1
|
Jiang X, Zhao K, Sun Y, Song X, Yi C, Xiong T, Wang S, Yu Y, Chen X, Liu R, Yan X, Antos CL. The scale of zebrafish pectoral fin buds is determined by intercellular K+ levels and consequent Ca2+-mediated signaling via retinoic acid regulation of Rcan2 and Kcnk5b. PLoS Biol 2024; 22:e3002565. [PMID: 38527087 PMCID: PMC11018282 DOI: 10.1371/journal.pbio.3002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/15/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
K+ channels regulate morphogens to scale adult fins, but little is known about what regulates the channels and how they control morphogen expression. Using the zebrafish pectoral fin bud as a model for early vertebrate fin/limb development, we found that K+ channels also scale this anatomical structure, and we determined how one K+-leak channel, Kcnk5b, integrates into its developmental program. From FLIM measurements of a Förster Resonance Energy Transfer (FRET)-based K+ sensor, we observed coordinated decreases in intracellular K+ levels during bud growth, and overexpression of K+-leak channels in vivo coordinately increased bud proportions. Retinoic acid, which can enhance fin/limb bud growth, decreased K+ in bud tissues and up-regulated regulator of calcineurin (rcan2). rcan2 overexpression increased bud growth and decreased K+, while CRISPR-Cas9 targeting of rcan2 decreased growth and increased K+. We observed similar results in the adult caudal fins. Moreover, CRISPR targeting of Kcnk5b revealed that Rcan2-mediated growth was dependent on the Kcnk5b. We also found that Kcnk5b enhanced depolarization in fin bud cells via Na+ channels and that this enhanced depolarization was required for Kcnk5b-enhanced growth. Lastly, Kcnk5b-induced shha transcription and bud growth required IP3R-mediated Ca2+ release and CaMKK activity. Thus, we provide a mechanism for how retinoic acid via rcan2 can regulate K+-channel activity to scale a vertebrate appendage via intercellular Ca2+ signaling.
Collapse
Affiliation(s)
- Xiaowen Jiang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Kun Zhao
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Yi Sun
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Xinyue Song
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Chao Yi
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Tianlong Xiong
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Sen Wang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Yi Yu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Center for Quantitative Biology, Peking University, Beijing, People’s Republic of China
| | - Xiduo Chen
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Run Liu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Xin Yan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Christopher L. Antos
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Zong W, Wang J, Zhao R, Niu N, Su Y, Hu Z, Liu X, Hou X, Wang L, Wang L, Zhang L. Associations of genome-wide structural variations with phenotypic differences in cross-bred Eurasian pigs. J Anim Sci Biotechnol 2023; 14:136. [PMID: 37805653 PMCID: PMC10559557 DOI: 10.1186/s40104-023-00929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND During approximately 10,000 years of domestication and selection, a large number of structural variations (SVs) have emerged in the genome of pig breeds, profoundly influencing their phenotypes and the ability to adapt to the local environment. SVs (≥ 50 bp) are widely distributed in the genome, mainly in the form of insertion (INS), mobile element insertion (MEI), deletion (DEL), duplication (DUP), inversion (INV), and translocation (TRA). While studies have investigated the SVs in pig genomes, genome-wide association studies (GWAS)-based on SVs have been rarely conducted. RESULTS Here, we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools, with 53.95% of the SVs being reported for the first time. These high-quality SVs were used to recover the population genetic structure, confirming the accuracy of genotyping. Potential functional SV loci were then identified based on positional effects and breed stratification. Finally, GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions. We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7, with FKBP5 containing the most significant SV locus for almost all traits. In addition, we found several significant loci in intramuscular fat, abdominal circumference, heart weight, and liver weight, etc. CONCLUSIONS: We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits, 7 skeletal traits, and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.
Collapse
Affiliation(s)
- Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinbu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanfang Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ziping Hu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinhua Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ligang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixian Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Defective chromatin architectures in embryonic stem cells derived from somatic cell nuclear transfer impair their differentiation potentials. Cell Death Dis 2021; 12:1085. [PMID: 34785659 PMCID: PMC8595669 DOI: 10.1038/s41419-021-04384-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Nuclear transfer embryonic stem cells (ntESCs) hold enormous promise for individual-specific regenerative medicine. However, the chromatin states of ntESCs remain poorly characterized. In this study, we employed ATAC-seq and Hi-C techniques to explore the chromatin accessibility and three-dimensional (3D) genome organization of ntESCs. The results show that the chromatin accessibility and genome structures of somatic cells are re-arranged to ESC-like states overall in ntESCs, including compartments, topologically associating domains (TADs) and chromatin loops. However, compared to fertilized ESCs (fESCs), ntESCs show some abnormal openness and structures that have not been reprogrammed completely, which impair the differentiation potential of ntESCs. The histone modification H3K9me3 may be involved in abnormal structures in ntESCs, including incorrect compartment switches and incomplete TAD rebuilding. Moreover, ntESCs and iPSCs show high similarity in 3D genome structures, while a few differences are detected due to different somatic cell origins and reprogramming mechanisms. Through systematic analyses, our study provides a global view of chromatin accessibility and 3D genome organization in ntESCs, which can further facilitate the understanding of the similarities and differences between ntESCs and fESCs.
