1
|
Raff M, Benton T, Brummond D, Kovach D, Bunton O, Janky E, Duran EH, Scroggins DG, Gray G, Scroggins SM. Regulator of G-Protein Signaling 2 Knockout in CD4+ T Cells Promotes Anti-Inflammatory T Cells, Enhancing Ovulation, and Oocyte Yield. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618561. [PMID: 39464145 PMCID: PMC11507868 DOI: 10.1101/2024.10.15.618561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Objective To determine the downstream effects on ovarian function and immune cell differentiation in the ovary and uterus using a model in which RGS2 was knocked out specifically in CD4+ T cells. Design Laboratory based experiments with female mice. Animals Female congenic (fully backcrossed) and non-congenic (mixed strain) mice with CD4 T cell-specific RGS2 knockout. Exposure Four-week-old female CD4 RGS2 knockout (CD4 RGS2 KO ) mice and their littermate controls (CD4 RGS2 CTL ) were subjected to superovulation using pregnant mare serum gonadotropins. Main Outcome Measures Oocyte numbers, lymphocyte populations in the ovary and uterus, and serum estradiol and progesterone concentrations. Result In non-congenic (mixed strain) mice, CD4 RGS2 knockout (KO) promoted higher oocyte ovulation and increased uterine total leukocyte numbers. Similarly, congenic (fully backcrossed strain) mice showed higher oocyte numbers and increased uterine total leukocytes in the CD4 RGS2 KO mice compared to CD4 RGS2 CTL mice. Pro-inflammatory CD4+ T helper (T H ) 1 and T H 17 cell frequencies in the ovary and uterus were unchanged, while Treg and T H 2 cell frequencies were elevated, along with increased concentrations of estradiol and progesterone in the serum of CD4 RGS2 KO mice. Conclusion Our study highlights the important role of RGS2 in CD4+ T cells within the context of reproduction. The dysregulation of immune responses due to RGS2 knockout in CD4+ T cells appears to enhance oocyte production. Further research is warranted to elucidate the precise mechanisms by which RGS2 influences reproductive outcomes, including its impact on fecundability, endometrial receptivity, and successful implantation.
Collapse
|
2
|
Guo Y, Xue L, Tang W, Xiong J, Chen D, Dai Y, Wu C, Wei S, Dai J, Wu M, Wang S. Ovarian microenvironment: challenges and opportunities in protecting against chemotherapy-associated ovarian damage. Hum Reprod Update 2024; 30:614-647. [PMID: 38942605 PMCID: PMC11369228 DOI: 10.1093/humupd/dmae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/27/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Chemotherapy-associated ovarian damage (CAOD) is one of the most feared short- and long-term side effects of anticancer treatment in premenopausal women. Accumulating detailed data show that different chemotherapy regimens can lead to disturbance of ovarian hormone levels, reduced or lost fertility, and an increased risk of early menopause. Previous studies have often focused on the direct effects of chemotherapeutic drugs on ovarian follicles, such as direct DNA damage-mediated apoptotic death and primordial follicle burnout. Emerging evidence has revealed an imbalance in the ovarian microenvironment during chemotherapy. The ovarian microenvironment provides nutritional support and transportation of signals that stimulate the growth and development of follicles, ovulation, and corpus luteum formation. The close interaction between the ovarian microenvironment and follicles can determine ovarian function. Therefore, designing novel and precise strategies to manipulate the ovarian microenvironment may be a new strategy to protect ovarian function during chemotherapy. OBJECTIVE AND RATIONALE This review details the changes that occur in the ovarian microenvironment during chemotherapy and emphasizes the importance of developing new therapeutics that protect ovarian function by targeting the ovarian microenvironment during chemotherapy. SEARCH METHODS A comprehensive review of the literature was performed by searching PubMed up to April 2024. Search terms included 'ovarian microenvironment' (ovarian extracellular matrix, ovarian stromal cells, ovarian interstitial, ovarian blood vessels, ovarian lymphatic vessels, ovarian macrophages, ovarian lymphocytes, ovarian immune cytokines, ovarian oxidative stress, ovarian reactive oxygen species, ovarian senescence cells, ovarian senescence-associated secretory phenotypes, ovarian oogonial stem cells, ovarian stem cells), terms related to ovarian function (reproductive health, fertility, infertility, fecundity, ovarian reserve, ovarian function, menopause, decreased ovarian reserve, premature ovarian insufficiency/failure), and terms related to chemotherapy (cyclophosphamide, lfosfamide, chlormethine, chlorambucil, busulfan, melphalan, procarbazine, cisplatin, doxorubicin, carboplatin, taxane, paclitaxel, docetaxel, 5-fluorouraci, vincristine, methotrexate, dactinomycin, bleomycin, mercaptopurine). OUTCOMES The ovarian microenvironment shows great changes during chemotherapy, inducing extracellular matrix deposition and stromal fibrosis, angiogenesis disorders, immune microenvironment disturbance, oxidative stress imbalances, ovarian stem cell exhaustion, and cell senescence, thereby lowering the quantity and quality of ovarian follicles. Several methods targeting the ovarian microenvironment have been adopted to prevent and treat CAOD, such as stem cell therapy and the use of free radical scavengers, senolytherapies, immunomodulators, and proangiogenic factors. WIDER IMPLICATIONS Ovarian function is determined by its 'seeds' (follicles) and 'soil' (ovarian microenvironment). The ovarian microenvironment has been reported to play a vital role in CAOD and targeting the ovarian microenvironment may present potential therapeutic approaches for CAOD. However, the relation between the ovarian microenvironment, its regulatory networks, and CAOD needs to be further studied. A better understanding of these issues could be helpful in explaining the pathogenesis of CAOD and creating innovative strategies for counteracting the effects exerted on ovarian function. Our aim is that this narrative review of CAOD will stimulate more research in this important field. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
3
|
Delimitreva S, Boneva G, Chakarova I, Hadzhinesheva V, Zhivkova R, Markova M, Nikolova V, Kolarov A, Mladenov N, Bradyanova S, Prechl J, Mihaylova N, Tchorbanov A. Lupus progression deteriorates oogenesis quality in MRL/lpr mice. Immunol Res 2024; 72:811-827. [PMID: 38771487 DOI: 10.1007/s12026-024-09489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of the immune response against self antigens. Numerous reproductive complications, including reduced birth rate and complications for the mother and the fetus during pregnancy, have been observed in women with SLE. In the present study, we aimed to investigate the effect of SLE development on oocyte meiosis in lupus-prone mice. Lupus-prone MRL/lpr mice were used for the experiments: disease-free (4 weeks of age) and sick (20 weeks of age, virgin and postpartum). The immune response was monitored by flow cytometry, ELISpot, ELISA, and histology. Oocytes were analyzed by fluorescence microscopy based on chromatin, tubulin, and actin structures. The lupus-prone MRL/lpr mice developed age-dependent symptoms of SLE with increased levels of various autoantibodies, proteinuria, and renal infiltrates and a tendency for the immune response to worsen with changes in cell populations and the cytokine profile. The number and quality of oocytes were also affected, and the successful pregnancy rate of MRL/lpr mice was limited to only 60%. Isolated oocytes showed severe structural changes in all studied groups. Systemic alterations in immune homeostasis in SLE affect the quality of developing oocytes, which is evident from a young age. The data obtained is in line with the trend of reduced fertility in lupus-prone MRL/lpr mice. The phenomenon can be explained by changes in the microenvironment of the relevant organs and close connection between ovulation and inflammatory processes.
Collapse
Affiliation(s)
- Stefka Delimitreva
- Department of Biology, Medical University of Sofia, 2, Zdrave Str., 1431, Sofia, Bulgaria.
| | - Gabriela Boneva
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113, Sofia, Bulgaria
| | - Irina Chakarova
- Department of Biology, Medical University of Sofia, 2, Zdrave Str., 1431, Sofia, Bulgaria
| | | | - Ralitsa Zhivkova
- Department of Biology, Medical University of Sofia, 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Maya Markova
- Department of Biology, Medical University of Sofia, 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Venera Nikolova
- Department of Biology, Medical University of Sofia, 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Anton Kolarov
- Department of Biology, Medical University of Sofia, 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Nikola Mladenov
- Department of Biology, Medical University of Sofia, 2, Zdrave Str., 1431, Sofia, Bulgaria
| | - Silviya Bradyanova
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113, Sofia, Bulgaria
| | | | - Nikolina Mihaylova
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113, Sofia, Bulgaria
| | - Andrey Tchorbanov
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 26, 1113, Sofia, Bulgaria.
