1
|
Endo S, Morikawa Y, Suenami K, Sakai Y, Abe N, Matsunaga T, Hara A, Takasu M. Involvement of porcine and human carbonyl reductases in the metabolism of epiandrosterone, 11-oxygenated steroids, neurosteroids, and corticosteroids. J Steroid Biochem Mol Biol 2024; 243:106574. [PMID: 38945307 DOI: 10.1016/j.jsbmb.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Porcine carbonyl reductases (pCBR1 and pCBR-N1) and aldo-keto reductases (pAKR1C1 and pAKR1C4) exhibit hydroxysteroid dehydrogenase (HSD) activity. However, their roles in the metabolism of porcine-specific androgens (19-nortestosterone and epiandrosterone), 11-oxygenated androgens, neurosteroids, and corticosteroids remain unclear. Here, we compared the steroid specificity of the four recombinant enzymes by kinetic and product analyses. In C18/C19-steroids,11-keto- and 11β-hydroxy-5α-androstane-3,17-diones were reduced by all the enzymes, whereas 5α-dihydronandrolone (19-nortestosterone metabolite) and 11-ketodihydrotestosterone were reduced by pCBR1, pCBR-N1, and pAKR1C1, of which pCBR1 exhibited the lowest (submicromolar) Km values. Product analysis showed that pCBR1 and pCBR-N1 function as 3α/β-HSDs, in contrast to pAKR1C1 and pAKR1C4 (acting as 3β-HSD and 3α-HSD, respectively). Additionally, 17β-HSD activity was observed in pCBR1 and pCBR-N1 (toward epiandrosterone and its 11-oxygenated derivatives) and in pAKR1C1 (toward androsterone, 4-androstene-3,17-dione and their 11-oxygenated derivatives). The four enzymes also showed different substrate specificity for 3-keto-5α/β-dihydro-C21-steroids, including GABAergic neurosteroid precursors and corticosteroid metabolites. 5β-Dihydroprogesterone was reduced by all the enzymes, whereas 5α-dihydroprogesterone was reduced only by pCBR1, and 5α/β-dihydrodeoxycorticosterones by pCBR1 and pCBR-N1. The two pCBRs also reduced the 5α/β-dihydro-metabolites of cortisol, 11-deoxycortisol, cortisone, and corticosterone. pCBR1 exhibited lower Km values (0.3-2.9 μM) for the 3-keto-C21-steroids than pCBR-N1 (Km=10-36 μM). The reduced products of the 3-keto-C21-steroids by pCBR1 and pCBR-N1 were their 3α-hydroxy-metabolites. Finally, we found that human CBR1 has similar substrate specificity for the C18/C19/C21-steroids to pCBR-N1. Based on these results, it was concluded that porcine and human CBRs can be involved in the metabolism of the aforementioned steroids as 3α/β,17β-HSDs.
Collapse
Affiliation(s)
- Satoshi Endo
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1194, Japan; Center for One Medicine Innovative Translational Research, Gifu University, Gifu 501-1193, Japan.
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Naohito Abe
- Laboratory of Pharmacognosy, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Masaki Takasu
- Center for One Medicine Innovative Translational Research, Gifu University, Gifu 501-1193, Japan; Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
2
|
Ling LJ, Zhou Q, Zhang F, Lei WJ, Li MD, Lu JW, Wang WS, Sun K, Ying H. The dual role of glucocorticoid regeneration in inflammation at parturition. Front Immunol 2024; 15:1459489. [PMID: 39290694 PMCID: PMC11405189 DOI: 10.3389/fimmu.2024.1459489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Fetal membrane inflammation is an integral event of parturition. However, excessive pro-inflammatory cytokines can impose threats to the fetus. Coincidentally, the fetal membranes express abundant 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which generates biologically active cortisol to promote labor through induction of prostaglandin synthesis. Given the well-recognized anti-inflammatory actions of glucocorticoids, we hypothesized that cortisol regenerated in the fetal membranes might be engaged in restraining fetus-hazardous pro-inflammatory cytokine production for the safety of the fetus, while reserving pro-labor effect on prostaglandin synthesis to ensure safe delivery of the fetus. Methods The hypothesis was examined in human amnion tissue and cultured primary human amnion fibroblasts as well as a mouse model. Results 11β-HSD1 was significantly increased in the human amnion in infection-induced preterm birth. Studies in human amnion fibroblasts showed that lipopolysaccharide (LPS) induced 11β-HSD1 expression synergistically with cortisol. Cortisol completely blocked NF-κB-mediated pro-inflammatory cytokine expression by LPS, but STAT3-mediated cyclooxygenase 2 expression, a crucial prostaglandin synthetic enzyme, remained. Further studies in pregnant mice showed that corticosterone did not delay LPS-induced preterm birth, but alleviated LPS-induced fetal organ damages, along with increased 11β-HSD1, cyclooxygenase 2, and decreased pro-inflammatory cytokine in the fetal membranes. Discussion There is a feed-forward cortisol regeneration in the fetal membranes in infection, and cortisol regenerated restrains pro-inflammatory cytokine expression, while reserves pro-labor effect on prostaglandin synthesis. This dual role of cortisol regeneration can prevent excessive pro-inflammatory cytokine production, while ensure in-time delivery for the safety of the fetus.
Collapse
Affiliation(s)
- Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Qiong Zhou
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| |
Collapse
|
3
|
Chen Q, Li L, Xu L, Yang B, Huang Y, Qiao D, Yue X. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med 2024; 138:207-227. [PMID: 37338605 DOI: 10.1007/s00414-023-03039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and β-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and β-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.
