1
|
Costa-e-Sousa RH, Rorato R, Hollenberg AN, Vella KR. Regulation of Thyroid Hormone Levels by Hypothalamic Thyrotropin-Releasing Hormone Neurons. Thyroid 2023; 33:867-876. [PMID: 37166378 PMCID: PMC10354708 DOI: 10.1089/thy.2023.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Background: Thyrotropin-releasing hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) have been identified as direct regulators of thyrotropin (TSH) and thyroid hormone (TH) levels. They play a significant role in context of negative feedback by TH at the level of TRH gene expression and during fasting when TH levels fall due, in part, to suppression of TRH gene expression. Methods: To test these functions directly for the first time, we used a chemogenetic approach and activated PVN TRH neurons in both fed and fasted mice. Next, to demonstrate the signals that regulate the fasting response in TRH neurons, we activated or inhibited agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus of fed or fasted mice, respectively. To determine if the same TRH neurons responsive to melanocortin signaling mediate negative feedback by TH, we disrupted the thyroid hormone receptor beta (TRβ) in all melanocortin 4 receptor (MC4R) neurons in the PVN. Results: Activation of TRH neurons led to increased TSH and TH levels within 2 hours demonstrating the specific role of PVN TRH neurons in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Moreover, activation of PVN TRH neurons prevented the fall in TH levels in fasting mice. Stimulation of AgRP/NPY neurons led to a fall in TH levels despite increasing feeding. Inhibition of these same neurons prevented the fall in TH levels during a fast presumably via their ability to directly regulate PVN TRH neurons via, in part, the MC4R. Surprisingly, TH-mediated feedback was not impaired in mice lacking TRβ in MC4R neurons. Conclusions: TRH neurons are major regulators of the HPT axis and the fasting-induced suppression of TH levels. The latter relies, at least in part, on the activation of AgRP/NPY neurons in the arcuate nucleus. Interestingly, present data do not support an important role for TRβ signaling in regulating MC4R neurons in the PVN. Thus, it remains possible that different subsets of TRH neurons in the PVN mediate responses to energy balance and to TH feedback.
Collapse
Affiliation(s)
- Ricardo H. Costa-e-Sousa
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Chobanian and Avedisian School of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, New York, USA
| | - Rodrigo Rorato
- Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Anthony N. Hollenberg
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Chobanian and Avedisian School of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, New York, USA
| | - Kristen R. Vella
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
2
|
Mendoza A, Tang C, Choi J, Acuña M, Logan M, Martin AG, Al-Sowaimel L, Desai BN, Tenen DE, Jacobs C, Lyubetskaya A, Fu Y, Liu H, Tsai L, Cohen DE, Forrest D, Wilson AA, Hollenberg AN. Thyroid hormone signaling promotes hepatic lipogenesis through the transcription factor ChREBP. Sci Signal 2021; 14:eabh3839. [PMID: 34784250 DOI: 10.1126/scisignal.abh3839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid hormone (TH) action is essential for hepatic lipid synthesis and oxidation. Analysis of hepatocyte-specific thyroid receptor β1 (TRβ1) knockout mice confirmed a role for TH in stimulating de novo lipogenesis and fatty acid oxidation through its nuclear receptor. Specifically, TRβ1 and its principal corepressor NCoR1 in hepatocytes repressed de novo lipogenesis, whereas the TH-mediated induction of lipogenic genes depended on the transcription factor ChREBP. Mice with a hepatocyte-specific deficiency in ChREBP lost TH-mediated stimulation of the lipogenic program, which, in turn, impaired the regulation of fatty acid oxidation. TH regulated ChREBP activation and recruitment to DNA, revealing a mechanism by which TH regulates specific signaling pathways. Regulation of the lipogenic pathway by TH through ChREBP was conserved in hepatocytes derived from human induced pluripotent stem cells. These results demonstrate that TH signaling in the liver acts simultaneously to enhance both lipogenesis and fatty acid oxidation.