Collapse
|
4
|
PPARγ-Induced Global H3K27 Acetylation Maintains Osteo/Cementogenic Abilities of Periodontal Ligament Fibroblasts. Int J Mol Sci 2021; 22:ijms22168646. [PMID: 34445348 PMCID: PMC8395443 DOI: 10.3390/ijms22168646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
The periodontal ligament is a soft connective tissue embedded between the alveolar bone and cementum, the surface hard tissue of teeth. Periodontal ligament fibroblasts (PDLF) actively express osteo/cementogenic genes, which contribute to periodontal tissue homeostasis. However, the key factors maintaining the osteo/cementogenic abilities of PDLF remain unclear. We herein demonstrated that PPARγ was expressed by in vivo periodontal ligament tissue and its distribution pattern correlated with alkaline phosphate enzyme activity. The knockdown of PPARγ markedly reduced the osteo/cementogenic abilities of PDLF in vitro, whereas PPARγ agonists exerted the opposite effects. PPARγ was required to maintain the acetylation status of H3K9 and H3K27, active chromatin markers, and the supplementation of acetyl-CoA, a donor of histone acetylation, restored PPARγ knockdown-induced decreases in the osteo/cementogenic abilities of PDLF. An RNA-seq/ChIP-seq combined analysis identified four osteogenic transcripts, RUNX2, SULF2, RCAN2, and RGMA, in the PPARγ-dependent active chromatin region marked by H3K27ac. Furthermore, RUNX2-binding sites were selectively enriched in the PPARγ-dependent active chromatin region. Collectively, these results identified PPARγ as the key transcriptional factor maintaining the osteo/cementogenic abilities of PDLF and revealed that global H3K27ac modifications play a role in the comprehensive osteo/cementogenic transcriptional alterations mediated by PPARγ.
Collapse
|
5
|
Cui C, Zhou Y, Cui Q. Defining the functional divergence of orthologous genes between human and mouse in the context of miRNA regulation. Brief Bioinform 2021; 22:6314723. [PMID: 34226920 DOI: 10.1093/bib/bbab253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Animal models have a certain degree of similarity with human in genes and physiological processes, which leads them to be valuable tools for studying human diseases and for assisting drug development. However, translational researches adopting animal models are largely restricted by the species heterogeneity, which is also a major reason for the failure of drug research. Currently, computational method for exploring the functional differences between orthologous genes is still insufficient. For this purpose, here, we presented an algorithm, functional divergence score (FDS), by comprehensively evaluating the functional differences between the microRNAs regulating the paired orthologous genes. Given that mouse is one of the most popular model animals, currently, FDS was designed to dissect the functional divergence of orthologous genes between human and mouse. The results showed that gene FDS value is significantly associated with gene evolutionary characteristics and can discover expression divergence of human-mouse orthologous genes. Moreover, FDS performed well in distinguishing the targets of approved drugs and the failed ones. These results suggest that FDS is a valuable tool to evaluate the functional divergence of paired human and mouse orthologous genes. In addition, for each orthologous gene pair, FDS can provide detailed differences in functions and phenotypes. Our study provided a useful tool for quantifying the functional difference between human and mouse, and the presented framework is easily to be extended to the orthologous genes between human and other species. An online server of FDS is available at http://www.cuilab.cn/fds/.
Collapse
Affiliation(s)
- Chunmei Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Abstract
Intermuscular bones (IBs) are slender linear bones embedded in muscle, which ossify from tendons through a process of intramembranous ossification, and only exist in basal teleosts. IBs are essential for fish swimming, but they present a choking risk during human consumption, especially in children, which can lead to commercial risks that have a negative impact on the aquaculture of these fish. In this review, we discuss the morphogenesis and functions of IBs, including their underlying molecular mechanisms, as well as the advantages and disadvantages of different methods for IB studies and techniques for breeding and generating IB-free fish lines. This review reveals that the many key genes involved in tendon development, osteoblast differentiation, and bone formation, e.g., scxa, msxC, sost, twist, bmps, and osterix, also play roles in IB development. Thus, this paper provides useful information for the breeding of new fish strains without IBs via genome editing and artificial selection.