Collapse
Affiliation(s)
- Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingyue Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
4
|
Zhou W, Geng H, Huang Y, Shi S, Wang Z, Wang D. Mechanism of BLIMP1/TRIM66/COX2 in human decidua participates in parturition†. Biol Reprod 2023; 109:507-519. [PMID: 37515773 DOI: 10.1093/biolre/ioad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
The mechanism underlying the initiation of parturition remains unclear. Cyclooxygenase 2 and prostaglandins in decidual membrane tissue play an important role in the "parturition cascade." With the advancement of gestation, the expression of the transcriptional suppressor B lymphocyte-induced maturation protein 1 in the decidual membrane gradually decreases. Through chromatin immunoprecipitation sequencing, we found that B lymphocyte-induced maturation protein 1 has a binding site in the distal intergenic of PTGS2(COX2). Tripartite motif-containing protein 66 is a chromatin-binding protein that usually performs transcriptional regulatory functions by "reading" histone modification sites in chromatin. In this study, tripartite motif-containing protein 66 exhibits the same trend of expression as B lymphocyte-induced maturation protein 1 in the decidua during gestation. Moreover, the co-immunoprecipitation assay revealed that tripartite motif-containing protein 66 combined with B lymphocyte-induced maturation protein 1. This finding indicated that tripartite motif-containing protein 66 formed a transcription complex with B lymphocyte-induced maturation protein 1, which coregulated the expression of COX2. In animal experiments, we injected si-Blimp1 adenoviruses (si-Blimp1), Blimp1 overexpression plasmid (Blimp1-OE), and Trim66 overexpression plasmid (Trim66-OE) through the tail vein of mice. The results showed that B lymphocyte-induced maturation protein 1 and tripartite motif-containing protein 66 affected the initiation of parturition in mice. Therefore, the present evidence suggests that B lymphocyte-induced maturation protein 1 and tripartite motif-containing protein 66 partially participate in the initiation of labor, which may provide a new perspective for exploring the mechanism of term labor.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huizhen Geng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihong Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaole Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Zhang F, Sun K, Wang WS. Identification of a feed-forward loop between 15(S)-HETE and PGE2 in human amnion at parturition. J Lipid Res 2022; 63:100294. [PMID: 36206855 PMCID: PMC9646666 DOI: 10.1016/j.jlr.2022.100294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Human parturition is associated with massive arachidonic acid (AA) mobilization in the amnion, indicating that large amounts of AA-derived eicosanoids are required for parturition. Prostaglandin E2 (PGE2) synthesized from the cyclooxygenase (COX) pathway is the best characterized AA-derived eicosanoid in the amnion which plays a pivotal role in parturition. The existence of any other pivotal AA-derived eicosanoids involved in parturition remains elusive. Here, we screened such eicosanoids in human amnion tissue with AA-targeted metabolomics and studied their role and synthesis in parturition by using human amnion fibroblasts and a mouse model. We found that lipoxygenase (ALOX) pathway-derived 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) and its synthetic enzymes ALOX15 and ALOX15B were significantly increased in human amnion at parturition. Although 15(S)-HETE is ineffective on its own, it potently potentiated the activation of NF-κB by inflammatory mediators including lipopolysaccharide, interleukin-1β, and serum amyloid A1, resulting in the amplification of COX-2 expression and PGE2 production in amnion fibroblasts. In turn, we determined that PGE2 induced ALOX15/15B expression and 15(S)-HETE production through its EP2 receptor-coupled PKA pathway, thereby forming a feed-forward loop between 15(S)-HETE and PGE2 production in the amnion at parturition. Our studies in pregnant mice showed that 15(S)-HETE injection induced preterm birth with increased COX-2 and PGE2 abundance in the fetal membranes and placenta. Conclusively, 15(S)-HETE is identified as another crucial parturition-pertinent AA-derived eicosanoid in the amnion, which may form a feed-forward loop with PGE2 in parturition. Interruption of this feed-forward loop may be of therapeutic value for the treatment of preterm birth.
Collapse
|
6
|
Eckenstaler R, Ripperger A, Hauke M, Petermann M, Hemkemeyer SA, Schwedhelm E, Ergün S, Frye M, Werz O, Koeberle A, Braun H, Benndorf RA. A Thromboxane A 2 Receptor-Driven COX-2-Dependent Feedback Loop That Affects Endothelial Homeostasis and Angiogenesis. Arterioscler Thromb Vasc Biol 2022; 42:444-461. [PMID: 35236104 PMCID: PMC8939709 DOI: 10.1161/atvbaha.121.317380] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND TP (thromboxane A2 receptor) plays an eminent role in the pathophysiology of endothelial dysfunction and cardiovascular disease. Moreover, its expression is reported to increase in the intimal layer of blood vessels of cardiovascular high-risk individuals. Yet it is unknown, whether TP upregulation per se has the potential to affect the homeostasis of the vascular endothelium. METHODS We combined global transcriptome analysis, lipid mediator profiling, functional cell analyses, and in vivo angiogenesis assays to study the effects of endothelial TP overexpression or knockdown/knockout on the angiogenic capacity of endothelial cells in vitro and in vivo. RESULTS Here we report that endothelial TP expression induces COX-2 (cyclooxygenase-2) in a Gi/o- and Gq/11-dependent manner, thereby promoting its own activation via the auto/paracrine release of TP agonists, such as PGH2 (prostaglandin H2) or prostaglandin F2 but not TxA2 (thromboxane A2). TP overexpression induces endothelial cell tension and aberrant cell morphology, affects focal adhesion dynamics, and inhibits the angiogenic capacity of human endothelial cells in vitro and in vivo, whereas TP knockdown or endothelial-specific TP knockout exerts opposing effects. Consequently, this TP-dependent feedback loop is disrupted by pharmacological TP or COX-2 inhibition and by genetic reconstitution of PGH2-metabolizing prostacyclin synthase even in the absence of functional prostacyclin receptor expression. CONCLUSIONS Our work uncovers a TP-driven COX-2-dependent feedback loop and important effector mechanisms that directly link TP upregulation to angiostatic TP signaling in endothelial cells. By these previously unrecognized mechanisms, pathological endothelial upregulation of the TP could directly foster endothelial dysfunction, microvascular rarefaction, and systemic hypertension even in the absence of exogenous sources of TP agonists.
Collapse
Affiliation(s)
- Robert Eckenstaler
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Germany (R.E., A.R., M.H., M.P., H.B., R.A.B.)
| | - Anne Ripperger
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Germany (R.E., A.R., M.H., M.P., H.B., R.A.B.)
| | - Michael Hauke
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Germany (R.E., A.R., M.H., M.P., H.B., R.A.B.)
| | - Markus Petermann
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Germany (R.E., A.R., M.H., M.P., H.B., R.A.B.)
| | - Sandra A Hemkemeyer
- Institute of Clinical Chemistry and Laboratory Medicine (S.A.H., M.F.), University Medical Center Hamburg-Eppendorf, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology (E.S.), University Medical Center Hamburg-Eppendorf, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Germany (S.E.)
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine (S.A.H., M.F.), University Medical Center Hamburg-Eppendorf, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Germany (O.W., A.K.)
