yonglong Chen
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science City, Luogang, Guangzhou, China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), U.S. National Institutes of Health, Bethesda, Maryland, USA; and
| |
Collapse
|
33
|
Ichu TA, Han J, Borchers CH, Lesperance M, Helbing CC. Metabolomic insights into system-wide coordination of vertebrate metamorphosis. BMC DEVELOPMENTAL BIOLOGY 2014; 14:5. [PMID: 24495308 PMCID: PMC3928663 DOI: 10.1186/1471-213x-14-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/03/2014] [Indexed: 01/09/2023]
Abstract
Background After completion of embryogenesis, many organisms experience an additional obligatory developmental transition to attain a substantially different juvenile or adult form. During anuran metamorphosis, the aquatic tadpole undergoes drastic morphological changes and remodelling of tissues and organs to become a froglet. Thyroid hormones are required to initiate the process, but the mechanism whereby the many requisite changes are coordinated between organs and tissues is poorly understood. Metabolites are often highly conserved biomolecules between species and are the closest reflection of phenotype. Due to the extensive distribution of blood throughout the organism, examination of the metabolites contained therein provides a system-wide overview of the coordinated changes experienced during metamorphosis. We performed an untargeted metabolomic analysis on serum samples from naturally-metamorphosing Rana catesbeiana from tadpoles to froglets using ultraperformance liquid chromatography coupled to a mass spectrometer. Total and aqueous metabolite extracts were obtained from each serum sample to select for nonpolar and polar metabolites, respectively, and selected metabolites were validated by running authentic compounds. Results The majority of the detected metabolites (74%) showed statistically significant abundance changes (padj < 0.001) between metamorphic stages. We observed extensive remodelling of five core metabolic pathways: arginine and purine/pyrimidine, cysteine/methionine, sphingolipid, and eicosanoid metabolism and the urea cycle, and found evidence for a major role for lipids during this postembryonic process. Metabolites traditionally linked to human disease states were found to have biological linkages to the system-wide changes occuring during the events leading up to overt morphological change. Conclusions To our knowledge, this is the first wide-scale metabolomic study of vertebrate metamorphosis identifying fundamental pathways involved in the coordination of this important developmental process and paves the way for metabolomic studies on other metamorphic systems including fish and insects.
Collapse
Affiliation(s)
| | | | | | | | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| |
Collapse
|
34
|
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014; 24:88-168. [PMID: 24001133 PMCID: PMC3887458 DOI: 10.1089/thy.2013.0109] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. SUMMARY Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. CONCLUSIONS It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes.
Collapse
Affiliation(s)
- Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Grant Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Brian W. Kim
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter A. Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Hui Liao
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Maria Jesus Obregon
- Institute of Biomedical Investigation (IIB), Spanish National Research Council (CSIC) and Autonomous University of Madrid, Madrid, Spain
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - David S. Sharlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota
| | - Warner S. Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Roy E. Weiss
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Graham R. Williams
- Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
35
|
Hasebe T, Fu L, Miller TC, Zhang Y, Shi YB, Ishizuya-Oka A. Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells. Cell Biosci 2013; 3:18. [PMID: 23547658 PMCID: PMC3621685 DOI: 10.1186/2045-3701-3-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
The mammalian intestine has long been used as a model to study organ-specific adult stem cells, which are essential for organ repair and tissue regeneration throughout adult life. The establishment of the intestinal epithelial cell self-renewing system takes place during perinatal development when the villus-crypt axis is established with the adult stem cells localized in the crypt. This developmental period is characterized by high levels of plasma thyroid hormone (T3) and T3 deficiency is known to impair intestinal development. Determining how T3 regulates adult stem cell development in the mammalian intestine can be difficult due to maternal influences. Intestinal remodeling during amphibian metamorphosis resembles perinatal intestinal maturation in mammals and its dependence on T3 is well established. A major advantage of the amphibian model is that it can easily be