Collapse
Affiliation(s)
- Bo Li
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuan-Wei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Li Ma
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Jun-Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
7
|
Lee SK, Ahnn J. Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region. Mol Cells 2020; 43:671-685. [PMID: 32576715 PMCID: PMC7468584 DOI: 10.14348/molcells.2020.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Joohong Ahnn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
8
|
Duan X, Cai L, Schmidt EJ, Shen J, Tycksen ED, O’Keefe R, Cheverud JM, Farooq Rai M. RNA-seq analysis of chondrocyte transcriptome reveals genetic heterogeneity in LG/J and SM/J murine strains. Osteoarthritis Cartilage 2020; 28:516-527. [PMID: 31945456 PMCID: PMC7108965 DOI: 10.1016/j.joca.2020.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the transcriptomic differences in chondrocytes obtained from LG/J (large, healer) and SM/J (small, non-healer) murine strains in an attempt to discern the molecular pathways implicated in cartilage regeneration and susceptibility to osteoarthritis (OA). DESIGN We performed RNA-sequencing on chondrocytes derived from LG/J (n = 16) and SM/J (n = 16) mice. We validated the expression of candidate genes and compared single nucleotide polymorphisms (SNPs) between the two mouse strains. We also examined gene expression of positional candidates for ear pinna regeneration and long bone length quantitative trait loci (QTLs) that display differences in cartilaginous expression. RESULTS We observed a distinct genetic heterogeneity between cells derived from LG/J and SM/J mouse strains. We found that gene ontologies representing cell development, cartilage condensation, and regulation of cell differentiation were enriched in LG/J chondrocytes. In contrast, gene ontologies enriched in the SM/J chondrocytes were mainly related to inflammation and degeneration. Moreover, SNP analysis revealed that multiple validated genes vary in sequence between LG/J and SM/J in coding and highly conserved noncoding regions. Finally, we showed that most QTLs have 20-30% of their positional candidates displaying differential expression between the two mouse strains. CONCLUSIONS While the enrichment of pathways related to cell differentiation, cartilage development and cartilage condensation infers superior healing potential of LG/J strain, the enrichment of pathways related to cytokine production, immune cell activation and inflammation entails greater susceptibility of SM/J strain to OA. These data provide novel insights into chondrocyte transcriptome and aid in identification of the quantitative trait genes and molecular differences underlying the phenotypic differences associated with individual QTLs.
Collapse
Affiliation(s)
- Xin Duan
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Lei Cai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric J. Schmidt
- School of Physician Assistant Medicine, College of Health Sciences, University of Lynchburg, Lynchburg, VA, United States
| | - Jie Shen
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric D. Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Regis O’Keefe
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - James M. Cheverud
- Department of Biology, Loyola University, Chicago, IL, United States
| | - Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Leitch VD, Brassill MJ, Rahman S, Butterfield NC, Ma P, Logan JG, Boyde A, Evans H, Croucher PI, Batterham RL, Williams GR, Bassett JHD. PYY is a negative regulator of bone mass and strength. Bone 2019; 127:427-435. [PMID: 31306808 PMCID: PMC6715792 DOI: 10.1016/j.bone.2019.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Bone loss in anorexia nervosa and following bariatric surgery is associated with an elevated circulating concentration of the gastrointestinal, anorexigenic hormone, peptide YY (PYY). Selective deletion of the PYY receptor Y1R in osteoblasts or Y2R in the hypothalamus results in high bone mass, but deletion of PYY in mice has resulted in conflicting skeletal phenotypes leading to uncertainty regarding its role in the regulation of bone mass. As PYY analogs are under development for treatment of obesity, we aimed to clarify the relationship between PYY and bone mass. METHODS The skeletal phenotype of Pyy knockout (KO) mice was investigated during growth (postnatal day P14) and adulthood (P70 and P186) using X-ray microradiography, micro-CT, back-scattered electron scanning electron microscopy (BSE-SEM), histomorphometry and biomechanical testing. RESULTS Bones from juvenile and Pyy KO mice were longer (P < 0.001), with decreased bone mineral content (P < 0.001). Whereas, bones from adult Pyy KO mice had increased bone mineral content (P < 0.05) with increased mineralisation of both cortical (P < 0.001) and trabecular (P < 0.001) compartments. Long bones from adult Pyy KO mice were stronger (maximum load P < 0.001), with increased stiffness (P < 0.01) and toughness (P < 0.05) compared to wild-type (WT) control mice despite increased cortical vascularity and porosity (P < 0.001). The increased bone mass and strength in Pyy KO mice resulted from increases in trabecular (P < 0.01) and cortical bone formation (P < 0.05). CONCLUSIONS These findings demonstrate that PYY acts as a negative regulator of osteoblastic bone formation, implicating increased PYY levels in the pathogenesis of bone loss during anorexia or following bariatric surgery.