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Germany (O.W., A.K.).,Michael Popp Institute and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria (A.K.)
| | - Heike Braun
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Germany (R.E., A.R., M.H., M.P., H.B., R.A.B.)
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Germany (R.E., A.R., M.H., M.P., H.B., R.A.B.)
| |
Collapse
|
7
|
Lu J, Wang W, Zhou Q, Ling L, Ying H, Sun Y, Myatt L, Sun K. C/EBPδ drives key endocrine signals in the human amnion at parturition. Clin Transl Med 2021; 11:e416. [PMID: 34185432 PMCID: PMC8191398 DOI: 10.1002/ctm2.416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022] Open
Abstract
Amnion-derived prostaglandin E2 (PGE2) and cortisol are key to labor onset. Identification of a common transcription factor driving the expression of both cyclooxygenase-2 (COX-2) and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), the key enzymes in their production, may hold the key to the treatment of pre-term labor. Here, we have found that the CCAAT enhancer binding protein δ (C/EBPδ) is such a transcription factor which underlies the feed-forward induction of COX-2 and 11β-HSD1 expression by their own products PGE2 and cortisol in human amnion fibroblasts so that their production would be ensured in the amnion for the onset of labor. Moreover, the abundance of C/EBPδ in the amnion increases along with COX-2 and 11β-HSD1 at term and further increases at parturition. Knockout of C/EBPδ in mice delays the onset of labor further supporting the concept. In conclusion, C/EBPδ pathway may be speculated to serve as a potential pharmaceutical target in the amnion for treatment of pre-term labor.
Collapse
Affiliation(s)
- Jiang‐Wen Lu
- Center for Reproductive Medicine, Ren Ji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiP.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiP.R. China
| | - Wang‐Sheng Wang
- Center for Reproductive Medicine, Ren Ji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiP.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiP.R. China
| | - Qiong Zhou
- Department of Obstetrics and GynecologyRen Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiP.R. China
| | - Li‐Jun Ling
- Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiP.R. China
| | - Hao Ying
- Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiP.R. China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiP.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiP.R. China
| | - Leslie Myatt
- Department of Obstetrics and GynecologyOregon Health and Science UniversityPortlandOregonUSA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiP.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiP.R. China
| |
Collapse
|
8
|
Arima-Yoshida F, Raveau M, Shimohata A, Amano K, Fukushima A, Watanave M, Kobayashi S, Hattori S, Usui M, Sago H, Mataga N, Miyakawa T, Yamakawa K, Manabe T. Impairment of spatial memory accuracy improved by Cbr1 copy number resumption and GABA B receptor-dependent enhancement of synaptic inhibition in Down syndrome model mice. Sci Rep 2020; 10:14187. [PMID: 32843708 PMCID: PMC7447763 DOI: 10.1038/s41598-020-71085-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
Down syndrome is a complex genetic disorder caused by the presence of three copies of the chromosome 21 in humans. The most common models, carrying extra-copies of overlapping fragments of mouse chromosome 16 that is syntenic to human chromosome 21, are Ts2Cje, Ts1Cje and Ts1Rhr mice. In electrophysiological analyses using hippocampal slices, we found that the later phase of the depolarization during tetanic stimulation, which was regulated by GABAB receptors, was significantly smaller in Ts1Cje and Ts2Cje mice than that in WT controls but not in Ts1Rhr mice. Furthermore, isolated GABAB receptor-mediated inhibitory synaptic responses were larger in Ts1Cje mice. To our knowledge, this is the first report that directly shows the enhancement of GABAB receptor-mediated synaptic currents in Ts1Cje mice. These results suggest that GABAB receptor-mediated synaptic inhibition was enhanced in Ts1Cje and Ts2Cje mice but not in Ts1Rhr mice. The Cbr1 gene, which is present in three copies in Ts1Cje and Ts2Cje but not in Ts1Rhr, encodes carbonyl reductase that may facilitate GABAB-receptor activity through a reduction of prostaglandin E2 (PGE2). Interestingly, we found that a reduction of PGE2 and an memory impairment in Ts1Cje mice were alleviated when only Cbr1 was set back to two copies (Ts1Cje;Cbr1+/+/-). However, the GABAB receptor-dependent enhancement of synaptic inhibition in Ts1Cje was unaltered in Ts1Cje;Cbr1+/+/- mice. These results indicate that Cbr1 is one of the genes responsible for DS cognitive impairments and the gene(s) other than Cbr1, which is included in Ts1Cje but not in Ts1Rhr, is responsible for the GABAB receptor-dependent over-inhibition.
Collapse
Affiliation(s)
- Fumiko Arima-Yoshida
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Akihiro Fukushima
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Masashi Watanave
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Shizuka Kobayashi
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Masaya Usui
- Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Nobuko Mataga
- Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan. .,Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan.
| | - Toshiya Manabe
- Division of Neuronal Network, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
9
|
Wang WS, Guo CM, Sun K. Cortisol Regeneration in the Fetal Membranes, A Coincidental or Requisite Event in Human Parturition? Front Physiol 2020; 11:462. [PMID: 32523541 PMCID: PMC7261858 DOI: 10.3389/fphys.2020.00462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
The fetal membranes are equipped with high capacity of cortisol regeneration through the reductase activity of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). The expression of 11β-HSD1 in the fetal membranes is under the feedforward induction by cortisol, which is potentiated by proinflammatory cytokines. As a result, the abundance of 11β-HSD1 increases with gestational age and furthermore at parturition with an escalation of cortisol concentration in the fetal membranes. Accumulated cortisol takes parts in a number of crucial events pertinent to the onset of labor in the fetal membranes, including extracellular matrix (ECM) remodeling and stimulation of prostaglandin output. Cortisol remodels the ECM through multiple approaches including induction of collagen I, III, and IV degradation, as well as inhibition of their cross-linking. These effects of cortisol are executed through activation of the autophagy, proteasome, and matrix metalloprotease 7 pathways, as well as inhibition of the expression of cross-linking enzyme lysyl oxidase in mesenchymal cells of the membranes. With regard to prostaglandin output, cortisol not only increases prostaglandin E2 and F2α syntheses through induction of their synthesizing enzymes such as cytosolic phospholipase A2, cyclooxygenase 2, and carbonyl reductase 1 in the amnion, but also decreases their degradation through inhibition of their metabolizing enzyme 15-hydroxyprostaglandin dehydrogenase in the chorion. Taking all together, data accumulated so far denote that the feedforward cortisol regeneration by 11β-HSD1 in the fetal membranes is a requisite event in the onset of parturition, and the effects of cortisol on prostaglandin synthesis and ECM remodeling may be enhanced by proinflammatory cytokines in chorioamnionitis.