controlled by altering the availability of T3. The ability to manipulate and examine this relatively rapid and localized formation of adult stem cells has greatly assisted in the elucidation of molecular mechanisms regulating their formation and further revealed evidence that supports conservation in the underlying mechanisms of adult stem cell development in vertebrates. Furthermore, genetic studies in Xenopus laevis indicate that T3 actions in both the epithelium and the rest of the intestine, most likely the underlying connective tissue, are required for the formation of adult stem cells. Molecular analyses suggest that cell-cell interactions involving hedgehog and BMP pathways are critical for the establishment of the stem cell niche that is essential for the formation of the adult intestinal stem cells.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 2-297-2 Nakahara-ku, Kosugi-cho, Kawasaki, Kanagawa, 211-0063, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Shi YB, Matsuura K, Fujimoto K, Wen L, Fu L. Thyroid hormone receptor actions on transcription in amphibia: The roles of histone modification and chromatin disruption. Cell Biosci 2012; 2:42. [PMID: 23256597 PMCID: PMC3562205 DOI: 10.1186/2045-3701-2-42] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/21/2012] [Indexed: 01/14/2023] Open
Abstract
Thyroid hormone (T3) plays diverse roles in adult organ function and during vertebrate development. The most important stage of mammalian development affected by T3 is the perinatal period when plasma T3 level peaks. Amphibian metamorphosis resembles this mammalian postembryonic period and is absolutely dependent on T3. The ability to easily manipulate this process makes it an ideal model to study the molecular mechanisms governing T3 action during vertebrate development. T3 functions mostly by regulating gene expression through T3 receptors (TRs). Studies in vitro, in cell cultures and reconstituted frog oocyte transcription system have revealed that TRs can both activate and repress gene transcription in a T3-dependent manner and involve chromatin disruption and histone modifications. These changes are accompanied by the recruitment of diverse cofactor complexes. More recently, genetic studies in mouse and frog have provided strong evidence for a role of cofactor complexes in T3 signaling in vivo. Molecular studies on amphibian metamorphosis have also revealed that developmental gene regulation by T3 involves histone modifications and the disruption of chromatin structure at the target genes as evidenced by the loss of core histones, arguing that chromatin remodeling is an important mechanism for gene activation by liganded TR during vertebrate development.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA.
| | | | | | | | | |
Collapse
|
37
|
Sun G, Shi YB. Thyroid hormone regulation of adult intestinal stem cell development: mechanisms and evolutionary conservations. Int J Biol Sci 2012; 8:1217-24. [PMID: 23136549 PMCID: PMC3491429 DOI: 10.7150/ijbs.5109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022] Open
Abstract
The adult mammalian intestine has long been used as a model to study adult stem cell function and tissue renewal as the intestinal epithelium is constantly undergoing self-renewal throughout adult life. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells located in the crypt. The development of this self-renewal system is, however, poorly understood. A number of studies suggest that the formation/maturation of the adult intestine is conserved in vertebrates and depends on endogenous thyroid hormone (T3). In amphibians such as Xenopus laevis, the process takes place during metamorphosis, which is totally dependent upon T3 and resembles postembryonic development in mammals when T3 levels are also high. During metamorphosis, the larval epithelial cells in the tadpole intestine undergo apoptosis and concurrently, adult epithelial stem/progenitor cells are formed de novo, which subsequently lead to the formation of a trough-crest axis of the epithelial fold in the frog, resembling the crypt-villus axis in the adult mammalian intestine. Here we will review some recent molecular and genetic studies that support the conservation of the development of the adult intestinal stem cells in vertebrates. We will discuss the mechanisms by which T3 regulates this process via its nuclear receptors.
Collapse
Affiliation(s)
- Guihong Sun
- Key Laboratory of Allergy and Immune-related Diseases and Centre for Medical Research, School of Medicine, Wuhan University, Wuhan 430072, PR China.
| | | |
Collapse
|
38
|
Cytological and morphological analyses reveal distinct features of intestinal development during Xenopus tropicalis metamorphosis. PLoS One 2012; 7:e47407. [PMID: 23071801 PMCID: PMC3468569 DOI: 10.1371/journal.pone.0047407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/14/2012] [Indexed: 01/29/2023] Open
Abstract
Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence information and genetic advantages of X. tropicalis to dissect the pathways governing adult intestinal development.
