1
|
Rajkumar DS, Padmanaban R. Impact of bisphenol A and analogues eluted from resin-based dental materials on cellular and molecular processes: An insight on underlying toxicity mechanisms. J Appl Toxicol 2024. [PMID: 38711185 DOI: 10.1002/jat.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
Dental resin systems, used for artificial replacement of teeth and their surrounding structures, have gained popularity due to the Food and Drug Administration's (FDA) recommendation to reduce dental amalgam use in high-risk populations and medical circumstances. Bisphenol A (BPA), an endocrine-disrupting chemical, is an essential monomer within dental resin in the form of various analogues and derivatives. Leaching of monomers from resins results in toxicity, affecting hormone metabolism and causing long-term health risks. Understanding cellular-level toxicity profiles of bisphenol derivatives is crucial for conducting toxicity studies in in vivo models. This review provides insights into the unique expression patterns of BPA and its analogues among different cell types and their underlying toxicity mechanisms. Lack of a consistent cell line for toxic effects necessitates exploring various cell lines. Among the individual monomers, BisGMA was found to be the most toxic; however, BisDMA and BADGE generates BPA endogenously and found to elicit severe adverse reactions. In correlating in vitro data with in vivo findings, further research is necessary to classify the elutes as human carcinogens or xenoestrogens. Though the basic mechanisms underlying toxicity were believed to be the production of intracellular reactive oxygen species and a corresponding decline in glutathione levels, several underlying mechanisms were identified to stimulate cellular responses at low concentrations. The review calls for further research to assess the synergistic interactions of co-monomers and other components in dental resins. The review emphasizes the clinical relevance of these findings, highlighting the necessity for safer dental materials and underscoring the potential health risks associated with current dental resin systems.
Collapse
Affiliation(s)
- Divya Sangeetha Rajkumar
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
2
|
Rannaud-Bartaire P, Fini JB. [Disruptors of thyroid hormones: Which consequences for human health and environment?]. Biol Aujourdhui 2023; 217:219-231. [PMID: 38018950 DOI: 10.1051/jbio/2023036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 11/30/2023]
Abstract
Endocrine disruptors (EDs) of chemical origin are the subject of numerous studies, some of which have led to measures aimed at limiting their use and their impact on the environment and human health. Dozens of hormones have been described and are common to all vertebrates (some chemically related messengers have also been identified in invertebrates), with variable roles that are not always known. The effects of endocrine disruptors therefore potentially concern all animal species via all endocrine axes. These effects are added to the other parameters of the exposome, leading to strong, multiple and complex adaptive pressures. The effects of EDs on reproductive and thyroid pathways have been among the most extensively studied over the last 30 years, in a large number of species. The study of the effects of EDs on thyroid pathways and brain development goes hand in hand with increasing knowledge of 1) the different roles of thyroid hormones at cellular or tissue level (particularly developing brain tissue) in many species, 2) other hormonal pathways and 3) epigenetic interactions. If we want to understand how EDs affect living organisms, we need to integrate results from complementary scientific fields within an integrated, multi-model approach (the so-called translational approach). In the present review article, we aim at reporting recent discoveries and discuss prospects for action in the fields of medicine and research. We also want to highlight the need for an integrated, multi-disciplinary approach to studying impacts and taking appropriate action.