Collapse
Affiliation(s)
- Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Chun-Ming Guo
- School of Life Sciences, Yunnan University, Kunming, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
10
|
Biringer RG. The enzymology of the human prostanoid pathway. Mol Biol Rep 2020; 47:4569-4586. [PMID: 32430846 DOI: 10.1007/s11033-020-05526-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
Prostanoids are short-lived autocrine and paracrine signaling molecules involved in a wide range of biological functions. They have been shown to be intimately involved in many different disease states when their regulation becomes dysfunctional. In order to fully understand the progression of any disease state or the biological functions of the well state, a complete evaluation of the genomics, proteomics, and metabolomics of the system is necessary. This review is focused on the enzymology for the enzymes involved in the synthesis of the prostanoids (prostaglandins, prostacyclins and thromboxanes). In particular, the isolation and purification of the enzymes, their enzymatic parameters and catalytic mechanisms are presented.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
11
|
Manku G, Papadopoulos P, Boisvert A, Culty M. Cyclooxygenase 2 (COX2) expression and prostaglandin synthesis in neonatal rat testicular germ cells: Effects of acetaminophen and ibuprofen. Andrology 2019; 8:691-705. [DOI: 10.1111/andr.12727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Gurpreet Manku
- The Research Institute of the McGill University Health Centre Montreal QC Canada
- Department of Medicine McGill University Montreal QC Canada
| | - Philippos Papadopoulos
- The Research Institute of the McGill University Health Centre Montreal QC Canada
- Department of Regulatory and Quality Sciences School of Pharmacy University of Southern California Los Angeles CA USA
| | - Annie Boisvert
- The Research Institute of the McGill University Health Centre Montreal QC Canada
- Department of Medicine McGill University Montreal QC Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre Montreal QC Canada
- Department of Medicine McGill University Montreal QC Canada
- Department of Pharmacology and Pharmaceutical Sciences School of Pharmacy University of Southern California Los Angeles CA USA
| |
Collapse
|
12
|
Lu Y, Zhou Q, Lu JW, Wang WS, Sun K. Involvement of STAT3 in the synergistic induction of 11β-HSD1 by SAA1 and cortisol in human amnion fibroblasts. Am J Reprod Immunol 2019; 82:e13150. [PMID: 31131948 DOI: 10.1111/aji.13150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/01/2023] Open
Abstract
PROBLEM Cortisol, which is regenerated from biologically inactive cortisone by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in human fetal membranes, may play an important role in human parturition. Recently, we have demonstrated that human fetal membranes are capable of de novo synthesis of serum amyloid A1 (SAA1), an acute-phase protein of inflammation, and SAA1 may be engaged in multiple actions associated with human parturition. It remains to be determined whether SAA1 can interact with cortisol in the regulation of 11β-HSD1 in the fetal membranes. METHOD OF STUDY In the current study, we examined the regulation of 11β-HSD1 expression by SAA1, and the interaction between SAA1 and cortisol in the regulation of 11β-HSD1 expression in primary human amnion fibroblasts and amnion tissue. RESULTS Either SAA1 or cortisol induced 11β-HSD1 expression in a concentration-dependent manner. Combination of SAA1 and cortisol synergistically enhanced 11β-HSD1 expression. Mechanism studies revealed that SAA1 and cortisol induced the phosphorylation of the transcription factor STAT3 in a sequential order with the induction by SAA1 preceding the induction by cortisol. Furthermore, the induction of 11β-HSD1 expression by either SAA1 or cortisol or combination of SAA1 and cortisol was blocked by STAT3 inhibition with its antagonist S3I-201 or siRNA-mediated knockdown. CONCLUSION This study has demonstrated that SAA1 and cortisol can reinforce each other in the induction of 11β-HSD1 expression through sequential phosphorylation of STAT3. The synergistic enhancement of 11β-HSD1 expression by SAA1 and cortisol may lead to excessive cortisol accumulation in the fetal membranes at parturition.
Collapse
Affiliation(s)
- Yi Lu
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Qiong Zhou
- Department of Obstetrics and Gynecology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
13
|
Allen TK, Nazzal MN, Feng L, Buhimschi IA, Murtha AP. Progestins Inhibit Tumor Necrosis Factor α-Induced Matrix Metalloproteinase 9 Activity via the Glucocorticoid Receptor in Primary Amnion Epithelial Cells. Reprod Sci 2018; 26:1193-1202. [PMID: 30453830 DOI: 10.1177/1933719118811646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Progestins have been recommended for preterm birth prevention in high-risk women; however, their mechanism of action still remains an area of debate. Medroxyprogesterone acetate (MPA) has previously been shown to significantly inhibit tumor necrosis factor α (TNFα)-induced matrix metalloproteinase 9 (MMP9) messenger RNA (mRNA) expression and activity in primary amnion epithelial cells, a process that may lead to preterm premature rupture of membranes. A mechanism that explains MPA's inhibition of TNFα-induced MMP9 mRNA expression and activity in primary amnion epithelial cells is unclear since these cells lack the classic nuclear progesterone receptor but express a membrane-associated progesterone receptor-progesterone receptor membrane component 1 (PGRMC1) along with the glucocorticoid receptor (GR). Primary amnion epithelial cells harvested from healthy term pregnant women at cesarean section were treated with PGRMC1 (to knockdown PGRMC1 expression), GR (to knockdown GR expression), or control small interfering RNA (siRNA; 10 nm) for 72 hours, pretreated with ethanol or MPA (10-6 M) for 6 hours, and then stimulated with or without TNFα 10 ng/mL for 24 hours. Real-time quantitative polymerase chain reaction and gelatin zymography were used to quantify MMP9 mRNA expression and activity, respectively. Experimental groups were compared using 1-way analysis of variance. Both TNFα-induced MMP9 mRNA expression and activity were significantly inhibited by pretreatment with MPA; however, only the inhibition of TNFα-induced MMP9 activity was partially reversed with PGRMC1 siRNA. However, GR siRNA reversed both the inhibition of TNFα-induced MMP9 mRNA expression and activity by MPA. This study demonstrates that MPA mediates its anti-inflammatory effects primarily through GR and partially through PGRMC1 in primary amnion epithelial cells.