Collapse
Affiliation(s)
- Arturo Mendoza
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Catherine Tang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jinyoung Choi
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Mariana Acuña
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Maya Logan
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Adriana G Martin
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Lujain Al-Sowaimel
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Bhavna N Desai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Danielle E Tenen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Anna Lyubetskaya
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Yulong Fu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
3
|
Ke S, Liu YY, Karthikraj R, Kannan K, Jiang J, Abe K, Milanesi A, Brent GA. Thyroid hormone receptor β sumoylation is required for thyrotropin regulation and thyroid hormone production. JCI Insight 2021; 6:e149425. [PMID: 34237030 PMCID: PMC8410017 DOI: 10.1172/jci.insight.149425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Thyroid hormone receptor β (THRB) is posttranslationally modified by small ubiquitin-like modifier (SUMO). We generated a mouse model with a mutation that disrupted sumoylation at lysine 146 (K146Q) and resulted in desumoylated THRB as the predominant form in tissues. The THRB K146Q mutant mice had normal serum thyroxine (T4), markedly elevated serum thyrotropin-stimulating hormone (TSH; 81-fold above control), and enlargement of both the pituitary and the thyroid gland. The marked elevation in TSH, despite a normal serum T4, indicated blunted feedback regulation of TSH. The THRB K146Q mutation altered the recruitment of transcription factors to the TSHβ gene promoter, compared with WT, in hyperthyroidism and hypothyroidism. Thyroid hormone content (T4, T3, and rT3) in the thyroid gland of the THRB K146Q mice was 10-fold lower (per gram tissue) than control, despite normal TSH bioactivity. The expression of thyroglobulin and dual oxidase 2 genes in the thyroid was reduced and associated with modifications of cAMP response element-binding protein DNA binding and cofactor interactions in the presence of the desumoylated THRB. Therefore, thyroid hormone production had both TSH-dependent and TSH-independent components. We conclude that THRB sumoylation at K146 was required for normal TSH feedback regulation and TH synthesis in the thyroid gland, by a TSH-independent pathway.
Collapse
Affiliation(s)
- Sujie Ke
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Department of Endocrinology, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan-Yun Liu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Jingjing Jiang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kiyomi Abe
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Department of Pediatrics, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Tokyo Saiseikai Central Hospital, Minato-ku, Tokyo, Japan
| | - Anna Milanesi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Gregory A Brent
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and Department of Physiology, David Geffen School of Medicine, UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
4
|
Kong D, Li J, Li N, Zhang S, Xu Y. Multiple bioanalytical methods reveal a thyroid-disrupting mechanism related to the membrane receptor integrin α vβ 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116933. [PMID: 33773180 DOI: 10.1016/j.envpol.2021.116933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a manufactured chemical, is suitable for large-scale production and has extensive applications. Although restricted for use, DEHP is still ubiquitous in the environment and shows potential to disrupt the structure or function of the thyroid system. However, its toxic mechanism is complex and not clearly understood. In this study, a battery of methods was employed to investigate DEHP-induced thyroid-disrupting effects and their mechanism of action, focusing on a newly discovered membrane receptor-mediated mechanism. The results showed that DEHP promoted rat pituitary tumor (GH3) cell proliferation and c-fos gene expression at environment level concentrations (2 and 5 μmol/L) in a manner similar to that of the natural thyroid hormone 3,3',5-triiodo-L-thyronine (T3). The macromolecule DEHP-BSA cannot pass through the cell membrane to interact with nuclear receptors but upregulated the c-fos gene expression when administered at concentrations comparable to DEHP concentrations; molecular docking demonstrated that DEHP has affinity for the membrane receptor integrin αvβ3; DEHP at 2 μmol/L upregulated the β3 gene expression in GH3 cells; after the addition of integrin αvβ3-inhibiting RGD peptide, DEHP-induced c-fos gene upregulation decreased. All of these findings support the supposition that DEHP-induced thyroid-disrupting effects might be mediated by the membrane receptor integrin αvβ3. Moreover, DEHP activated the downstream extracellular regulated protein kinase (ERK1/2) pathway, upregulating the gene expression of raf-1, MEK-1 and MAPK1 and increasing the protein levels of p-ERK; interestingly, ERK1/2 activation and c-fos upregulation induced by DEHP were attenuated by PD98059 (an ERK1/2 inhibitor). Taken together, the data suggest that the membrane receptor integrin αvβ3 and the downstream ERK1/2 pathway might be involved in DEHP-induced thyroid-disrupting effects. This study provides new insight into the thyroid-disrupting effect and the underlying mechanism and will advance the effort to construct adverse outcome pathways of DEHP and other thyroid hormone disrupting chemicals.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shurong Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