Collapse
Affiliation(s)
- Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Mary Jane Brassill
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Sofia Rahman
- Centre for Obesity Research, University College London, London WC1E 6JF, United Kingdom
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Pattara Ma
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Alan Boyde
- Queen Mary University of London, Oral BioEngineering, Bart's and The London School of Medicine and Dentistry, London E1 4NS, United Kingdom
| | - Holly Evans
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Peter I Croucher
- The Garvan Institute of Medical Research and St. Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales 2010, Australia
| | - Rachel L Batterham
- Centre for Obesity Research, University College London, London WC1E 6JF, United Kingdom; National Institute of Health Research, University College London Hospitals Biomedical Research Centre, London Q1T 7DN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom.
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom.
| |
Collapse
|
10
|
Freudenthal B, Shetty S, Butterfield NC, Logan JG, Han CR, Zhu X, Astapova I, Hollenberg AN, Cheng SY, Bassett JD, Williams GR. Genetic and Pharmacological Targeting of Transcriptional Repression in Resistance to Thyroid Hormone Alpha. Thyroid 2019; 29:726-734. [PMID: 30760120 PMCID: PMC6533791 DOI: 10.1089/thy.2018.0399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Thyroid hormones act in bone and cartilage via thyroid hormone receptor alpha (TRα). In the absence of triiodothyronine (T3), TRα interacts with co-repressors, including nuclear receptor co-repressor-1 (NCoR1), which recruit histone deacetylases (HDACs) and mediate transcriptional repression. Dominant-negative mutations of TRα cause resistance to thyroid hormone alpha (RTHα; OMIM 614450), characterized by excessive repression of T3 target genes leading to delayed skeletal development, growth retardation, and bone dysplasia. Treatment with thyroxine has been of limited benefit, even in mildly affected individuals, and there is a need for new therapeutic strategies. It was hypothesized that (i) the skeletal manifestations of RTHα are mediated by the persistent TRα/NCoR1/HDAC repressor complex containing mutant TRα, and (ii) treatment with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) would ameliorate these manifestations. Methods: The skeletal phenotypes of (i) Thra1PV/+ mice, a well characterized model of RTHα; (ii) Ncor1ΔID/ΔID mice, which express an NCoR1 mutant that fails to interact with TRα; and (iii) Thra1PV/+Ncor1ΔID/ΔID double-mutant adult mice were determined. Wild-type, Thra1PV/+, Ncor1ΔID/ΔID, and Thra1PV/+Ncor1ΔID/ΔID double-mutant mice were also treated with SAHA to determine whether HDAC inhibition results in amelioration of skeletal abnormalities. Results:Thra1PV/+ mice had a severe skeletal dysplasia, characterized by short stature, abnormal bone morphology, and increased bone mineral content. Despite normal bone length, Ncor1ΔID/ΔID mice displayed increased cortical bone mass, mineralization, and strength. Thra1PV/+Ncor1ΔID/ΔID double-mutant mice displayed only a small improvement of skeletal abnormalities compared to Thra1PV/+ mice. Treatment with SAHA to inhibit histone deacetylation had no beneficial or detrimental effects on bone structure, mineralization, or strength in wild-type or mutant mice. Conclusions: These studies indicate treatment with SAHA is unlikely to improve the skeletal manifestations of RTHα. Nevertheless, the findings (i) confirm that TRα1 has a critical role in the regulation of skeletal development and adult bone mass, (ii) suggest a physiological role for alternative co-repressors that interact with TR in skeletal cells, and (iii) demonstrate a novel role for NCoR1 in the regulation of adult bone mass and strength.
Collapse
Affiliation(s)
- Bernard Freudenthal
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Samiksha Shetty
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Natalie C. Butterfield
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - John G. Logan
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Cho Rong Han
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xuguang Zhu
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Inna Astapova
- Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Anthony N. Hollenberg
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine and New York Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
- Address correspondence to: J.H. Duncan Bassett, BMBCh, PhD, Molecular Endocrinology Laboratory, Commonwealth Building, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
- Graham R. Williams, MBBS, PhD, Molecular Endocrinology Laboratory, Commonwealth Building, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, United Kingdom
| |
Collapse
|
11
|
Abstract
This chapter describes methods for preparing samples of bone and bone cells for scanning electron microscopy (SEM). Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. Samples may have 3D detail in a 3D surface, or be topography-free, polished or micromilled, resin-embedded block surfaces, or resin casts of space compartments surrounded by bone matrix. Methods for cells include fixation, drying, looking at undersides of bone cells, and metallic conductive coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralized matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples. Recommendations are made for the types of resin embedding for BSE SEM imaging. Correlated confocal and SEM imaging of PMMA embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualizing fluorescent mineralizing front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin-embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Control of the vacuum pressure in the SEM sample chamber (now generally available) can be used to eliminate "charging" problems which were common, for example, with large, complex, cancellous bone samples.