Collapse
Affiliation(s)
- Patricia Rannaud-Bartaire
- Laboratoire PHYMA, MNHN, UMR 7221, 7 rue Cuvier, 75005 Paris, France - Hôpital Saint-Vincent-De-Paul, GHICL, boulevard de Belfort, 59000 Lille, France
| | | |
Collapse
|
3
|
Boyer E, Monfort C, Lainé F, Gaudreau É, Tillaut H, Bonnaure-Mallet M, Cordier S, Meuric V, Chevrier C. Prenatal exposure to persistent organic pollutants and molar-incisor hypomineralization among 12-year-old children in the French mother-child cohort PELAGIE. ENVIRONMENTAL RESEARCH 2023; 231:116230. [PMID: 37236387 DOI: 10.1016/j.envres.2023.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Exceptional episodes of exposure to high levels of persistent organic pollutants have already been associated with developmental defects of enamel among children, but knowledge is still scarce concerning the contribution of background levels of environmental contamination. METHODS Children of the French PELAGIE mother-child cohort were followed from birth, with collection of medical data and cord blood samples that were used to measure polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), and perfluorinated alkyl substances (PFASs). At 12 years of age, molar-incisor hypomineralization (MIH) and other enamel defects (EDs) were recorded for 498 children. Associations were studied using logistic regression models adjusted for potential prenatal confounders. RESULTS An increasing log-concentration of β-HCH was associated with a reduced risk of MIH and EDs (OR = 0.55; 95% CI, 0.32-0.95, and OR = 0.65; 95% CI, 0.43-0.98, respectively). Among girls, intermediate levels of p,p'-DDE were associated with a reduced risk of MIH. Among boys, we observed an increased risk of EDs in association with intermediate levels of PCB 138, PCB 153, PCB 187, and an increased risk of MIH with intermediate levels of PFOA and PFOS. CONCLUSIONS Two OCs were associated with a reduced risk of dental defects, whereas the associations between PCBs and PFASs and EDs or MIH were generally close to null or sex-specific, with an increased risk of dental defects in boys. These results suggest that POPs could impact amelogenesis. Replication of this study is required and the possible underlying mechanisms need to be explored.
Collapse
Affiliation(s)
- Emile Boyer
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolism and Cancer), F-35000, Rennes, France.
| | - Christine Monfort
- Univ Rennes, INSERM, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | | | - Éric Gaudreau
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec (INSPQ), Québec, Québec, Canada
| | - Hélène Tillaut
- Univ Rennes, INSERM, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Martine Bonnaure-Mallet
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolism and Cancer), F-35000, Rennes, France
| | - Sylvaine Cordier
- Univ Rennes, INSERM, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Vincent Meuric
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolism and Cancer), F-35000, Rennes, France
| | - Cécile Chevrier
- Univ Rennes, INSERM, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
4
|
Juárez-López MLA, Salazar-Treto LV, Hernández-Monjaraz B, Molina-Frechero N. Etiological Factors of Molar Incisor Hypomineralization: A Systematic Review and Meta-Analysis. Dent J (Basel) 2023; 11:dj11050111. [PMID: 37232762 DOI: 10.3390/dj11050111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Molar incisor hypomineralization (MIH) is a defect of the dental enamel that predominantly affects first molars and permanent incisors. Identifying the significant risk factors associated with MIH occurrence is essential for the implementation of prevention strategies. The purpose of this systematic review was to determine the etiological factors associated with MIH. A literature search was carried out from six databases until 2022; it covered pre-, peri-, and postnatal etiological factors. The PECOS strategy, PRISMA criteria, and the Newcastle-Ottawa scale were used, and 40 publications were selected for qualitative analysis as well as 25 for meta-analysis. Our results revealed an association between a history of illness during pregnancy (OR 4.03 (95% CI, 1.33-12.16), p = 0.01) and low weight at birth (OR 1.23 (95% CI, 1.10-1.38), p = 0.0005). Furthermore, general illness in childhood (OR 4.06 (95% CI, 2.03-8.11), p = 0.0001), antibiotic use (OR 1.76 (95% CI, 1.31-2.37), p = 0.0002), and high fever during early childhood (OR 1.48 (95% CI, 1.18-1.84), p = 0.0005) were associated with MIH. In conclusion, the etiology of MIH was found to be multifactorial. Children with health disorders in the first years of life and those whose mothers underwent illnesses during pregnancy might be more susceptible to MIH.