5
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Kong D, Liu Y, Zuo R, Li J. DnBP-induced thyroid disrupting activities in GH3 cells via integrin α vβ 3 and ERK1/2 activation. CHEMOSPHERE 2018; 212:1058-1066. [PMID: 30286535 DOI: 10.1016/j.chemosphere.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Di-n-butylphthalate (DnBP) exhibits alarming thyroid disrupting activities. However, the toxic mechanism of DnBP is not completely understood. In this study, we investigated the mechanism of DnBP in thyroid disruption. Rat pituitary tumor cell lines (GH3) were treated with DnBP in different scenarios, and cell viabilities, target gene transcriptions and protein levels were measured accordingly. The results showed that after treatment with DnBP (20 μmol/L), cell proliferation increased to 114.69% (p < 0.01) and c-fos gene was up-regulated by 1.57-fold (p < 0.01). Both nuclear thyroid hormone receptor β (TRβ) and membrane TR (integrin αv and integrin β3) genes were up-regulated by 1.31-, 1.08- and 2.39-fold (p < 0.01), respectively, the latter was inhibited by Arg-Gly-Asp (RGD) peptides; the macromolecular DnBP-BSA was unable to bind nuclear TRs, but still promoted cell proliferation to 104.18% and up-regulated c-fos by 2.99-fold (p < 0.01); after silencing TRβ gene, cell proliferation (106.64%, p < 0.05) and up-regulation of c-fos (1.23-fold, p < 0.01) were also observed. All of these findings indicated the existence of non-genomic pathway for DnBP-induced thyroid disruption. Finally, DnBP activated the downstream extracellular regulated protein kinases (ERK1/2) pathway, up-regulating Mapk1 (1.15-, p < 0.05), Mapk3 (1.26-fold, p < 0.01) and increasing protein levels of p-ERK (p < 0.01); notably, DnBP-induced ERK1/2 activation along with c-fos up-regulation were attenuated by PD98059 (ERK1/2 inhibitor). Taken together, it could be suggested that integrin αvβ3 and ERK1/2 pathway play significant roles in DnBP-induced thyroid disruption, and this novel mechanism warrants further investigation in living organisms.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yun Liu
- South China Institute of Environmental Science, Ministry of Environmental Protection, No.7 West Street, Yuancun, Guangzhou 510655, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
7
|
Técher R, Houde M, Verreault J. Changes in thyroid axis responses in two ring-billed gull sub-populations differentially exposed to halogenated flame retardants. CHEMOSPHERE 2018; 211:844-854. [PMID: 30103139 DOI: 10.1016/j.chemosphere.2018.07.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Developing bird embryos may be affected by a number of thyroid disrupting chemicals through maternal transfer. However, thyroid disruption in developing embryos of wild birds remains largely unstudied, especially with respect to exposure to ubiquitous environmental contaminant classes including halogenated flame retardants (HFRs). The objective of the present study was to investigate responses of the hypothalamic-pituitary-thyroid (HPT) axis of developing birds that are exposed to elevated concentrations of HFRs in their environment. Ring-billed gulls (Larus delawarensis) were collected at the external pipping stage (i.e., just prior to hatching) from two sub-populations that are differentially exposed to HFRs in the St. Lawrence River (QC, Canada). Plasma levels of thyroid hormones (THs) and transcription levels of thyroid-related genes in three tissues (i.e., liver, thyroid gland and brain) were related to liver concentrations of HFRs in pipping gulls from these two colonies. Liver polybrominated diphenyl ether (PBDE) concentrations were negatively correlated with plasma total T4 and total T4/T3 in pipping ring-billed gulls. Moreover, plasma TH levels and hepatic PBDE concentrations were correlated with the transcription of genes involved in metabolism (deiodinases type 1, 2 and 3) and synthesis (sodium iodide symporter and thyroglobulin) in the thyroid gland, negative feedback loop (thyrotropin and corticotropin releasing hormones) in the brain and the pituitary and targeted action (TH receptors) in the three tissues of gulls. The present study suggested that the alteration of TH homeostasis in developing wild birds through changes in the transcription of several thyroid-related genes may be related to potential PBDE-mediated effects.