Collapse
MESH Headings
- Animals
- Bone and Bones/diagnostic imaging
- Bone and Bones/ultrastructure
- Cells, Cultured
- Histocytological Preparation Techniques/instrumentation
- Histocytological Preparation Techniques/methods
- Humans
- Imaging, Three-Dimensional/instrumentation
- Imaging, Three-Dimensional/methods
- Microradiography/instrumentation
- Microradiography/methods
- Microscopy, Confocal/instrumentation
- Microscopy, Confocal/methods
- Microscopy, Electron, Scanning/instrumentation
- Microscopy, Electron, Scanning/methods
- Microscopy, Fluorescence/instrumentation
- Microscopy, Fluorescence/methods
- Multimodal Imaging/instrumentation
- Multimodal Imaging/methods
- Osteoclasts
- Osteocytes
- Software
- X-Ray Microtomography/instrumentation
- X-Ray Microtomography/methods
Collapse
Affiliation(s)
- Alan Boyde
- Dental Physical Sciences, Biophysics Section, Oral Growth and Development, Dental Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
12
|
Stevenson NL, Bergen DJM, Xu A, Wyatt E, Henry F, McCaughey J, Vuolo L, Hammond CL, Stephens DJ. Regulator of calcineurin-2 is a centriolar protein with a role in cilia length control. J Cell Sci 2018; 131:jcs.212258. [PMID: 29643119 DOI: 10.1242/jcs.212258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/04/2018] [Indexed: 02/03/2023] Open
Abstract
Almost every cell in the human body extends a primary cilium. Defective cilia function leads to a set of disorders known as ciliopathies, which are characterised by debilitating developmental defects that affect many tissues. Here, we report a new role for regulator of calcineurin 2 (RCAN2) in primary cilia function. It localises to centrioles and the basal body and is required to maintain normal cilia length. RCAN2 was identified as the most strongly upregulated gene from a comparative RNAseq analysis of cells in which expression of the Golgi matrix protein giantin had been abolished by gene editing. In contrast to previous work where we showed that depletion of giantin by RNAi results in defects in ciliogenesis and in cilia length control, giantin knockout cells generate normal cilia after serum withdrawal. Furthermore, giantin knockout zebrafish show increased expression of RCAN2. Importantly, suppression of RCAN2 expression in giantin knockout cells results in the same defects in the control of cilia length that are seen upon RNAi of giantin itself. Together, these data define RCAN2 as a regulator of cilia function that can compensate for the loss of giantin function.
Collapse
Affiliation(s)
- Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK, BS8 1TD
| | - Dylan J M Bergen
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK, BS8 1TD
| | - Amadeus Xu
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK, BS8 1TD
| | - Emily Wyatt
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK, BS8 1TD
| | - Freya Henry
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK, BS8 1TD
| | - Janine McCaughey
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK, BS8 1TD
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK, BS8 1TD
| | - Chrissy L Hammond
- School of Physiology and Pharmacology, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK, BS8 1TD
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK, BS8 1TD
| |
Collapse
|
13
|
Boyde A. Evaluation of laser ablation microtomy for correlative microscopy of hard tissues. J Microsc 2018; 271:17-30. [PMID: 29485196 DOI: 10.1111/jmi.12689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/30/2022]
Abstract
Laser ablation machining or microtomy (LAM) is a relatively new approach to producing slide mounted sections of translucent materials. We evaluated the method with a variety of problems from the bone, joint and dental tissues fields where we require thin undecalcified and undistorted sections for correlative light microscopy (LM) and backscattered electron scanning electron microscopy (BSE SEM). All samples were embedded in poly-methylmethacrlate (PMMA) and flat block surfaces had been previously studied by BSE-SEM and confocal scanning light microscopy (CSLM). Most were also studied by X-yay microtomography (XMT). The block surface is stuck to a glass slide with cyanoacrylate adhesive. Setting the section thickness and levelling uses inbuilt optical coherence tomographic imaging. Tight focusing of near-infrared laser radiation in the sectioning plane gives extreme intensities causing photodisruption of material at the focal point. The laser beam is moved by a fast scanner to write a cutting line, which is simultaneously moved by an XY positioning unit to create a sectioning plane. The block is thereby released from the slide, leaving the section stuck to the slide. Light, wet polishing on the finest grade (4000 grit) silicon carbide polishing paper is used to remove a 1-2 μm thick damaged layer at the surface of the section. Sections produced by laser cutting are fine in quality and superior to those produced by mechanical cutting and can be thinner than the 'voxel' in most laboratory X-ray microtomography systems. The present extensive pilot studies have shown that it works to produce samples which we can study by both light and electron microscopy.