Collapse
Affiliation(s)
- Terrence K Allen
- 1 Department of Anesthesiology, Duke University Hospital, Durham, NC, USA
| | - Matthew N Nazzal
- 2 Department of Obstetrics and Gynecology, Duke University Hospital, Durham, NC, USA
| | - Liping Feng
- 2 Department of Obstetrics and Gynecology, Duke University Hospital, Durham, NC, USA
| | - Irina A Buhimschi
- 3 Perinatal Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy P Murtha
- 2 Department of Obstetrics and Gynecology, Duke University Hospital, Durham, NC, USA
| |
Collapse
|
14
|
Wang W, Chen ZJ, Myatt L, Sun K. 11β-HSD1 in Human Fetal Membranes as a Potential Therapeutic Target for Preterm Birth. Endocr Rev 2018; 39:241-260. [PMID: 29385440 DOI: 10.1210/er.2017-00188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Human parturition is a complex process involving interactions between the myometrium and signals derived from the placenta, fetal membranes, and fetus. Signals originating from fetal membranes are crucial components that trigger parturition, which is clearly illustrated by the labor-initiating consequence of membrane rupture. It has been recognized for a long time that among fetal tissues in late gestation the fetal membranes possess the highest capacity for cortisol regeneration by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). However, the exact role of this unique feature remains a mystery. Accumulating evidence indicates that this extra-adrenal source of cortisol may serve as an upstream signal for critical events in human parturition, including enhanced prostaglandin and estrogen synthesis as well as extracellular matrix remodeling. This may explain why such high capacity for cortisol regeneration develops in human fetal membranes at late gestation. Therefore, inhibition of 11β-HSD1 may provide a potential therapeutic target for prevention of preterm birth. This review summarizes the current understanding of the functional role of cortisol regeneration by 11β-HSD1 in human fetal membranes.
Collapse
Affiliation(s)
- Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Weathering the storm; a review of pre-pregnancy stress and risk of spontaneous abortion. Psychoneuroendocrinology 2018; 92:142-154. [PMID: 29628283 DOI: 10.1016/j.psyneuen.2018.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 02/01/2018] [Accepted: 03/01/2018] [Indexed: 01/01/2023]
Abstract
The Weathering Effect is a theory that links stress exposure, over the life-course, with racial disparities in reproductive outcomes, through the effects of social adversity on a woman's body. The concept of maternal "weathering" captures cumulative somatic and psychological adversities that can exacerbate the effects of aging. Much of the evidence for weathering comes from observational studies linking self-report measures with reproductive outcomes. The purpose of this review is to explore biological mechanisms that underlie these observations. We focus on spontaneous abortion because this event is understudied despite evidence of racial disparities in this outcome. Spontaneous abortion is the most common pregnancy failure, and it happens early in pregnancy. Early pregnancy is a time most susceptible to the harmful effects of immune dysregulation that may, in part, result from adversities experienced before pregnancy begins. In exploring these mechanisms, we draw on well-defined signaling processes observed in the stressor-depression relationship. Pro-inflammatory dysregulation, for example, has particular relevance to immunological control occurring early in pregnancy. Early pregnancy immunologic changes affect the trajectories of pregnancy via control of trophoblastic invasion. Within the first few weeks of pregnancy, uterine derived cytokines operate within cytokine networks and play a critical role in this invasion. Programming for pro-inflammatory dysregulation can occur before conception. This dysregulation, brought into early pregnancy, has implications for viability and success of the index pregnancy. These patterns suggest early pregnancy health is susceptible to stress processing pathways that influence this immunologic control in the first six to eight weeks of pregnancy. In this review, we discuss the known mediating role of immune factors in the stressor-depression relationship. We also discuss how adversity experienced before the index pregnancy, or "pre-pregnancy" may influence these pathways, and subsequently influence early pregnancy health. There is a need to understand adversity, experienced before pregnancy, and mechanisms driving the effects of these experiences on pregnancy outcomes. This approach is a useful entry point for understanding racial inequities in pregnancy health through an understanding of differences in exposures to adversity. We hypothesize that spontaneous abortion involves cyclical changes within a woman's reproductive tract in response to stressors that are established well before a woman enters into pregnancy. Furthermore, we propose mechanisms that potentially drive weathering processes relevant to reproductive disparities. We also examine what is known about pre-pregnancy stress exposures associated with race, inequity, and adversity, and their potential impact on neuroendocrine and immune changes affecting early pregnancy risk.
Collapse
|
16
|
Lu J, Wang W, Mi Y, Zhang C, Ying H, Wang L, Wang Y, Myatt L, Sun K. AKAP95-mediated nuclear anchoring of PKA mediates cortisol-induced PTGS2 expression in human amnion fibroblasts. Sci Signal 2017; 10:10/506/eaac6160. [PMID: 29162743 DOI: 10.1126/scisignal.aac6160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphorylation of the transcription factors cyclic adenosine monophosphate response element-binding protein (CREB) and signal transducer and activator of transcription 3 (STAT3) by protein kinase A (PKA) is required for the cortisol-induced production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in human amnion fibroblasts, which critically mediates human parturition (labor). We found that PKA was confined in the nucleus by A-kinase-anchoring protein 95 (AKAP95) in amnion fibroblasts and that this localization was key to the cortisol-induced expression of PTGS2, the gene encoding COX-2. Cortisol increased the abundance of nuclear PKA by stimulating the expression of the gene encoding AKAP95. Knockdown of AKAP95 not only reduced the amounts of nuclear PKA and phosphorylated CREB but also attenuated the induction of PTGS2 expression in primary human amnion fibroblasts treated with cortisol, whereas the phosphorylation of STAT3 in response to cortisol was not affected. The abundances of AKAP95, phosphorylated CREB, and COX-2 were markedly increased in human amnion tissue after labor compared to those in amnion tissues from cesarean sections without labor. These results highlight an essential role for PKA that is anchored in the nucleus by AKAP95 in the phosphorylation of CREB and the consequent induction of COX-2 expression by cortisol in amnion fibroblasts, which may be important in human parturition.