Collapse
Affiliation(s)
- Romy Técher
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
8
|
Vella KR, Hollenberg AN. The actions of thyroid hormone signaling in the nucleus. Mol Cell Endocrinol 2017; 458:127-135. [PMID: 28286327 PMCID: PMC5592130 DOI: 10.1016/j.mce.2017.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
Thyroid hormones are a critical regulator of mammalian physiology. Much of their action is due to effects in the nucleus where T3 engages thyroid hormone receptor isoforms to mediate its effects. In order to function properly the TR isoforms must be recruited to regulatory sequences within genes that they up-regulate. On these positive regulated target genes the TR can activate or repress depending upon whether the receptor is bound to T3 or not and the type of co-regulatory proteins present in that cell type. In contrast to T3 mediated activation, the mechanism by which the TR represses transcription in the presence of T3 remains unclear. Herein we will review the components of the transcriptional response to T3 within the nucleus and attempt to highlight the outstanding questions in the field.
Collapse
Affiliation(s)
- Kristen R Vella
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
9
|
NCoR1-independent mechanism plays a role in the action of the unliganded thyroid hormone receptor. Proc Natl Acad Sci U S A 2017; 114:E8458-E8467. [PMID: 28923959 DOI: 10.1073/pnas.1706917114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nuclear receptor corepressor 1 (NCoR1) is considered to be the major corepressor that mediates ligand-independent actions of the thyroid hormone receptor (TR) during development and in hypothyroidism. We tested this by expressing a hypomorphic NCoR1 allele (NCoR1ΔID), which cannot interact with the TR, in Pax8-KO mice, which make no thyroid hormone. Surprisingly, abrogation of NCoR1 function did not reverse the ligand-independent action of the TR on many gene targets and did not fully rescue the high mortality rate due to congenital hypothyroidism in these mice. To further examine NCoR1's role in repression by the unliganded TR, we deleted NCoR1 in the livers of euthyroid and hypothyroid mice and examined the effects on gene expression and enhancer activity measured by histone 3 lysine 27 (H3K27) acetylation. Even in the absence of NCoR1 function, we observed strong repression of more than 43% of positive T3 (3,3',5-triiodothyronine) targets in hypothyroid mice. Regulation of approximately half of those genes correlated with decreased H3K27 acetylation, and nearly 80% of these regions with affected H3K27 acetylation contained a bona fide TRβ1-binding site. Moreover, using liver-specific TRβ1-KO mice, we demonstrate that hypothyroidism-associated changes in gene expression and histone acetylation require TRβ1. Thus, many of the genomic changes mediated by the TR in hypothyroidism are independent of NCoR1, suggesting a role for additional signaling modulators in hypothyroidism.
Collapse
|
10
|
Abstract
Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) levels in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling.
Collapse
Affiliation(s)
- Arturo Mendoza
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell 2016; 167:843-857.e14. [PMID: 27720451 DOI: 10.1016/j.cell.2016.09.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 06/24/2016] [Accepted: 09/07/2016] [Indexed: 11/22/2022]
Abstract
Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.