Collapse
Affiliation(s)
- A Boyde
- Dental Physical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Leitch VD, Di Cosmo C, Liao XH, O’Boy S, Galliford TM, Evans H, Croucher PI, Boyde A, Dumitrescu A, Weiss RE, Refetoff S, Williams GR, Bassett JHD. An Essential Physiological Role for MCT8 in Bone in Male Mice. Endocrinology 2017; 158:3055-3066. [PMID: 28637283 PMCID: PMC5659673 DOI: 10.1210/en.2017-00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/12/2017] [Indexed: 11/19/2022]
Abstract
T3 is an important regulator of skeletal development and adult bone maintenance. Thyroid hormone action requires efficient transport of T4 and T3 into target cells. We hypothesized that monocarboxylate transporter (MCT) 8, encoded by Mct8 on the X-chromosome, is an essential thyroid hormone transporter in bone. To test this hypothesis, we determined the juvenile and adult skeletal phenotypes of male Mct8 knockout mice (Mct8KO) and Mct8D1D2KO compound mutants, which additionally lack the ability to convert the prohormone T4 to the active hormone T3. Prenatal skeletal development was normal in both Mct8KO and Mct8D1D2KO mice, whereas postnatal endochondral ossification and linear growth were delayed in both Mct8KO and Mct8D1D2KO mice. Furthermore, bone mass and mineralization were decreased in adult Mct8KO and Mct8D1D2KO mice, and compound mutants also had reduced bone strength. Delayed bone development and maturation in Mct8KO and Mct8D1D2KO mice is consistent with decreased thyroid hormone action in growth plate chondrocytes despite elevated serum T3 concentrations, whereas low bone mass and osteoporosis reflects increased thyroid hormone action in adult bone due to elevated systemic T3 levels. These studies identify an essential physiological requirement for MCT8 in chondrocytes, and demonstrate a role for additional transporters in other skeletal cells during adult bone maintenance.
Collapse
Affiliation(s)
- Victoria D. Leitch
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Caterina Di Cosmo
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Sam O’Boy
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Thomas M. Galliford
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Holly Evans
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Peter I. Croucher
- The Garvan Institute of Medical Research and St. Vincent’s Clinical School, University of New South Wales Medicine, Sydney, New South Wales 2010, Australia
| | - Alan Boyde
- Queen Mary University of London, Oral Growth and Development, Bart’s and The London School of Medicine and Dentistry, London E1 4NS, United Kingdom
| | | | - Roy E. Weiss
- Department of Medicine, University of Miami, Miami, Florida 33136
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
- Department of Pediatrics, The University of Chicago, Chicago, Illinois 60637
- Committee on Genetics, The University of Chicago, Chicago, Illinois 60637
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
15
|
Zhao J, Li SW, Gong QQ, Ding LC, Jin YC, Zhang J, Gao JG, Sun XY. A disputed evidence on obesity: comparison of the effects of Rcan2(-/-) and Rps6kb1(-/-) mutations on growth and body weight in C57BL/6J mice. J Zhejiang Univ Sci B 2017; 17:657-71. [PMID: 27604858 DOI: 10.1631/jzus.b1600276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is widely accepted that body weight and adipose mass are tightly regulated by homeostatic mechanisms, in which leptin plays a critical role through hypothalamic pathways, and obesity is a result of homeostatic disorder. However, in C57BL/6J mice, we found that Rcan2 increases food intake and plays an important role in the development of age- and diet-induced obesity through a leptin-independent mechanism. RCAN2 was initially identified as a thyroid hormone (T3)-responsive gene in human fibroblasts. Expression of RCAN2 is regulated by T3 through the PI3K-Akt/PKB-mTOR-Rps6kb1 signaling pathway. Intriguingly, both Rcan2(-/-) and Rps6kb1(-/-) mutations were reported to result in lean phenotypes in mice. In this study we compared the effects of these two mutations on growth and body weight in C57BL/6J mice. We observed reduced body weight and lower fat mass in both Rcan2(-/-) and Rps6kb1(-/-) mice compared to the wild-type mice, and we reported other differences unique to either the Rcan2(-/-) or Rps6kb1(-/-) mice. Firstly, loss of Rcan2 does not directly alter body length; however, Rcan2(-/-) mice exhibit reduced food intake. In contrast, Rps6kb1(-/-) mice exhibit abnormal embryonic development, which leads to smaller body size and reduced food intake in adulthood. Secondly, when fed a normal chow diet, Rcan2(-/-) mice weigh significantly more than Rps6kb1(-/-) mice, but both Rcan2(-/-) and Rps6kb1(-/-) mice develop similar amounts of epididymal fat. On a high-fat diet, Rcan2(-/-) mice gain body weight and fat mass at slower rates than Rps6kb1(-/-) mice. Finally, using the double-knockout mice (Rcan2(-/-) Rps6kb1(-/-)), we demonstrate that concurrent loss of Rcan2 and Rps6kb1 has an additive effect on body weight reduction in C57BL/6J mice. Our data suggest that Rcan2 and Rps6kb1 mutations both affect growth and body weight of mice, though likely through different mechanisms.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Shi-Wei Li