- National Institute of Immunology, 1517, Sofia, Bulgaria.
| |
Collapse
|
4
|
Orisaka M, Mizutani T, Miyazaki Y, Shirafuji A, Tamamura C, Fujita M, Tsuyoshi H, Yoshida Y. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Front Endocrinol (Lausanne) 2023; 14:1324429. [PMID: 38192421 PMCID: PMC10773729 DOI: 10.3389/fendo.2023.1324429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
The ovarian microenvironment is critical for follicular development and oocyte maturation. Maternal conditions, including polycystic ovary syndrome (PCOS), endometriosis, and aging, may compromise the ovarian microenvironment, follicular development, and oocyte quality. Chronic low-grade inflammation can induce oxidative stress and tissue fibrosis in the ovary. In PCOS, endometriosis, and aging, pro-inflammatory cytokine levels are often elevated in follicular fluids. In women with obesity and PCOS, hyperandrogenemia and insulin resistance induce ovarian chronic low-grade inflammation, thereby disrupting follicular development by increasing oxidative stress. In endometriosis, ovarian endometrioma-derived iron overload can induce chronic inflammation and oxidative stress, leading to ovarian ferroptosis and fibrosis. In inflammatory aging (inflammaging), senescent cells may secrete senescence-associated secretory phenotype factors, causing chronic inflammation and oxidative stress in the ovary. Therefore, controlling chronic low-grade inflammation and fibrosis in the ovary would present a novel therapeutic strategy for improving the follicular microenvironment and minimizing ovarian dysfunction.
Collapse
Affiliation(s)
- Makoto Orisaka
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Mizutani
- Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Fukui, Japan
| | - Yumiko Miyazaki
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Aya Shirafuji
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Chiyo Tamamura
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Fujita
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Obstetrics and Gynecology, Ishikawa Prefectural Central Hospital, Ishikawa, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
5
|
Wang Z, Zheng Y, Zhong C, Ou Y, Feng Y, Lin Y, Zhao Y. Circular RNA as new serum metabolic biomarkers in patients with premature ovarian insufficiency. Arch Gynecol Obstet 2023; 308:1871-1879. [PMID: 37740794 DOI: 10.1007/s00404-023-07219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Quantitative real-time PCR (qPCR) is used to detect the differential expression of circular RNAs in patients of premature ovarian insufficiency (POI), to explore the new biomarkers of POI that can be detected from blood as soon as possible. METHODS The study collected plasma samples from 30 patients in POI group and 30 normal people group who meet the inclusion criteria, who visited the gynecology clinic of The First Affiliated Hospital of Guangzhou University of Chinese Medicine from July 2019 to December 2020. Then, circRNAs in plasma were extracted for qPCR validation. RESULTS 1. qPCR technology was performed on hsa_circRNA_008901 and hsa_circRNA_403959, and it was found that the levels of both were considerably downregulated in POI group. Clinical evaluation showed that both hsa_circRNA_008901 and hsa_circRNA_403959 have good diagnostic value for POI. 2. According to miRNA Regulatory Element (MRE) analysis, the predicted target miRNAs of hsa_circRNA_008901 are: hsa-miR-548c-3p, hsa-miR-924, hsa-miR-4677-5p, hsa-miR-6786-3p and hsa-miR-7974; the predicted target miRNAs of hsa_circRNA_403959 are: hsa-miR-1207-5p, hsa-miR-4691-5p, hsa-miR-4763-3p, hsa-miR-6807-5p and hsa-miR-7160-5p. CONCLUSION Compared with the normal group, the expression levels of hsa_circRNA_008901 and hsa_circRNA_403959 in the POI group were downregulated, suggesting that these two circRNAs may be potential biomarkers of POI. Bioinformatics analysis indicated that hsa_circRNA_008901 and hsa_circRNA_403959 may regulate their binding miRNA through the action form of "molecular sponge", and then regulate the signaling pathway regulated by miRNA, and ultimately affect the disease progression of POI.
Collapse
Affiliation(s)
- Zhuoya Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Department of Traditional Chinese Medicine, Yuzhou People's Hospital, Xuchang, 461670, China
| | - Yuqi Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Caiting Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yuyang Ou
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yihui Feng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yu Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
- Nanfang Hospital, Southern Medical University, Guangzhou, 510006, China.