Collapse
Affiliation(s)
- María Lilia A Juárez-López
- Postgraduate and Research Unit, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
- Pediatric Dentistry Deparment, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Leslie Vanessa Salazar-Treto
- Pediatric Dentistry Deparment, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Beatriz Hernández-Monjaraz
- Postgraduate and Research Unit, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
- Pediatric Dentistry Deparment, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | | |
Collapse
|
5
|
Bui AT, Lukashova L, Verdelis K, Vasquez B, Bhogadi L, Gabe CM, Margolis HC, Beniash E. Identification of stages of amelogenesis in the continuously growing mandiblular incisor of C57BL/6J male mice throughout life using molar teeth as landmarks. Front Physiol 2023; 14:1144712. [PMID: 36846326 PMCID: PMC9950101 DOI: 10.3389/fphys.2023.1144712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Continuously growing mouse incisors are widely used to study amelogenesis, since all stages of this process (i.e., secretory, transition and maturation) are present in a spatially determined sequence at any given time. To study biological changes associated with enamel formation, it is important to develop reliable methods for collecting ameloblasts, the cells that regulate enamel formation, from different stages of amelogenesis. Micro-dissection, the key method for collecting distinct ameloblast populations from mouse incisors, relies on positions of molar teeth as landmarks for identifying critical stages of amelogenesis. However, the positions of mandibular incisors and their spatial relationships with molars change with age. Our goal was to identify with high precision these relationships throughout skeletal growth and in older, skeletally mature animals. Mandibles from 2, 4, 8, 12, 16, and 24-week-old, and 18-month-old C57BL/6J male mice, were collected and studied using micro-CT and histology to obtain incisal enamel mineralization profiles and to identify corresponding changes in ameloblast morphology during amelogenesis with respect to positions of molars. As reported here, we have found that throughout active skeletal growth (weeks 2-16) the apices of incisors and the onset of enamel mineralization move distally relative to molar teeth. The position of the transition stage also moves distally. To test the accuracy of the landmarks, we micro-dissected enamel epithelium from mandibular incisors of 12-week-old animals into five segments, including 1) secretory, 2) late secretory - transition - early maturation, 3) early maturation, 4) mid-maturation and 5) late maturation. Isolated segments were pooled and subjected to expression analyses of genes encoding key enamel matrix proteins (EMPs), Amelx, Enam, and Odam, using RT-qPCR. Amelx and Enam were strongly expressed during the secretory stage (segment 1), while their expression diminished during transition (segment 2) and ceased in maturation (segments 3, 4, and 5). In contrast, Odam's expression was very low during secretion and increased dramatically throughout transition and maturation stages. These expression profiles are consistent with the consensus understanding of enamel matrix proteins expression. Overall, our results demonstrate the high accuracy of our landmarking method and emphasize the importance of selecting age-appropriate landmarks for studies of amelogenesis in mouse incisors.
Collapse
Affiliation(s)
- Ai Thu Bui
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States,Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States
| | - Lyudmila Lukashova
- Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States,Department of Endodontics, UPSDM, Pittsburgh, PA, United States
| | - Brent Vasquez
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States
| | - Lasya Bhogadi
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States
| | - Claire M. Gabe
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States,Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States
| | - Henry C. Margolis
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States,Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States,Department of Periodontics and Preventive Dentistry, UPSDM, Pittsburgh, PA, United States
| | - Elia Beniash
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States,Center for Craniofacial Regeneration, UPSDM, Pittsburgh, PA, United States,*Correspondence: Elia Beniash,
| |
Collapse
|
6
|
González-Casamada C, Nevarez-Rascón M, Nevarez-Rascón A, González-Galván M, Isiordia-Espinoza MA, Bologna-Molina R, Sánchez-Pérez L, Molina-Frechero N. Single Nucleotide Polymorphisms and Dental Fluorosis: A Systematic Review. Dent J (Basel) 2022; 10:211. [PMID: 36354656 PMCID: PMC9689045 DOI: 10.3390/dj10110211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 12/01/2023] Open
Abstract
Genetic factors contribute to susceptibility and resistance to fluoride exposure. The aim of this systematic review was to identify alleles/genotypes of single nucleotide polymorphisms (SNPs) associated with dental fluorosis (DF) and to identify them as protective or risk factors. PubMed, ScienceDirect, Cochrane Library, Scopus and Web of Science were searched for articles; the last search was performed in August 2022. Human studies that analyzed the relationship between SNPs and DF published in English were included; systematic reviews and meta-analyses were excluded. Methodological quality was graded using the Joanna Briggs Institute checklist and risk of bias was assessed using the Cochrane Collaboration's tool. Eighteen articles were included, 44% of which showed high methodological quality and data from 5,625 participants aged 6 to 75 years were analyzed. The SNPs COL1A2, ESR2, DLX1, DLX2, AMBN, TUFT1, TFIP11, miRNA17, and SOD2 were considered risk factors, and ESR1, MMP20, and ENAM were considered protective factors. In conclusion, there are alleles and genotypes of different single nucleotide polymorphisms involved in increasing or decreasing the risk of developing dental fluorosis.