Collapse
|
39
|
Fujimoto K, Matsuura K, Das B, Fu L, Shi YB. Direct activation of Xenopus iodotyrosine deiodinase by thyroid hormone receptor in the remodeling intestine during amphibian metamorphosis. Endocrinology 2012; 153:5082-9. [PMID: 22865369 PMCID: PMC3512013 DOI: 10.1210/en.2012-1308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Thyroid hormone (TH) plays critical roles during vertebrate postembryonic development. TH production in the thyroid involves incorporating inorganic iodide into thyroglobulin. The expression of iodotyrosine deiodinase (IYD; also known as iodotyrosine dehalogenase 1) in the thyroid gland ensures efficient recycling of iodine from the byproducts of TH biosynthesis: 3'-monoiodotyrosine and 3', 5'-diiodotyrosine. Interestingly, IYD is known to be expressed in other organs in adult mammals, suggesting iodine recycling outside the thyroid. On the other hand, the developmental role of iodine recycling has yet to be investigated. Here, using intestinal metamorphosis as a model, we discovered that the Xenopus tropicalis IYD gene is strongly up-regulated by TH during metamorphosis in the intestine but not the tail. We further demonstrated that this induction was one of the earliest events during intestinal metamorphosis, with IYD being activated directly through the binding of liganded TH receptors to a TH response element in the IYD promoter region. Because iodide is mainly taken up from the diet in the intestine and the tadpole stops feeding during metamorphosis when the intestine is being remodeled, our findings suggest that IYD transcription is activated by liganded TH receptors early during intestinal remodeling to ensure efficient iodine recycling at the climax of metamorphosis when highest levels of TH are needed for the proper transformations of different organs.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
40
|
Matsuura K, Fujimoto K, Das B, Fu L, Lu CD, Shi YB. Histone H3K79 methyltransferase Dot1L is directly activated by thyroid hormone receptor during Xenopus metamorphosis. Cell Biosci 2012; 2:25. [PMID: 22800560 PMCID: PMC3414807 DOI: 10.1186/2045-3701-2-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/16/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Thyroid hormone (T3) is important for adult organ function and vertebrate development. Amphibian metamorphosis is totally dependent on T3 and offers a unique opportunity to study how T3 controls postembryonic development in vertebrates. Earlier studies have demonstrated that TR mediates the metamorphic effects of T3 in Xenopus laevis. Liganded TR recruits histone modifying coactivator complexes to target genes during metamorphosis. This leads to nucleosomal removal and histone modifications, including methylation of histone H3 lysine (K) 79, in the promoter regions, and the activation of T3-inducible genes. RESULTS We show that Dot1L, the only histone methyltransferase capable of methylating H3K79, is directly regulated by TR via binding to a T3 response element in the promoter region during metamorphosis in Xenopus tropicalis, a highly related species of Xenopus laevis. We further show that Dot1L expression in both the intestine and tail correlates with the transformation of the organs. CONCLUSIONS Our findings suggest that TR activates Dot1L, which in turn participates in metamorphosis through a positive feedback to enhance H3K79 methylation and gene activation by liganded TR.