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Qian-Qian Gong
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Ling-Cui Ding
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Ye-Cheng Jin
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jian Zhang
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jian-Gang Gao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiao-Yang Sun
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| |
Collapse
|
16
|
RCANs regulate the convergent roles of NFATc1 in bone homeostasis. Sci Rep 2016; 6:38526. [PMID: 27917924 PMCID: PMC5137032 DOI: 10.1038/srep38526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/11/2016] [Indexed: 01/04/2023] Open
Abstract
Activation of calcineurin-dependent nuclear factor of activated T cells c1 (NFATc1) is convergent for normal bone homeostasis. NFATc1 regulates both osteoclastogenesis and osteoblastogenesis. Here we investigated the roles of regulator of calcineurin (RCAN) genes in bone homeostasis. RCANs function as potent physiological inhibitors of calcineurin. Overexpression of RCANs in osteoclast precursor cells attenuated osteoclast differentiation, while their overexpression in osteoblasts enhanced osteoblast differentiation and function. Intriguingly, opposing effects of RCANs in both cell types were shown by blocking activation of the calcineurin-NFATc1 pathway. Moreover, the disruption of RCAN1 or RCAN2 in mice resulted in reduced bone mass, which is associated with strongly increased osteoclast function and mildly reduced osteoblast function. Taken together, RCANs play critical roles in bone homeostasis by regulating both osteoclastogenesis and osteoblastogenesis, and they serve as inhibitors for calcineurin-NFATc1 signaling both in vivo and in vitro.
Collapse
|
17
|
KRAS mutation leads to decreased expression of regulator of calcineurin 2, resulting in tumor proliferation in colorectal cancer. Oncogenesis 2016; 5:e253. [PMID: 27526107 PMCID: PMC5007825 DOI: 10.1038/oncsis.2016.47] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/07/2016] [Accepted: 05/30/2016] [Indexed: 12/22/2022] Open
Abstract
KRAS mutations occur in 30–40% of all cases of human colorectal cancer (CRC). However, to date, specific therapeutic agents against KRAS-mutated CRC have not been developed. We previously described the generation of mouse models of colon cancer with and without Kras mutations (CDX2P-G22Cre;Apcflox/flox; LSL-KrasG12D and CDX2P-G22Cre;Apcflox/flox mice, respectively). Here, the two mouse models were compared to identify candidate genes, which may represent novel therapeutic targets or predictive biomarkers. Differentially expressed genes in tumors from the two mouse models were identified using microarray analysis, and their expression was compared by quantitative reverse transcription–PCR (qRT–PCR) and immunohistochemical analyses in mouse tumors and surgical specimens of human CRC, with or without KRAS mutations, respectively. Furthermore, the functions of candidate genes were studied using human CRC cell lines. Microarray analysis of 34 000 transcripts resulted in the identification of 19 candidate genes. qRT–PCR analysis data showed that four of these candidate genes (Clps, Irx5, Bex1 and Rcan2) exhibited decreased expression in the Kras-mutated mouse model. The expression of the regulator of calcineurin 2 (RCAN2) was also observed to be lower in KRAS-mutated human CRC. Moreover, inhibitory function for cancer cell proliferation dependent on calcineurin was indicated with overexpression and short hairpin RNA knockdown of RCAN2 in human CRC cell lines. KRAS mutations in CRC lead to a decrease in RCAN2 expression, resulting in tumor proliferation due to derepression of calcineurin–nuclear factor of activated T cells (NFAT) signaling. Our findings suggest that calcineurin–NFAT signal may represent a novel molecular target for the treatment of KRAS-mutated CRC.