Collapse
Affiliation(s)
- Carlos González-Casamada
- Health Care Department, Autonomous Metropolitan University Xochimilco, Mexico City 04960, Mexico
| | | | | | | | - Mario Alberto Isiordia-Espinoza
- Institute of Research in Medical Sciences, Department of Clinics, Los Altos University Center, University of Guadalajara, Tepatitlan de Morelos 47650, Jalisco, Mexico
| | - Ronell Bologna-Molina
- Research Department, School of Dentistry, Juarez University of the Durango State, Durango 34000, Mexico
- Molecular Pathology Area, School of Dentistry, University of the Republic, Montevideo 11200, Uruguay
| | - Leonor Sánchez-Pérez
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco, Mexico City 04960, Mexico
| | - Nelly Molina-Frechero
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
7
|
Rannaud-Bartaire P. Perturbateurs endocriniens et origine environnementale des maladies : intégrer ces données pour un nouveau modèle d’accompagnement des patients vers la santé environnementale. Rech Soins Infirm 2022; 149:7-18. [DOI: 10.3917/rsi.149.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Bui AT, Houari S, Loiodice S, Bazin D, Sadoine J, Roubier N, Vennat E, Tran TT, Berdal A, Ricort JM, Mhaouty-Kodja S, Babajko S. Use of Dental Defects Associated with Low-Dose di(2-Ethylhexyl)Phthalate as an Early Marker of Exposure to Environmental Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:67003. [PMID: 35730944 PMCID: PMC9215264 DOI: 10.1289/ehp10208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Markers of exposure to environmental toxicants are urgently needed. Tooth enamel, with its unique properties, is able to record certain environmental conditions during its formation. Enamel formation and quality are dependent on hormonal regulation and environmental conditions, including exposure to endocrine disrupting chemicals (EDCs). Among EDCs, phthalates such as di-(2-ethylhexyl) phthalate (DEHP) raise concerns about their contribution to various pathologies, including those of mineralized tissues. OBJECTIVES The effects of exposure to low-doses of DEHP on the continually growing incisors were analyzed in mouse males and females. METHODS Adult male and female C57BL/6J mice were exposed daily to 0.5, 5, and 50μg/kg per day DEHP for 12 wk and their incisors clinically examined. Incisors of males were further analyzed by scanning electron microscopy (SEM), micro X-ray computed tomography (micro-computed tomography; μCT), and nanoindentation for the enamel, histology and real-time quantitative polymerase chain reaction (RT-qPCR) for the dental epithelium. RESULTS Clinical macroscopic observations of incisors showed various dose-dependent dental lesions such as opacities, scratches, and enamel breakdown in 30.5% of males (10 of 34 total incisors across three independent experiments), and 15.6% of females (7 of 46 incisors) at the highest dose, among which 18.1% (6 of 34 total incisors across three independent experiments) and 8.9% (4 of 46 incisors), respectively, had broken incisors. SEM showed an altered enamel surface and ultrastructure in DEHP-exposed male mice. Further characterization of the enamel defects in males by μCT showed a lower mineral density than controls, and nanoindentation showed a lower enamel hardness during all stages of enamel mineralization, with more pronounced alterations in the external part of the enamel. A delay in enamel mineralization was shown by several approaches (μCT, histology, and RT-qPCR). DISCUSSION We conclude that DEHP disrupted enamel development in mice by directly acting on dental cells with higher prevalence and severity in males than in females. The time window of DEHP effects on mouse tooth development led to typical alterations of structural, biochemical, and mechanical properties of enamel comparable to other EDCs, such as bisphenol A. The future characterization of dental defects in humans and animals due to environmental toxicants might be helpful in proposing them as early markers of exposure to such molecules. https://doi.org/10.1289/EHP10208.