Collapse
Affiliation(s)
- Jiangwen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Yabing Mi
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P. R. China
| | - Luyao Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P. R. China
| | - Yawei Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P. R. China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P. R. China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P. R. China
| |
Collapse
|
17
|
Morgan RA, Beck KR, Nixon M, Homer NZM, Crawford AA, Melchers D, Houtman R, Meijer OC, Stomby A, Anderson AJ, Upreti R, Stimson RH, Olsson T, Michoel T, Cohain A, Ruusalepp A, Schadt EE, Björkegren JLM, Andrew R, Kenyon CJ, Hadoke PWF, Odermatt A, Keen JA, Walker BR. Carbonyl reductase 1 catalyzes 20β-reduction of glucocorticoids, modulating receptor activation and metabolic complications of obesity. Sci Rep 2017; 7:10633. [PMID: 28878267 PMCID: PMC5587574 DOI: 10.1038/s41598-017-10410-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
Carbonyl Reductase 1 (CBR1) is a ubiquitously expressed cytosolic enzyme important in exogenous drug metabolism but the physiological function of which is unknown. Here, we describe a role for CBR1 in metabolism of glucocorticoids. CBR1 catalyzes the NADPH- dependent production of 20β-dihydrocortisol (20β-DHF) from cortisol. CBR1 provides the major route of cortisol metabolism in horses and is up-regulated in adipose tissue in obesity in horses, humans and mice. We demonstrate that 20β-DHF is a weak endogenous agonist of the human glucocorticoid receptor (GR). Pharmacological inhibition of CBR1 in diet-induced obesity in mice results in more marked glucose intolerance with evidence for enhanced hepatic GR signaling. These findings suggest that CBR1 generating 20β-dihydrocortisol is a novel pathway modulating GR activation and providing enzymatic protection against excessive GR activation in obesity.
Collapse
Affiliation(s)
- Ruth A Morgan
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK. .,Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - Katharina R Beck
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Mark Nixon
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Natalie Z M Homer
- Mass Spectrometry Core Laboratory, Wellcome Trust Clinical Research Facility, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew A Crawford
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - René Houtman
- PamGene International, Den Bosch, The Netherlands
| | - Onno C Meijer
- Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Stomby
- Department of Public Health and Clinical Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Anna J Anderson
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rita Upreti
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Tom Michoel
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ariella Cohain
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arno Ruusalepp
- Department of Physiology, Institute of Biomedicine and Translation Medicine, University of Tartu, Tartu, Estonia.,Clinical Gene Networks AB, Stockholm, Sweden.,Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Physiology, Institute of Biomedicine and Translation Medicine, University of Tartu, Tartu, Estonia.,Clinical Gene Networks AB, Stockholm, Sweden.,Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia.,Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ruth Andrew
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Mass Spectrometry Core Laboratory, Wellcome Trust Clinical Research Facility, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher J Kenyon
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Patrick W F Hadoke
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - John A Keen
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Brian R Walker
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Mass Spectrometry Core Laboratory, Wellcome Trust Clinical Research Facility, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Zhang AL, Sun XY, Yin Q, Zeng JH, Zhang Z, Li JQ, Zhang H. Functional characterization of the promoter of carbonyl reductase 1 gene in porcine endometrial cells. J Zhejiang Univ Sci B 2017; 18:626-634. [PMID: 28681587 DOI: 10.1631/jzus.b1600225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prostaglandins (PGs) play a critical role in porcine reproduction, of which prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) exert antiluteolytic and luteolysis actions, respectively. As a rate-limiting enzyme, carbonyl reductase 1 (CBR1) catalyzes the conversion of PGE2 to PGF2α. A high ratio of PGE2:PGF2α is beneficial to the establishment and maintenance of porcine pregnancy. PG is essential for the establishment of pregnancy which resembles the proinflammatory response and nuclear factor κB (NF-κB) is involved in the process. Bioinformatic analysis has shown that NF-κB is a possible factor bound to two cis-regulatory elements in CBR1 promoter. In this study, we cloned the 2997 bp (-2875/+122) of the promoter, and constructed six 5'-deleted dual-luciferase reporter recombinant vectors. In endometrial cells, the region of P2 (-1640/+7) exhibited the greatest transcriptional activity at driving luciferase expression, but not significantly different from that of P1 (-2089/+7). The activity of P1, P2, and P3 (-1019/+7) was highly significantly higher than that of others (P<0.01), suggesting that two positive regulatory elements were likely present in the regions of -1640/-1019 and -1019/-647. The results also showed that the -1640/-647 region was indispensable for the promoter. The results of chromatin immunoprecipitation (ChIP) demonstrated that the NF-κB subunit p65 binds to one site around -1545/-1531. Using four reference genes, we found that the over-expression of p65 enhanced the expression of CBR1 (P<0.05) in porcine endometrial epithelial cells, while knockdown of the p65 did not down-regulate the CBR1 expression. These results indicated that NF-κB (p65) could bind to the special element of CBR1 gene promoter in porcine endometrial epithelial cells in vitro. The binding site of NF-κB was a positive regulator for the CBR1 gene promoter, but was not necessary for the basic expression.
Collapse
Affiliation(s)
- Ai-Ling Zhang
- Guangdong Development Center of Applied Ecology and Ecological Engineering in Universities, Biology and Food Engineering Institute, Guangdong University of Education, Guangzhou 510310, China
| | - Xian-Yue Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qi Yin
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Hua Zeng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Qi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Mi Y, Wang W, Zhang C, Liu C, Lu J, Li W, Zuo R, Myatt L, Sun K. Autophagic Degradation of Collagen 1A1 by Cortisol in Human Amnion Fibroblasts. Endocrinology 2017; 158:1005-1014. [PMID: 28323983 DOI: 10.1210/en.2016-1829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022]
Abstract
Rupture of fetal membranes can initiate parturition at both term and preterm. Collagen is the crucial factor determining the tensile strength of the membranes. Toward the end of gestation, a feed-forward regeneration of cortisol via 11β-hydroxysteroid dehydrogenase 1 exists in fetal membranes. It remains undetermined whether cortisol contributes to collagen reduction in fetal membranes. In this study, we have examined whether cortisol accumulation is a causative factor for collagen reduction in human amnion fibroblasts, the major source of collagens in the membranes. Cortisol had no effect on collagen 1A1 (COL1A1) and 1A2 (COL1A2) messenger RNA (mRNA) abundance but decreased their protein abundance. The latter effect was affected by neither mRNA transcription inhibitor nor protein translation inhibitor. Mechanistic studies revealed that the reduction in COL1A1 but not COL1A2 protein by cortisol was blocked by lysosome inhibitor chloroquine or small interfering RNA (siRNA)-mediated knockdown of autophagy-related protein 7, an essential protein for autophagy, whereas the proteasome inhibitors MG132 and bortezomib were ineffective. Further analysis showed that cortisol dose dependently increased the ratio of LC3II/LC3I, a marker of lysosome activation, an effect blocked by the glucocorticoid receptor (GR) antagonist RU486 and siRNA-mediated knockdown of GR. Consistently, cortisol decreased COL1A1 and COL1A2 protein abundance in amnion tissue explants, and decreased COL1A1 and COL1A2 protein abundance was observed at parturition in the amnion tissue. Conclusively, cortisol regeneration in fetal membranes may contribute to rupture of fetal membranes at parturition by reducing collagen protein abundance. Lysosome-mediated autophagy accounts for the reduction in COL1A1 by cortisol, but the mechanism underlying the reduction in COL1A2 awaits further investigation.