Collapse
|
18
|
Bassett JHD, Boyde A, Zikmund T, Evans H, Croucher PI, Zhu X, Park JW, Cheng SY, Williams GR. Thyroid hormone receptor α mutation causes a severe and thyroxine-resistant skeletal dysplasia in female mice. Endocrinology 2014; 155:3699-712. [PMID: 24914936 PMCID: PMC4138578 DOI: 10.1210/en.2013-2156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/11/2014] [Indexed: 02/03/2023]
Abstract
A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1(PV/+) mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1(PV/+) mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1(PV/+) mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Department of Medicine (J.H.D.B., G.R.W.), Imperial College London, London W12 0NN, United Kingdom; Dental Physical Sciences, Oral Growth and Development (A.B.), Queen Mary University of London, London E1 4NS, United Kingdom; Laboratory of X-Ray Micro-Computed Tomography and Nano-Computed Tomography (T.Z.), Central European Institute of Technology, Brno University of Technology CZ-61600 Brno, Czech Republic; Sheffield Myeloma Research Team (H.E.), University of Sheffield, Sheffield S10 2RX, United Kingdom; Bone Biology Program (P.I.C.), Garvan Institute of Medical Research, Sydney NSW 2010, Australia; and Laboratory of Molecular Biology (X.Z., J.W.P., S-y.C.), National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Granéli C, Karlsson C, Brisby H, Lindahl A, Thomsen P. The effects of PPAR-γ inhibition on gene expression and the progression of induced osteogenic differentiation of human mesenchymal stem cells. Connect Tissue Res 2014; 55:262-74. [PMID: 24708348 DOI: 10.3109/03008207.2014.910198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several cell types, such as osteoblasts and adipocytes, both in vitro and in vivo. Although these two differentiation pathways are distinct from each other, cross-communication between cells of the two lineages exists both systemically and peripherally in the tissue. The transcription factor PPAR-γ, the main switch in adipogenic differentiation of MSCs, has previously been described to have a negative effect on osteogenic differentiation. The aim of this study was to investigate the effect of PPAR-γ inhibition on osteogenic differentiation of human MSCs, in vitro. Extracellular matrix analysis and quantification of osteogenic markers, revealed how these cells respond when the adipogenic differentiation pathway is blocked during induction of osteogenic differentiation. The inhibition leads to a significant increase in mineralization of the extracellular matrix, as well as an increased activity or up-regulated gene expression of alkaline phosphatase, the key enzyme involved in matrix mineralization. Furthermore, it was also demonstrated by microarray analysis, that PPAR-γ inhibition during osteogenic induction leads to a significant up-regulation of a number of genes related to both osteogenesis and adipogenesis such as c10orf10, leptin, GDF5 and KLF15. In conclusion, inhibition of PPAR-γ during induction of osteogenesis leads to increased osteogenic differentiation of human MSCs.
Collapse
Affiliation(s)
- Cecilia Granéli
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | | | | | | | | |
Collapse
|
20
|
Serrano-Candelas E, Farré D, Aranguren-Ibáñez Á, Martínez-Høyer S, Pérez-Riba M. The vertebrate RCAN gene family: novel insights into evolution, structure and regulation. PLoS One 2014; 9:e85539. [PMID: 24465593 PMCID: PMC3896409 DOI: 10.1371/journal.pone.0085539] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/04/2013] [Indexed: 12/30/2022] Open
Abstract
Recently there has been much interest in the Regulators of Calcineurin (RCAN) proteins which are important endogenous modulators of the calcineurin-NFATc signalling pathway. They have been shown to have a crucial role in cellular programmes such as the immune response, muscle fibre remodelling and memory, but also in pathological processes such as cardiac hypertrophy and neurodegenerative diseases. In vertebrates, the RCAN family form a functional subfamily of three members RCAN1, RCAN2 and RCAN3 whereas only one RCAN is present in the rest of Eukarya. In addition, RCAN genes have been shown to collocate with RUNX and CLIC genes in ACD clusters (ACD21, ACD6 and ACD1). How the RCAN genes and their clustering in ACDs evolved is still unknown. After analysing RCAN gene family evolution using bioinformatic tools, we propose that the three RCAN vertebrate genes within the ACD clusters, which evolved from single copy genes present in invertebrates and lower eukaryotes, are the result of two rounds of whole genome duplication, followed by a segmental duplication. This evolutionary scenario involves the loss or gain of some RCAN genes during evolution. In addition, we have analysed RCAN gene structure and identified the existence of several characteristic features that can be involved in RCAN evolution and gene expression regulation. These included: several transposable elements, CpG islands in the 5′ region of the genes, the existence of antisense transcripts (NAT) associated with the three human genes, and considerable evidence for bidirectional promoters that regulate RCAN gene expression. Furthermore, we show that the CpG island associated with the RCAN3 gene promoter is unmethylated and transcriptionally active. All these results provide timely new insights into the molecular mechanisms underlying RCAN function and a more in depth knowledge of this gene family whose members are obvious candidates for the development of future therapies.
Collapse
Affiliation(s)
- Eva Serrano-Candelas
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Domènec Farré
- Biological Aggression and Response Mechanisms Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer – IDIBAPS, Barcelona, Spain
| | - Álvaro Aranguren-Ibáñez
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Sergio Martínez-Høyer
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Mercè Pérez-Riba
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- * E-mail:
| |
Collapse
|