Collapse
Affiliation(s)
- Ai Thu Bui
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale Unité mixte de recherche 1138 (Inserm UMRS 1138), Université Paris Cité, Sorbonne Université, Paris, France
| | - Sophia Houari
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale Unité mixte de recherche 1138 (Inserm UMRS 1138), Université Paris Cité, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty, Université Paris Cité, Paris, France
| | - Sophia Loiodice
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale Unité mixte de recherche 1138 (Inserm UMRS 1138), Université Paris Cité, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty, Université Paris Cité, Paris, France
| | - Dominique Bazin
- Laboratory of Chemistry and Physics, Université Paris-Saclay, Orsay, France
| | - Jérémy Sadoine
- EA 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Dental School, Université Paris Cité, Montrouge, France
| | - Nicolas Roubier
- Laboratory of Mechanics of Soils, Structures and Materials, Le Centre national de la recherche scientifique (CNRS), Centrale-Supélec, Université Paris-Saclay, Châtenay-Malabry, France
| | - Elsa Vennat
- Institut Curie, Inserm U1196, Université Paris-Saclay, Orsay, France
| | - Thu Thuy Tran
- Faculty of Odonto-Stomatology, Ho Chi Minh University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale Unité mixte de recherche 1138 (Inserm UMRS 1138), Université Paris Cité, Sorbonne Université, Paris, France
- Department of Oral Biology, Dental Faculty, Université Paris Cité, Paris, France
| | - Jean-Marc Ricort
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale Unité mixte de recherche 1138 (Inserm UMRS 1138), Université Paris Cité, Sorbonne Université, Paris, France
| | - Sakina Mhaouty-Kodja
- Neuroscience Paris Seine–Institut de Biologie Paris-Seine, CNRS, Inserm, Sorbonne Université, Paris, France
| | - Sylvie Babajko
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale Unité mixte de recherche 1138 (Inserm UMRS 1138), Université Paris Cité, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Elution study of acrylic monomers from orthodontic materials using high performance liquid chromatography (HPLC). J Orofac Orthop 2021; 83:34-47. [PMID: 33852039 PMCID: PMC8766367 DOI: 10.1007/s00056-021-00292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/06/2021] [Indexed: 11/17/2022]
Abstract
Purpose Main goal of the study was the identification and quantitative analysis of monomer elution from materials commonly used in fixed orthodontic therapy. Studies have shown severe health effects of monomers including cytotoxic, allergenic or mutagenic potential and endocrine changes. This in vitro study focusses primarily on five resins which are usually processed intraorally and remain in the oral cavity long-term. Methods We tested the elution of monomers from specimens (7.5 mm × 1.5 mm) immersed in artificial saliva at body temperature (37 °C) for 30 min to 5 weeks. The used method is in accordance with DIN EN ISO 10993-13. The five tested materials were BrackFix® (Voco GmbH, Cuxhaven, Germany), Triad®Gel (DeguDent GmbH, Hanau, Germany), and Transbond™ XT, LR and Plus (3M Unitek, Monrovia, CA, USA). All aliquots were analyzed using high performance liquid chromatography (HPLC). Data were statistically analyzed. Results All five analyzed materials eluted substances over a period of 5 weeks. Identified substances included bisphenol A (BPA), triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA). BPA eluted from Transbond™ Plus, XT, LR and BrackFix®. The cumulated mean values after 35 days ranged from 16.04 to 64.83 ppm, depending on the material. TEGDMA eluted with a mean of 688.61 ppm from Transbond™ LR. UDMA with a mean of 1682.00 ppm from Triad®Gel. For each material the highest concentrations of all these substances were found in the first elution period. Other substances that were not equivocally identified or of low concentration also eluted. Conclusion Using the described method, it is possible to qualitatively and quantitatively determine the in vitro elution of monomers from orthodontic materials. The concentrations of the substances identified were below the current maximum recommended intake. However, a cumulative effect and low-dose effects should be considered for both patients and dental professionals, especially for young patients. Measures to reduce exposure patients and practitioners are suggested.