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
6
|
Derkach KV, Lebedev IA, Morina IY, Bakhtyukov AA, Pechalnova AS, Sorokoumov VN, Kuznetsova VS, Romanova IV, Shpakov AO. Comparison of Steroidogenic and Ovulation-Inducing Effects of Orthosteric and Allosteric Agonists of Luteinizing Hormone/Chorionic Gonadotropin Receptor in Immature Female Rats. Int J Mol Sci 2023; 24:16618. [PMID: 38068943 PMCID: PMC10706028 DOI: 10.3390/ijms242316618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Gonadotropins, including human chorionic gonadotropin (hCG), are used to induce ovulation, but they have a number of side effects, including ovarian hyperstimulation syndrome (OHSS). A possible alternative is allosteric luteinizing hormone (LH)/hCG receptor agonists, including the compound TP4/2 we developed, which remains active when administered orally. The aim was to study the effectiveness of TP4/2 (orally, 40 mg/kg) as an ovulation inducer in FSH-stimulated immature female rats, compared with hCG (s.c., 15 IU/rat). TP4/2 stimulated progesterone production and corpus luteum formation; time-dependently increased the ovarian expression of steroidogenic genes (Star, Cyp11a1, Cyp17a1) and genes involved in ovulation regulation (Adamts-1, Cox-2, Egr-1, Mt-1); and increased the content of metalloproteinase ADAMTS-1 in the ovaries. These effects were similar to those of hCG, although in some cases they were less pronounced. TP4/2, in contrast to hCG, maintained normal LH levels and increased the ovarian expression of the LH/hCG receptor gene, indicating preservation of ovarian sensitivity to LH, and did not cause a sustained increase in expression of vascular endothelial growth factor-A involved in OHSS. Thus, TP4/2 is an effective ovulation inducer that, unlike hCG, has a lower risk of OHSS and ovarian LH resistance due to its moderate stimulating effect on steroidogenesis.
Collapse
Affiliation(s)
- Kira V. Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Ivan A. Lebedev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Irina Yu. Morina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Andrey A. Bakhtyukov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Alena S. Pechalnova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Viktor N. Sorokoumov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Veronica S. Kuznetsova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| | - Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia; (K.V.D.); (I.A.L.); (A.A.B.); (V.N.S.); (V.S.K.); (I.V.R.)
| |
Collapse
|
7
|
Li SJ, Chang HM, Wang JH, Yang J, Leung PCK. The Interleukin-6 trans-signaling promotes progesterone production in human granulosa-lutein cells. Biol Reprod 2022; 106:953-967. [PMID: 35098302 DOI: 10.1093/biolre/ioac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/03/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
As a critical paracrine regulator of multiple reproductive functions, the cytokine interleukin-6 (IL-6) is expressed in human granulosa cells and can be detected in follicular fluid. At present, the functional role of IL-6 in the regulation of ovarian steroidogenesis is controversial. Moreover, the detailed molecular mechanisms by which IL-6 regulates the production of progesterone in human granulosa cells remain to be elucidated. In the present study, we used primary and immortalized human granulosa-lutein (hGL) cells to investigate the effects of IL-6 on progesterone synthesis and the underlying molecular mechanisms. We found that IL-6 trans-signaling by the combined addition of IL-6 and soluble IL-6 receptor (sIL-6Rα) induced StAR expression and progesterone production in hGL cells. Additionally, IL-6/sIL-6Rα activated the phosphorylation of Janus activated kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), and the cellular effects were abolished by AG490 (JAK2 inhibitor), C188–9 (STAT3 inhibitor), or siRNA-mediated knockdown of STAT3. IL-6 trans-signaling-induced activation of JAK2/STAT3 also upregulated the expression of suppressor of cytokine signaling 3 (SOCS3), which, in turn, negatively regulated the JAK2/STAT3 pathway by suppressing STAT3 activation and its downstream effects. Our findings provide insight into the molecular mechanisms by which IL-6 trans-signaling modulates steroidogenesis in hGL cells.