Collapse
|
12
|
Genetic associations of the thyroid stimulating hormone receptor gene with Graves diseases and Graves ophthalmopathy: A meta-analysis. Sci Rep 2016; 6:30356. [PMID: 27456991 PMCID: PMC4960547 DOI: 10.1038/srep30356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
Graves' disease (GD) is a common thyroid disease, and Graves ophthalmopathy(GO) is the most common extra-thyroidal manifestation of GD. Genetic associations of the thyroid stimulating hormone receptor (TSHR) gene with GD and GO have been studied in different population groups for a long time. We aimed to obtain a more precise estimation of the effects of TSHR single nucleotide polymorphisms (SNPs) on GD/GO using a meta-analysis. Publications were searched on Pub Med and EMBASE up to December 30, 2015. Eight studies involving three SNPs (rs179247, rs12101255, and rs2268458), which included 4790 cases and 5350 controls, met the selection criteria. The pooled odds ratios (OR) and the 95% confidence intervals (CI) were estimated. SNPs rs179247 (dominant model [GG + GA vs. AA]: OR = 0.66, 95%CI: 0.61-0.73, P = 0.000, I(2) = 0%) and rs12101255 (dominant model [TT + TC vs. CC]: OR = 1.67, 95%CI: 1.53-1.83, P = 0.000, I(2) = 0%) were significantly associated with GD in all of the genetic models. TSHR rs12101255 and rs2268458 polymorphisms had no association between GO and GD (GD without GO). The results indicate that rs179247 and rs12101255 are likely to be genetic biomarkers for GD. Further studies with different population groups and larger sample sizes are needed to confirm the genetic associations of the TSHR gene with GD/GO.
Collapse
|
13
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
14
|
Técher R, Houde M, Verreault J. Associations between organohalogen concentrations and transcription of thyroid-related genes in a highly contaminated gull population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:289-298. [PMID: 26747993 DOI: 10.1016/j.scitotenv.2015.12.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
A number of studies have reported altered circulating thyroid hormone levels in birds exposed either in controlled settings or in their natural habitat to ubiquitous organohalogen compounds including organochlorines (OCs) and polybrominated diphenyl ether (PBDE) flame retardants. However, limited attention has been paid to underlying homeostatic mechanisms in wild birds such as changes in the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis. The objective of the present study was to investigate the relationships between hepatic concentrations of major organohalogens (PBDEs and OCs), and circulating thyroid hormone (free and total thyroxine (T4) and triiodothyronine (T3)) levels and transcription of 14 thyroid-related genes in three tissues (thyroid, brain, and liver) of an urban-adapted bird exposed to high organohalogen concentrations in the Montreal area (QC, Canada), the ring-billed gull (Larus delawarensis). Positive correlations were found between liver concentrations of several polychlorinated biphenyls (PCBs), PBDEs as well as chlordanes and total plasma T4 levels. Hepatic concentrations of several PBDEs were negatively correlated with mRNA levels of deiodinase type 3, thyroid peroxidase, and thyroid hormone receptor β (TRβ) in the thyroid gland. Liver PCB (deca-CB) correlated positively with mRNA levels of sodium-iodide symporter and TRα. In brain, concentrations of most PBDEs were positively correlated with mRNA levels of organic anion transporter protein 1C1 and transthyretin, while PCBs positively correlated with expression of TRα and TRβ as well as deiodinase type 2. These multiple correlative linkages suggest that organohalogens operate through several mechanisms (direct or compensatory) involving gene transcription, thus potentially perturbing the HPT axis of this highly organohalogen-contaminated ring-billed gull population.
Collapse
Affiliation(s)
- Romy Técher
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| | - Magali Houde
- Environment Canada, St. Lawrence Centre, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
15
|
Singh BK, Sinha RA, Zhou J, Tripathi M, Ohba K, Wang ME, Astapova I, Ghosh S, Hollenberg AN, Gauthier K, Yen PM. Hepatic FOXO1 Target Genes Are Co-regulated by Thyroid Hormone via RICTOR Protein Deacetylation and MTORC2-AKT Protein Inhibition. J Biol Chem 2015; 291:198-214. [PMID: 26453307 DOI: 10.1074/jbc.m115.668673] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 12/21/2022] Open
Abstract
MTORC2-AKT is a key regulator of carbohydrate metabolism and insulin signaling due to its effects on FOXO1 phosphorylation. Interestingly, both FOXO1 and thyroid hormone (TH) have similar effects on carbohydrate and energy metabolism as well as overlapping transcriptional regulation of many target genes. Currently, little is known about the regulation of MTORC2-AKT or FOXO1 by TH. Accordingly, we performed hepatic transcriptome profiling in mice after FOXO1 knockdown in the absence or presence of TH, and we compared these results with hepatic FOXO1 and THRB1 (TRβ1) ChIP-Seq data. We identified a subset of TH-stimulated FOXO1 target genes that required co-regulation by FOXO1 and TH. TH activation of FOXO1 was directly linked to an increase in SIRT1-MTORC2 interaction and RICTOR deacetylation. This, in turn, led to decreased AKT and FOXO1 phosphorylation. Moreover, TH increased FOXO1 nuclear localization, DNA binding, and target gene transcription by reducing AKT-dependent FOXO1 phosphorylation in a THRB1-dependent manner. These events were associated with TH-mediated oxidative phosphorylation and NAD(+) production and suggested that downstream metabolic effects by TH can post-translationally activate other transcription factors. Our results showed that RICTOR/MTORC2-AKT can integrate convergent hormonal and metabolic signals to provide coordinated and sensitive regulation of hepatic FOXO1-target gene expression.