Collapse
|
10
|
Li H, Cui D, Zheng L, Zhou Y, Gan L, Liu Y, Pan Y, Zhou X, Wan M. Bisphenol A Exposure Disrupts Enamel Formation via EZH2-Mediated H3K27me3. J Dent Res 2021; 100:847-857. [PMID: 33655795 DOI: 10.1177/0022034521995798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enamel formation is a serial and complex biological process, during which related genes are expressed progressively in a spatiotemporal manner. This process is vulnerable to environmental cues, resulting in developmental defects of enamel (DDE). However, how environmental factors are biologically integrated during enamel formation is still poorly understood. Here, we investigated the mechanism of DDE elicited by a model endocrine-disrupting chemical, bisphenol A (BPA), in mouse incisors. We show that BPA exposure leads to DDE in mouse incisors, as well as excessive proliferation in dental epithelial stem/progenitor cells. Western blotting, chromatin immunoprecipitation sequencing, and immunofluorescence staining revealed that this effect was accompanied by upregulation of a repressive mark, H3K27me3, in the labial cervical loop of mouse incisors. Perturbation of H3K27me3 methyltransferase EZH2 repressed the level of H3K27me3 and partially attenuated the excessive proliferation in dental epithelial stem/progenitor cells and DDE induced by BPA exposure. Overall, our results demonstrate the essential role of repressive histone modification H3K27me3 in DDE elicited by exposure to an endocrine-disrupting chemical.
Collapse
Affiliation(s)
- H Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - D Cui
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Wan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Merzoug-Larabi M, Youssef I, Bui AT, Legay C, Loiodice S, Lognon S, Babajko S, Ricort JM. Protein Kinase D1 (PKD1) Is a New Functional Non-Genomic Target of Bisphenol A in Breast Cancer Cells. Front Pharmacol 2020; 10:1683. [PMID: 32082170 PMCID: PMC7006487 DOI: 10.3389/fphar.2019.01683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to bisphenol A (BPA), one of the most widespread endocrine disruptors present in our environment, has been associated with the recent increased prevalence and severity of several diseases such as diabetes, obesity, autism, reproductive and neurological defects, oral diseases, and cancers such as breast tumors. BPA is suspected to act through genomic and non-genomic pathways. However, its precise molecular mechanisms are still largely unknown. Our goal was to identify and characterize a new molecular target of BPA in breast cancer cells in order to better understand how this compound may affect breast tumor growth and development. By using in vitro (MCF-7, T47D, Hs578t, and MDA-MB231 cell lines) and in vivo models, we demonstrated that PKD1 is a functional non-genomic target of BPA. PKD1 specifically mediates BPA-induced cell proliferation, clonogenicity, and anchorage-independent growth of breast tumor cells. Additionally, low-doses of BPA (≤10- 8 M) induced the phosphorylation of PKD1, a key signature of its activation state. Moreover, PKD1 overexpression increased the growth of BPA-exposed breast tumor xenografts in vivo in athymic female Swiss nude (Foxn1nu/nu ) mice. These findings further our understanding of the molecular mechanisms of BPA. By defining PKD1 as a functional target of BPA in breast cancer cell proliferation and tumor development, they provide new insights into the pathogenesis related to the exposure to BPA and other endocrine disruptors acting similarly.
Collapse
Affiliation(s)
- Messaouda Merzoug-Larabi
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ai Thu Bui
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Christine Legay
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sophia Loiodice
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Sophie Lognon
- École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| |
Collapse
|
12
|
Arid J, Oliveira DB, Evangelista SS, Vasconcelos KRF, Dutra ALT, de Oliveira SS, de Queiroz AM, Nelson-Filho P, Vieira AR, Küchler EC. Oestrogen receptor alpha, growth hormone receptor, and developmental defect of enamel. Int J Paediatr Dent 2019; 29:29-35. [PMID: 30341791 DOI: 10.1111/ipd.12434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oestrogen (ES) and growth hormone (GH) are hormones that may have a role in caries aetiology and developmental defects of enamel (DDE) since their receptors (ERs and GHR) are expressed during amelogenesis. AIM To evaluate whether genetic polymorphisms in the genes that codify the ERα (ESR1) and GHR are associated with caries experience and DDE in children. DESIGN Two hundred and sixteen children of both genders, aged 9-12 years, were examined and classified according to caries and DDE phenotype. Genomic DNA was extracted from buccal cells in saliva. Genetic polymorphisms in ERS1 (rs1884051 and rs12154178) and GHR (rs297305, rs2940913, rs2910875, and rs1509460) were genotyped using TaqMan chemistry. Data were analysed by PLINK, while the chi-square test was used to compare allele and genotype distributions (alpha of 5%). RESULTS A total of 131 children (60.7%) had caries experience, and 43 (19.9%) presented DDE. Genotype and allele distributions were not associated with caries experience (P > 0.05). Genotype and allele distributions between DDE, affected and unaffected, were associated with the polymorphism rs12154178 in ESR1 (P = 0.01 and P = 0.001, respectively) and with the polymorphism rs1509460 in GHR (P = 0.05 and P = 0.02, respectively). CONCLUSIONS Genetic polymorphisms in ERS1 (rs12154178) and GHR (rs1509460) are associated with DDE.