Collapse
Affiliation(s)
- Sai-Jiao Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jeremy H Wang
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
8
|
Wang Z, Song Y, Zhang F, Zhao C, Fu S, Xia C, Bai Y. Early warning for inactive ovaries based on liver function index, serum MDA, IL-6, FGF21 and ANGPTL8 in dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.2020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhijie Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuxi Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Feng Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, China
| | - Shixin Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
| | - Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
9
|
Bernabò N, Di Berardino C, Capacchietti G, Peserico A, Buoncuore G, Tosi U, Crociati M, Monaci M, Barboni B. In Vitro Folliculogenesis in Mammalian Models: A Computational Biology Study. Front Mol Biosci 2021; 8:737912. [PMID: 34859047 PMCID: PMC8630647 DOI: 10.3389/fmolb.2021.737912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
In vitro folliculogenesis (ivF) has been proposed as an emerging technology to support follicle growth and oocyte development. It holds a great deal of attraction from preserving human fertility to improving animal reproductive biotechnology. Despite the mice model, where live offspring have been achieved,in medium-sized mammals, ivF has not been validated yet. Thus, the employment of a network theory approach has been proposed for interpreting the large amount of ivF information collected to date in different mammalian models in order to identify the controllers of the in vitro system. The WoS-derived data generated a scale-free network, easily navigable including 641 nodes and 2089 links. A limited number of controllers (7.2%) are responsible for network robustness by preserving it against random damage. The network nodes were stratified in a coherent biological manner on three layers: the input was composed of systemic hormones and somatic-oocyte paracrine factors; the intermediate one recognized mainly key signaling molecules such as PI3K, KL, JAK-STAT, SMAD4, and cAMP; and the output layer molecules were related to functional ivF endpoints such as the FSH receptor and steroidogenesis. Notably, the phenotypes of knock-out mice previously developed for hub.BN indirectly corroborate their biological relevance in early folliculogenesis. Finally, taking advantage of the STRING analysis approach, further controllers belonging to the metabolic axis backbone were identified, such as mTOR/FOXO, FOXO3/SIRT1, and VEGF, which have been poorly considered in ivF to date. Overall, this in silico study identifies new metabolic sensor molecules controlling ivF serving as a basis for designing innovative diagnostic and treatment methods to preserve female fertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | | | | | - Alessia Peserico
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Giorgia Buoncuore
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| |
Collapse
|
10
|
Lee EB, Chakravarthi VP, Wolfe MW, Rumi MAK. ERβ Regulation of Gonadotropin Responses during Folliculogenesis. Int J Mol Sci 2021; 22:ijms221910348. [PMID: 34638689 PMCID: PMC8508937 DOI: 10.3390/ijms221910348] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Gonadotropins are essential for regulating ovarian development, steroidogenesis, and gametogenesis. While follicle stimulating hormone (FSH) promotes the development of ovarian follicles, luteinizing hormone (LH) regulates preovulatory maturation of oocytes, ovulation, and formation of corpus luteum. Cognate receptors of FSH and LH are G-protein coupled receptors that predominantly signal through cAMP-dependent and cAMP-independent mechanisms that activate protein kinases. Subsequent vital steps in response to gonadotropins are mediated through activation or inhibition of transcription factors required for follicular gene expression. Estrogen receptors, classical ligand-activated transcriptional regulators, play crucial roles in regulating gonadotropin secretion from the hypothalamic-pituitary axis as well as gonadotropin function in the target organs. In this review, we discuss the role of estrogen receptor β (ERβ) regulating gonadotropin response during folliculogenesis. Ovarian follicles in Erβ knockout (ErβKO) mutant female mice and rats cannot develop beyond the antral state, lack oocyte maturation, and fail to ovulate. Theca cells (TCs) in ovarian follicles express LH receptor, whereas granulosa cells (GCs) express both FSH receptor (FSHR) and LH receptor (LHCGR). As oocytes do not express the gonadotropin receptors, the somatic cells play a crucial role during gonadotropin induced oocyte maturation. Somatic cells also express high levels of estrogen receptors; while TCs express ERα and are involved in steroidogenesis, GCs express ERβ and are involved in both steroidogenesis and folliculogenesis. GCs are the primary site of ERβ-regulated gene expression. We observed that a subset of gonadotropin-induced genes in GCs, which are essential for ovarian follicle development, oocyte maturation and ovulation, are dependent on ERβ. Thus, ERβ plays a vital role in regulating the gonadotropin responses in ovary.