Collapse
Affiliation(s)
- Brijesh K Singh
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Rohit A Sinha
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Jin Zhou
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Madhulika Tripathi
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and the Stroke Trial Unit, National Neuroscience Institute Singapore, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Kenji Ohba
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| | - Mu-En Wang
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and the Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Inna Astapova
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Sujoy Ghosh
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and Centre for Computational Biology, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | - Anthony N Hollenberg
- the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Karine Gauthier
- the Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46, Allée d'Italie 69364, Lyon Cedex 07, France
| | - Paul M Yen
- From the Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program and
| |
Collapse
|
16
|
Macchia E, Lombardi M, Raffaelli V, Piaggi P, Macchia L, Scattina I, Martino E. Clinical and genetic characteristics of a large monocentric series of patients affected by thyroid hormone (Th) resistance and suggestions for differential diagnosis in patients without mutation of Th receptor β. Clin Endocrinol (Oxf) 2014; 81:921-8. [PMID: 25040256 DOI: 10.1111/cen.12556] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/02/2014] [Accepted: 07/11/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The syndrome of resistance to thyroid hormone (RTH) is caused by a mutation of TH receptor β (TRβ) in 80% of cases. Patients without mutation (non-TR-RTH) may have a biochemical pattern that is difficult to differentiate from that of pituitary TSH-secreting adenoma (TSHoma). Herein, we report a large monocentric series of RTH focusing on patients with non-TR-RTH, to evaluate possible clinical or biochemical parameters able to distinguish them from TSHoma. DESIGN AND PATIENTS We retrospectively reviewed the data of 99 consecutive patients with inappropriate TSH secretion (IST) syndrome referred to our Department between 1983 and 2011, identifying 68 patients with RTH and 31 patients with TSHomas. MEASUREMENTS Patient records were reviewed for the main clinical, biochemical and imaging characteristics. RESULTS Of our 68 patients with RTH, 16 (23·5%) did not show a TRβ mutation and did not have affected family members. Of these 16 patients, three developed a TSHoma, during follow-up. To distinguish non-TR-RTH from TSHoma, we identified appropriate cut-off values for the main biochemical parameters that demonstrated the greatest sensitivity and specificity (T3 suppression test, α-subunit/TSH molar ratio, α-subunit assay and TRH test) and we calculated the probability for each patient to develop a TSHoma. CONCLUSIONS The application of the identified cut-offs could become a very useful tool in the challenging differential diagnosis between sporadic non-TR-RTH and TSHoma. It would then be possible to select the patients at higher risk of developing a TSHoma and therefore needing a closer follow-up.