Collapse
Affiliation(s)
- Juliana Arid
- Department of Pediatric Dentistry, University of São Paulo, School of Dentistry of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Daniela B Oliveira
- Department of Pediatric Dentistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Silvane S Evangelista
- Department of Pediatric Dentistry, University of São Paulo, School of Dentistry of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Katia R F Vasconcelos
- Department of Pediatric Dentistry, University of São Paulo, School of Dentistry of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - André L T Dutra
- Department of Dentistry, State University of Amazonas, Manaus, Amazonas, Brazil
| | - Sara S de Oliveira
- Department of Dentistry, State University of Amazonas, Manaus, Amazonas, Brazil
| | - Alexandra M de Queiroz
- Department of Pediatric Dentistry, University of São Paulo, School of Dentistry of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, University of São Paulo, School of Dentistry of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre R Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erika C Küchler
- Department of Pediatric Dentistry, University of São Paulo, School of Dentistry of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Estrogen receptor gene is associated with dental fluorosis in Brazilian children. Clin Oral Investig 2018; 23:3565-3570. [DOI: 10.1007/s00784-018-2778-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/05/2018] [Indexed: 01/12/2023]
|
14
|
Alhodhodi A, Alkharobi H, Humphries M, Alkhafaji H, El-Gendy R, Feichtinger G, Speirs V, Beattie J. Oestrogen receptor β (ERβ) regulates osteogenic differentiation of human dental pulp cells. J Steroid Biochem Mol Biol 2017; 174:296-302. [PMID: 29031686 DOI: 10.1016/j.jsbmb.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Estradiol (E2) has many important actions in the tissues of the oral cavity. Disruption of E2 metabolism or alterations in systemic E2 concentrations have been associated with compromised periodontal health. In many instances such changes occur secondarily to the well characterised effects of E2 on bone physiology -especially maintenance of bone mineral density (BMD). Despite these important epidemiological findings, little is known about the mechanism of action of E2 in oral tissues or the expression and function of oestrogen receptor (ER) isoforms in these tissues. We have isolated human dental pulp cells (hDPCs), which are able to differentiate towards an osteogenic lineage under appropriate culture conditions. We show that hDPCs express ERα, ERβ1, ERβ2 and the cell membrane associated G protein-coupled ER (GPR30). Following osteogenic differentiation of hDPCs, ERβ1 and ERβ2 were up regulated approximately 50-fold while ERα and GPR30 were down regulated, but to a much lesser degree (approximately 2-fold). ERβ was characterised as a 59kDa protein following Western blot analysis with validated antibodies and ERβ was detected in both nuclear and cytoplasmic cell compartments following immunofluorescence (IF) and immunohistochemical (IHC) analysis of cultured cells. Furthermore isoform specific antibodies detected both ERβ1 and ERβ2 in DPC cultures and in situ analysis of ERβ expression in decalcified tooth/pulp sections identified the odontoblast layer of pulp cells juxtaposed to the tooth enamel as strongly reactive for both ERβ isoforms. Finally the use of isoform specific agonists identified ERβ as the main receptor responsible for the pro-osteogenic effect of oestrogenic hormones in this tissue. Our data suggest that oestrogens stimulated osteogenic differentiation in hDPCs and that this action is mediated principally through the ERβ isoform. These findings may have important consequences for the investigation and treatment of oral and periodontal pathologies which are associated with imbalances in oestrogen concentrations and action.