Collapse
Affiliation(s)
- Eun B. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-913-588-8059
| |
Collapse
|
11
|
Liu H, Jiang C, La B, Cao M, Ning S, Zhou J, Yan Z, Li C, Cui Y, Ma X, Wang M, Chen L, Yu Y, Chen F, Zhang Y, Wu H, Liu J, Qin L. Human amnion-derived mesenchymal stem cells improved the reproductive function of age-related diminished ovarian reserve in mice through Ampk/FoxO3a signaling pathway. Stem Cell Res Ther 2021; 12:317. [PMID: 34078462 PMCID: PMC8173966 DOI: 10.1186/s13287-021-02382-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Background Age-related diminished ovarian reserve (AR-DOR) reduced the quality of oocytes, resulting in decreased female fertility. Aging is tightly related to abnormal distribution and function of mitochondria, while mitophagy is a major process to maintain normal quality and quantity of mitochondria in cells, especially in oocytes which containing a large number of mitochondria to meet the demand of energy production during oocyte maturation and subsequent embryonic development. Ampk/FoxO3a signaling is crucial in the regulation of mitophagy. It is reported mesenchymal stem cells (MSCs) can improve ovarian function. Here we aim to explore if human amnion-derived mesenchymal stem cells (hAMSCs) are effective in improving ovarian function in AR-DOR mice and whether Ampk/FoxO3a signaling is involved. Methods The AR-DOR model mice were established by 32-week-old mice with 3–8 litters, significantly low serum sex hormone levels and follicle counts. The old mice were divided into 5 treatment groups: normal saline (NS, control), 1% human serum albumin (HSA, resolver), low dose (LD, 5.0 × 106cells/kg), middle dose (MD, 7.5 × 106cells/kg), and high dose (HD, 10.0 × 106cells/kg). The prepared hAMSCs were injected through tail vein. Serum sex hormone level, follicle counts, fertilization rate, gestation rate, little size, apoptosis of granulosa and stromal cells, expression level of Sod2, Ampk, and ratio of phosphorylated FoxO3a to total FoxO3a in ovaries were examined. Results Our results show that after hAMSC transplantation, the ovarian function in AR-DOR mice was significantly improved, meanwhile the apoptosis of granulosa and stromal cells in the ovaries was significantly repressed, the expression level of Ampk and the ratio of phosphorylated FoxO3a to total FoxO3a both were significantly increased, meanwhile increased Sod2 expression was also observed. Conclusion Our results demonstrate hAMSC transplantation via tail-injection can improve ovarian function of AR-DOR mice through Ampk/FoxO3a signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02382-x.
Collapse
Affiliation(s)
- Hanwen Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Boya La
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Meng Cao
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jing Zhou
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chuyu Li
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Meilian Wang
- Department of Obstetrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Li Chen
- Department of Obstetrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuexin Zhang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Huimin Wu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
12
|
Tremblay PG, Sirard MA. Gene analysis of major signaling pathways regulated by gonadotropins in human ovarian granulosa tumor cells (KGN)†. Biol Reprod 2020; 103:583-598. [PMID: 32427331 DOI: 10.1093/biolre/ioaa079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
The female reproductive function largely depends on timing and coordination between follicle-stimulating hormone (FSH) and luteinizing hormone. Even though it was suggested that these hormones act on granulosa cells via shared signaling pathways, mainly protein kinases A, B, and C (PKA, PKB, and PKC), there is still very little information available on how these signaling pathways are regulated by each hormone to provide such differences in gene expression throughout folliculogenesis. To obtain a global picture of the principal upstream factors involved in PKA, PKB, and PKC signaling in granulosa cells, human granulosa-like tumor cells (KGN) were treated with FSH or specific activators (forskolin, SC79, and phorbol 12-myristate 13-acetate) for each pathway to analyze gene expression with RNA-seq technology. Normalization and cutoffs (FC 1.5, P ≤ 0.05) revealed 3864 differentially expressed genes between treatments. Analysis of major upstream regulators showed that PKA is a master kinase of early cell differentiation as its activation resulted in the gene expression profile that accompanies granulosa cell differentiation. Our data also revealed that the activation of PKC in granulosa cells is also a strong differentiation signal that could control "advanced" differentiation in granulosa cells and the inflammatory cascade that occurs in the dominant follicle. According to our results, PKB activation provides support for PKA-stimulated gene expression and is also involved in granulosa cell survival throughout follicular development. Taken together, our results provide new information on PKA, PKB, and PKC signaling pathways and their roles in stimulating a follicle at the crossroad between maturation/ovulation and atresia.
Collapse
Affiliation(s)
- Patricia G Tremblay
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des Sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des Sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
13
|
C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells. Genes (Basel) 2018; 9:genes9060295. [PMID: 29899261 PMCID: PMC6026978 DOI: 10.3390/genes9060295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023] Open
Abstract
Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3, respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3. Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3. These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.