Collapse
Affiliation(s)
- Kazuo Matsuura
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA
| | - Kenta Fujimoto
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA.,Present address: Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Biswajit Das
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA.,Present address: Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA
| | - Christopher D Lu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA
| |
Collapse
|
41
|
Grimaldi A, Buisine N, Miller T, Shi YB, Sachs LM. Mechanisms of thyroid hormone receptor action during development: lessons from amphibian studies. Biochim Biophys Acta Gen Subj 2012; 1830:3882-92. [PMID: 22565053 DOI: 10.1016/j.bbagen.2012.04.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/28/2012] [Accepted: 04/21/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Thyroid hormone (TH) receptor (TR) plays critical roles in vertebrate development. However, the in vivo mechanism of TR action remains poorly explored. SCOPE OF REVIEW Frog metamorphosis is controlled by TH and mimics the postembryonic period in mammals when high levels of TH are also required. We review here some of the findings on the developmental functions of TH and TR and the associated mechanisms obtained from this model system. MAJOR CONCLUSION A dual function model for TR in Anuran development was proposed over a decade ago. That is, unliganded TR recruits corepressors to TH response genes in premetamorphic tadpoles to repress these genes and prevent premature metamorphic changes. Subsequently, when TH becomes available, liganded TR recruits coactivators to activate these same genes, leading to metamorphic changes. Over the years, molecular and genetic approaches have provided strong support for this model. Specifically, it has been shown that unliganded TR recruits histone deacetylase containing corepressor complexes during larval stages to control metamorphic timing, while liganded TR recruits multiple histone modifying and chromatin remodeling coactivator complexes during metamorphosis. These complexes can alter chromatin structure via nucleosome position alterations or eviction and histone modifications to contribute to the recruitment of transcriptional machinery and gene activation. GENERAL SIGNIFICANCE The molecular mechanisms of TR action in vivo as revealed from studies on amphibian metamorphosis are very likely applicable to mammalian development as well. These findings provide a new perspective for understanding the diverse effects of TH in normal physiology and diseases caused by TH dysfunction. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Alexis Grimaldi
- Muséum National d'Histoire Naturelle, Dépt. Régulation Développement et Diversité Moléculaire, UMR7221 CNRS, Evolution des Régulations Endocriniennes, Section on thyroid hormone receptor function and mechanism of action, 57 rue Cuvier, 75231 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
42
|
Fujimoto K, Matsuura K, Hu-Wang E, Lu R, Shi YB. Thyroid hormone activates protein arginine methyltransferase 1 expression by directly inducing c-Myc transcription during Xenopus intestinal stem cell development. J Biol Chem 2012; 287:10039-10050. [PMID: 22315222 DOI: 10.1074/jbc.m111.335661] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adult organ-specific stem cells are essential for organ homeostasis and tissue repair and regeneration. The formation of such stem cells during vertebrate development is poorly understood. Intestinal remodeling during thyroid hormone (T3)-dependent Xenopus metamorphosis resembles postembryonic intestinal maturation in mammals. During metamorphosis, the intestine is remodeled de novo via a yet unknown mechanism. Protein arginine methyltransferase 1 (PRMT1) is up-regulated in and required for adult intestinal stem cells during metamorphosis. PRMT1 up-regulation is the earliest known molecular event for the developing stem cells and is also conserved during zebrafish and mouse intestinal development. To analyze how PRMT1 is specifically up-regulated during the formation of the adult intestinal stem cells, we cloned the Xenopus PRMT1 promoter and characterized it in CaCo-2 cells, a human cell line with intestinal stem cell characteristics. Through a series deletion and mutational analyses, we showed that the stem cell-associated transcription factor c-Myc could bind to a conserved site in the first intron to activate the promoter. Furthermore, we demonstrated that during metamorphosis, both c-Myc and PRMT1 were highly up-regulated, specifically in the remodeling intestine but not the resorbing tail, and that c-Myc was induced by T3 prior to PRMT1 up-regulation. In addition, we showed that T3 directly activated the c-Myc gene during metamorphosis in the intestine via binding of the T3 receptor to the c-Myc promoter. These results suggest that T3 induces c-Myc transcription directly in the intestine, that c-Myc, in turn, activates PRMT1 expression, and that this is an important gene regulation cascade controlling intestinal stem cell development.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, National Institutes of Health (NIH)), Bethesda, Maryland 20892
| | - Kazuo Matsuura
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, National Institutes of Health (NIH)), Bethesda, Maryland 20892
| | - Eileen Hu-Wang
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, National Institutes of Health (NIH)), Bethesda, Maryland 20892
| | - Rosemary Lu
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, National Institutes of Health (NIH)), Bethesda, Maryland 20892
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, National Institutes of Health (NIH)), Bethesda, Maryland 20892.
| |
Collapse
|