Collapse
Affiliation(s)
- Enrico Macchia
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Sasaki S, Futagi Y, Kobayashi M, Ogura J, Iseki K. Functional characterization of 5-oxoproline transport via SLC16A1/MCT1. J Biol Chem 2014; 290:2303-11. [PMID: 25371203 DOI: 10.1074/jbc.m114.581892] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Thyrotropin-releasing hormone is a tripeptide that consists of 5-oxoproline, histidine, and proline. The peptide is rapidly metabolized by various enzymes. 5-Oxoproline is produced by enzymatic hydrolysis in a variety of peptides. Previous studies showed that 5-oxoproline could become a possible biomarker for autism spectrum disorders. Here we demonstrate the involvement of SLC16A1 in the transport of 5-oxoproline. An SLC16A1 polymorphism (rs1049434) was recently identified. However, there is no information about the effect of the polymorphism on SLC16A1 function. In this study, the polymorphism caused an observable change in 5-oxoproline and lactate transport via SLC16A1. The Michaelis constant (Km) was increased in an SLC16A1 mutant compared with that in the wild type. In addition, the proton concentration required to produce half-maximal activation of transport activity (K0.5, H (+)) was increased in the SLC16A1 mutant compared with that in the wild type. Furthermore, we examined the transport of 5-oxoproline in T98G cells as an astrocyte cell model. Despite the fact that 5-oxoproline is an amino acid derivative, Na(+)-dependent and amino acid transport systems scarcely contributed to 5-oxoproline transport. Based on our findings, we conclude that H(+)-coupled 5-oxoproline transport is mediated solely by SLC16A1 in the cells.
Collapse
Affiliation(s)
- Shotaro Sasaki
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Yuya Futagi
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Masaki Kobayashi
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Jiro Ogura
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and
| | - Ken Iseki
- From the Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812 and the Department of Pharmacy, Hokkaido University Hospital, Sapporo 060-8648, Japan
| |
Collapse
|
18
|
Billon C, Canaple L, Fleury S, Deloire A, Beylot M, Dombrowicz D, Del Carmine P, Samarut J, Gauthier K. TRα protects against atherosclerosis in male mice: identification of a novel anti-inflammatory property for TRα in mice. Endocrinology 2014; 155:2735-45. [PMID: 24797634 DOI: 10.1210/en.2014-1098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypothyroidism is associated with an increased occurrence of atherosclerosis, suggesting some protective role for thyroid hormones (THs). Hypercholesterolemia is one of the major risk factor to develop this disease. Here, we show that the well-known TH cholesterol lowering effect was dependent on TH nuclear receptor (TR)β liver activity. But most importantly, TRα was also shown to contribute of slowing down atherosclerosis progression via an independent mechanism. Introduction of TRα(0/0) deletion in the ApoE(-/-) background accelerated the appearance of plaques. Earlier cholesterol accumulation was detected in aorta macrophages, likely due to impaired cholesterol efflux. The IL-1β inflammatory cytokine was elevated in serum and macrophages in correlation with an activation of the AKT/nuclear factor κB pathway in these cells. Inhibition of AKT prevented inflammation and restored normal cholesterol efflux. Similar low-grade inflammation was identified in TRα(0/0) male mice. Thus, the mere absence of TRα is associated with elevated levels of cytokines likely responsible for cholesterol accumulation and atherosclerosis. This TRα protective activity should be relevant for other inflammatory pathologies.
Collapse
Affiliation(s)
- Cyrielle Billon
- Institut de Génomique Fonctionnelle de Lyon (C.B., L.C., A.D., J.S., K.G.), Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique. Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, 69364 Lyon, France; Inserm Unité 1011 (S.F., D.D.), University of Lille Nord de France and Institut Pasteur de Lille, 59000 Lille, France; and Inserm Equipe Région-Inserm 22/Equipe Associée 4173 (M.B.) and Anira-ANIPHY (P.d.C.), Faculté Rockefeller, Université Lyon 1, 69008 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Picou F, Fauquier T, Chatonnet F, Richard S, Flamant F. Deciphering direct and indirect influence of thyroid hormone with mouse genetics. Mol Endocrinol 2014; 28:429-41. [PMID: 24617548 DOI: 10.1210/me.2013-1414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
T3, the active form of thyroid hormone, binds nuclear receptors that regulate the transcription of a large number of genes in many cell types. Unraveling the direct and indirect effect of this hormonal stimulation, and establishing links between these molecular events and the developmental and physiological functions of the hormone, is a major challenge. New mouse genetics tools, notably those based on Cre/loxP technology, are suitable to perform a multiscale analysis of T3 signaling and achieve this task.
Collapse
Affiliation(s)
- Frédéric Picou
- Université de Lyon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon 1, École Normale, Supérieure de Lyon, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | | | | | | | | |
Collapse
|