Collapse
|
14
|
Kishi H, Kitahara Y, Imai F, Nakao K, Suwa H. Expression of the gonadotropin receptors during follicular development. Reprod Med Biol 2017; 17:11-19. [PMID: 29371816 PMCID: PMC5768975 DOI: 10.1002/rmb2.12075] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022] Open
Abstract
Background Gonadotropins induce follicular development that leads to ovulation and luteinization. In women, the level of gonadotropins, along with the expression of their receptors, changes dynamically throughout the menstrual cycle. This study aimed to clarify the mechanisms underlying these phenomena. Methods The literature was reviewed, including that published by the authors. Main findings (Results) Follicle‐stimulating hormone receptor expression in the granulosa cells was induced by androgens that were derived from growth differentiation factor‐9‐stimulated theca cells. In the theca cells, luteinizing hormone receptor (LHR) expression was noted from their appearance. In the granulosa cells, follicle‐stimulating hormone (FSH) stimulation was essential for LHR expression. However, FSH alone was not sufficient to respond to the luteinizing hormone (LH) surge for oocyte maturation, ovulation, and subsequent luteinization. To achieve these stages, various local factors that were derived from the granulosa and theca cells in response to FSH and LH stimulation had to work synergistically in an autocrine/paracrine manner to strongly induce LHR expression. Following the LH surge, the LHR expression decreased markedly; miRNAs were involved in this transient LHR downregulation. Following ovulation, LHR expression drastically increased again toward luteinization. Conclusion The expression of gonadotropin receptors is controlled by sophisticated and complicated systems; a breakdown of this system could lead to ovulation disorders.
Collapse
Affiliation(s)
- Hiroshi Kishi
- Department of Obstetrics and Gynecology Gunma University Hospital Gunma Japan
| | - Yoshikazu Kitahara
- Department of Obstetrics and Gynecology Gunma University Hospital Gunma Japan
| | - Fumiharu Imai
- Department of Obstetrics and Gynecology Gunma University Hospital Gunma Japan
| | - Kohshiro Nakao
- Department of Obstetrics and Gynecology Gunma University Hospital Gunma Japan
| | - Hiroto Suwa
- Department of Obstetrics and Gynecology Gunma University Hospital Gunma Japan
| |
Collapse
|
15
|
Nakao K, Kishi H, Imai F, Suwa H, Hirakawa T, Minegishi T. TNF-α Suppressed FSH-Induced LH Receptor Expression Through Transcriptional Regulation in Rat Granulosa Cells. Endocrinology 2015; 156:3192-202. [PMID: 26125466 DOI: 10.1210/en.2015-1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several inflammatory cytokines regulate ovarian function. TNF-α is produced in granulosa cells under physiological conditions and has a reciprocal action on follicle development. In contrast, in pelvic inflammatory diseases, TNF-α is excessively produced in the pelvic cavity and has an adverse effect on reproductive functions. The objective of this study was to elucidate the mechanism of action of TNF-α on the expression of LH receptor (LHR) in immature rat granulosa cells. TNF-α suppressed FSH-induced LHR mRNA and protein expression and was not associated with cAMP accumulation. By using a luciferase assay, the construct containing base pairs -1389 to -1 of the rat Lhcgr promoter revealed that TNF-α decreased FSH-induced promoter activity. In response to TNF-α, nuclear factor (NF)-κB p65 was translocated to the nucleus, and the suppressive effect of TNF-α on LHR mRNA expression was abrogated by an NF-κB inhibitor. In a chromatin immunoprecipitation assay, TNF-α induced the association of NF-κB p65 with the rat Lhcgr transcriptional promoter region. NF-κB p65 and histone deacetylase (HDAC) interact to mediate expression of several genes at a transcriptional level. HDAC activity is thought to induce tight connections within local chromatin structures and repress gene transcription. Furthermore, the TNF-α-induced suppression of LHR mRNA expression was blocked by an HDAC inhibitor. Taken together, these results suggest that the interaction of NF-κB p65 with HDAC in the promoter region of rat Lhcgr might be responsible for TNF-α action on the regulation of LHR.
Collapse
Affiliation(s)
- Kohshiro Nakao
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Kishi
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Fumiharu Imai
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroto Suwa
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Hirakawa
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Minegishi
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
16
|
Otani Y, Ichii O, Otsuka-Kanazawa S, Chihara M, Nakamura T, Kon Y. MRL/MpJ-Faslprmice show abnormalities in ovarian function and morphology with the progression of autoimmune disease. Autoimmunity 2015; 48:402-11. [DOI: 10.3109/08916934.2015.1031889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|