Collapse
Affiliation(s)
- Yabing Mi
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Chao Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Jiangwen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Wenjiao Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Rujuan Zuo
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R. China
| |
Collapse
|
20
|
Chen Q, Li C, Gong Z, Chan ECY, Snyder SA, Lam SH. Common deregulated gene expression profiles and morphological changes in developing zebrafish larvae exposed to environmental-relevant high to low concentrations of glucocorticoids. CHEMOSPHERE 2017; 172:429-439. [PMID: 28092764 DOI: 10.1016/j.chemosphere.2017.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Synthetic glucocorticoids have been detected in environmental waters and their biological potency have raised concerns of their impact on aquatic vertebrates especially fish. In this study, developing zebrafish larvae exposed to representative glucocorticoids (dexamethasone, prednisolone and triamcinolone) at 50 pM to 50 nM from 3 h post-fertilisation to 5 days post-fertilisation were investigated. Microarray analysis identified 1255, 1531, and 2380 gene probes, which correspondingly mapped to 660, 882 and 1238 human/rodent homologs, as deregulated by dexamethasone, prednisolone and triamcinolone, respectively. A total of 248 gene probes which mapped to 159 human/rodent homologs were commonly deregulated by the three glucocorticoids. These homologs were associated with over 20 molecular functions from cell cycle to cellular metabolisms, and were involved in the development and function of connective tissue, nervous, haematological, and digestive systems. Glucocorticoid receptor signalling, NRF2-mediated oxidative stress response and RAR signalling were among the top perturbed canonical pathways. Morphological analyses using four transgenic zebrafish lines revealed that the hepatic and endothelial-vascular systems were affected by all three glucocorticoids while nervous, pancreatic and myeloid cell systems were affected by one of them. Quantitative real-time PCR detected significant change in the expression of seven genes at 50 pM of all three glucocorticoids, a concentration comparable to total glucocorticoids reported in environmental waters. Three genes (cry2b, fbxo32, and klhl38b) responded robustly to all glucocorticoid concentrations tested. The common deregulated genes with the associated biological processes and morphological changes can be used for biological inference of glucocorticoid exposure in fish for future studies.
Collapse
Affiliation(s)
- Qiyu Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Caixia Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhiyuan Gong
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Shane A Snyder
- University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Siew Hong Lam
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
21
|
Abstract
Rupture of fetal membranes (ROM) can initiate parturition at both term and preterm birth. Apoptosis of the amnion epithelium plays a key role in structural remodeling of the membranes preceding ROM. However, the causative factors for apoptosis remain unidentified. Toward the end of gestation, a feed-forward regeneration of cortisol via 11β-hydroxysteroid dehydrogenase 1 exists in the fetal membranes. Here, we have examined whether cortisol accumulation is a causative factor for amnion cells apoptosis. By using primary human amnion epithelial and fibroblast cells, we demonstrated cortisol induced apoptosis specifically in epithelial cells but not in fibroblasts via reciprocal regulation of tissue-type plasminogen activator (tPA)/plasmin system. Cortisol increased PLAT expression, the gene encoding tPA, via glucocorticoid receptor binding to a glucocorticoid response element in PLAT promoter, thereby increasing plasmin activity in epithelial cells. Further study revealed that a Fas-mediated extrinsic apoptotic pathway was involved in the induction of epithelial cells apoptosis by cortisol, which was blocked by inhibiting either tPA or plasmin. Consistently, cortisol increased cleaved-caspase-3 and tPA abundance in amnion tissue explants. Moreover, the abundance of cortisol, cleaved-caspase-3, and tPA was significantly increased in amnion tissue after labor-initiated spontaneous rupture of membranes. In conclusion, local accumulation of cortisol is a causative factor for amnion epithelial apoptosis via activation of tPA/plasmin system toward the end of gestation. This may contribute to the ROM at both term and preterm birth.
Collapse
Affiliation(s)
- Wangsheng Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, People's Republic of China
| | - Chao Liu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, People's Republic of China
| | - Kang Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, People's Republic of China
| |
Collapse
|
22
|
Menon R, Bonney EA, Condon J, Mesiano S, Taylor RN. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum Reprod Update 2016; 22:535-60. [PMID: 27363410 DOI: 10.1093/humupd/dmw022] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
The signals and mechanisms that synchronize the timing of human parturition remain a mystery and a better understanding of these processes is essential to avert adverse pregnancy outcomes. Although our insights into human labor initiation have been informed by studies in animal models, the timing of parturition relative to fetal maturation varies among viviparous species, indicative of phylogenetically different clocks and alarms; but what is clear is that important common pathways must converge to control the birth process. For example, in all species, parturition involves the transition of the myometrium from a relaxed to a highly excitable state, where the muscle rhythmically and forcefully contracts, softening the cervical extracellular matrix to allow distensibility and dilatation and thus a shearing of the fetal membranes to facilitate their rupture. We review a number of theories promulgated to explain how a variety of different timing mechanisms, including fetal membrane cell senescence, circadian endocrine clocks, and inflammatory and mechanical factors, are coordinated as initiators and effectors of parturition. Many of these factors have been independently described with a focus on specific tissue compartments.In this review, we put forth the core hypothesis that fetal membrane (amnion and chorion) senescence is the initiator of a coordinated, redundant signal cascade leading to parturition. Whether modified by oxidative stress or other factors, this process constitutes a counting device, i.e. a clock, that measures maturation of the fetal organ systems and the production of hormones and other soluble mediators (including alarmins) and that promotes inflammation and orchestrates an immune cascade to propagate signals across different uterine compartments. This mechanism in turn sensitizes decidual responsiveness and eventually promotes functional progesterone withdrawal in the myometrium, leading to increased myometrial cell contraction and the triggering of parturition. Linkage of these processes allows convergence and integration of the gestational clocks and alarms, prompting a timely and safe birth. In summary, we provide a comprehensive synthesis of the mediators that contribute to the timing of human labor. Integrating these concepts will provide a better understanding of human parturition and ultimately improve pregnancy outcomes.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., MRB, Room 11.138, Galveston, TX 77555-1062, USA
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, 792 College Parkway, Fanny Allen Campus, Suite 101, Colchester, Burlington, VT 05446, USA
| | - Jennifer Condon
- Department of Obstetrics and Gynecology, Wayne State University, Perinatal Research Branch, NICHD, Detroit, MI 48201, USA
| | - Sam Mesiano
- Department of Reproductive Biology and Obstetrics and Gynecology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
23
|
Zannas AS, Chrousos GP. Glucocorticoid signaling drives epigenetic and transcription factors to induce key regulators of human parturition. Sci Signal 2015; 8:fs19. [PMID: 26508787 DOI: 10.1126/scisignal.aad3022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Glucocorticoids are thought to play an important role in parturition. Two recent articles by Di Stefano et al. in the Archives and Wang et al. in this issue of Science Signaling reveal novel mechanisms by which glucocorticoid signaling can drive the epigenetic and transcriptional machinery to induce molecules involved in parturition, including the neuropeptide corticotropin-releasing hormone (CRH), the enzyme cyclooxygenase-2 (COX-2), and the autacoid hormone prostaglandin E2. These findings contribute to our understanding of how glucocorticoids may regulate human parturition.
Collapse
Affiliation(s)
- Anthony S Zannas
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany. Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - George P Chrousos
- First Department of Pediatrics, University of Athens Medical School, Athens 115 28, Greece.
| |
Collapse
|
24
|
Wang ZJ, Zhang XQ, Cui XY, Cui SY, Yu B, Sheng ZF, Li SJ, Cao Q, Huang YL, Xu YP, Zhang YH. Glucocorticoid receptors in the locus coeruleus mediate sleep disorders caused by repeated corticosterone treatment. Sci Rep 2015; 5:9442. [PMID: 25801728 PMCID: PMC4371174 DOI: 10.1038/srep09442] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/05/2015] [Indexed: 12/29/2022] Open
Abstract
Stress induced constant increase of cortisol level may lead to sleep disorder, but the mechanism remains unclear. Here we described a novel model to investigate stress mimicked sleep disorders induced by repetitive administration of corticosterone (CORT). After 7 days treatment of CORT, rats showed significant sleep disturbance, meanwhile, the glucocorticoid receptor (GR) level was notably lowered in locus coeruleus (LC). We further discovered the activation of noradrenergic neuron in LC, the suppression of GABAergic neuron in ventrolateral preoptic area (VLPO), the remarkable elevation of norepinephrine in LC, VLPO and hypothalamus, as well as increase of tyrosine hydroxylase in LC and decrease of glutamic acid decarboxylase in VLPO after CORT treatment. Microinjection of GR antagonist RU486 into LC reversed the CORT-induced sleep changes. These results suggest that GR in LC may play a key role in stress-related sleep disorders and support the hypothesis that repeated CORT treatment may decrease GR levels and induce the activation of noradrenergic neurons in LC, consequently inhibit GABAergic neurons in VLPO and result in sleep disorders. Our findings provide novel insights into the effect of stress-inducing agent CORT on sleep and GRs' role in sleep regulation.
Collapse
Affiliation(s)
- Zi-Jun Wang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Xue-Qiong Zhang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Xiang-Yu Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Su-Ying Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Bin Yu
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Zhao-Fu Sheng
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Sheng-Jie Li
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Qing Cao
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Yuan-Li Huang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Ya-Ping Xu
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| | - Yong-He Zhang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing 100191, China
| |
Collapse
|
25
|
Gram A, Fox B, Büchler U, Boos A, Hoffmann B, Kowalewski MP. Canine placental prostaglandin E2 synthase: expression, localization, and biological functions in providing substrates for prepartum PGF2alpha synthesis. Biol Reprod 2014; 91:154. [PMID: 25297547 DOI: 10.1095/biolreprod.114.122929] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The prepartum output of PGF2alpha in the bitch is associated with increased placental PGE2-synthase (PTGES) mRNA levels. Contrasting with this is a decreased expression of PGF2alpha-synthase (PGFS/AKR1C3) in uteroplacental compartments during prepartum luteolysis, suggesting an involvement of alternative synthetic pathways in PGF2alpha synthesis, for example, conversion of PGE2 to PGF2alpha. However, because the expression and possible functions of the respective PTGES proteins remained unknown, no further conclusion could be drawn. Therefore, a canine-specific PTGES antibody was generated and used to investigate the expression, cellular localization, and biochemical activities of canine uteroplacental PTGES throughout pregnancy and at prepartum luteolysis. Additionally, the biochemical activities of these tissues involved in the conversion of PGE2 to PGF2alpha were investigated. The endometrial PTGES was localized in the uterine surface epithelium at preimplantation and in superficial and deep uterine glands, endothelial cells, and myometrium throughout pregnancy and at parturition. Placental signals were mostly in the trophoblast. The biochemical properties of recombinant PTGES protein were confirmed. Additionally, expression of two PGE2-receptors, PTGER2/EP2 and PTGER4/EP4, revealed their decreasing expression during luteolysis. In contrast, the uteroplacental expression of prostaglandin transporter (PGT) was strongly elevated prior to parturition. These localization patterns resembled that of PTGES. The increased expression of PTGES and PGT at parturition, together with the accompanying decreased levels of PGE2-receptors and the capability of canine uterine and placental homogenates to take part in the conversion of PGE2 to PGF2alpha, as found in this study, suggest that PGE2 could be used locally as a substrate for prepartum PGF2alpha synthesis in the dog.
Collapse
Affiliation(s)
- Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Fox
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Urs Büchler
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Bernd Hoffmann
- Clinic for Obstetrics, Gynecology and Andrology of Large- and Small Animals, Justus-Liebig University, Giessen, Germany
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|