Collapse
Affiliation(s)
- Aishah Alhodhodi
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK
| | - Hanaa Alkharobi
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK
| | | | - Hasanain Alkhafaji
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK
| | - Reem El-Gendy
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK; Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Georg Feichtinger
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, UK.
| | - James Beattie
- Department of Oral Biology, Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, UK.
| |
Collapse
|
15
|
Varga G, DenBesten P, Rácz R, Zsembery Á. Importance of bicarbonate transport in pH control during amelogenesis - need for functional studies. Oral Dis 2017; 24:879-890. [PMID: 28834043 DOI: 10.1111/odi.12738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022]
Abstract
Dental enamel, the hardest mammalian tissue, is produced by ameloblasts. Ameloblasts show many similarities to other transporting epithelia although their secretory product, the enamel matrix, is quite different. Ameloblasts direct the formation of hydroxyapatite crystals, which liberate large quantities of protons that then need to be buffered to allow mineralization to proceed. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. Many investigations have used immunohistochemical and knockout studies to determine the effects of these genes on enamel formation, but up till recently very little functional data were available for mineral ion transport. To address this, we developed a novel 2D in vitro model using HAT-7 ameloblast cells. HAT-7 cells can be polarized and develop functional tight junctions. Furthermore, they are able to accumulate bicarbonate ions from the basolateral to the apical fluid spaces. We propose that in the future, the HAT-7 2D system along with similar cellular models will be useful to functionally model ion transport processes during amelogenesis. Additionally, we also suggest that similar approaches will allow a better understanding of the regulation of the cycling process in maturation-stage ameloblasts, and the pH sensory mechanisms, which are required to develop sound, healthy enamel.
Collapse
Affiliation(s)
- G Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - P DenBesten
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - R Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Á Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Mian W, Xuedong Z, Liwei Z. [Effect of maternal health and prenatal environmental exposure factors on tooth development]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:437-441. [PMID: 28853514 DOI: 10.7518/hxkq.2017.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Odontogenesis is a consequence of a complex series of reciprocal signal interactions between odontogenic epithelium and neural crest-derived odontotgenic mesenchyme. These interactions result from a complex interplay of genetic and environmental factors. Given that a fetus develops in the mother, maternal health and environmental exposures have a great influence on tooth development. In this review, we focused on the key issues in the developmental defects of teeth induced by various types of maternal environmental factors, including environmental endocrine disruptors, joint action of two or more chemical exposures, and maternal health status. This review also discussed the adverse effects of maternal environmental factors on tooth development. These effects include enamel developmental defects, molar incisor hypomineralization, dental fluorosis, hyperdontia and hypodontia. Overall, this review provides a theoretical basis for the prevention of tooth defects in early life, assessment of risks from developmental tooth defects, and advancement of pediatric oral health management.
Collapse
Affiliation(s)
- Wan Mian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhou Xuedong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Liwei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Zhang J, Zhang X, Li Y, Zhou Z, Wu C, Liu Z, Hao L, Fan S, Jiang F, Xie Y, Jiang L. Low dose of Bisphenol A enhance the susceptibility of thyroid carcinoma stimulated by DHPN and iodine excess in F344 rats. Oncotarget 2017; 8:69874-69887. [PMID: 29050248 PMCID: PMC5642523 DOI: 10.18632/oncotarget.19434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/02/2017] [Indexed: 01/20/2023] Open
Abstract
Thyroid carcinoma (TC) is the most common endocrine neoplasm. The risk of TC as a second primary malignancy (SPM) of breast cancer is significantly increased. Bisphenol A (BPA) is a widely contacted xenoestrogen and increases susceptibility to breast cancer through binding to estrogen receptor alpha (ERα). However, the effect of BPA on thyroid carcinogenesis has not been fully demonstrated. This present study aimed to characterize the effects of BPA on the development of TC using a Fischer 344 (F344) rat model. In this study, we established a TC model using female F344 rats pretreated with N-Bis (2-hydroxypropyl) nitrosamine (DHPN) at a single dose of 2800 mg/kg (the DA group) or without DHPN (the DN group), followed by stimulation with BPA at the level of 250 μg/kg (BPA250) or 1000 μg/kg (BPA1000) and a basic diet containing potassium iodine (KI, 1000 μg/L) for 64 weeks. We demonstrated that the incidence of TC in the BPA250 + KI of DA groups reached the highest at 50%, the incidence of thyroid hyperplasia lesions (including both tumors and focal hyperplasia lesions) in the BPA1000 + KI of DA groups reached 100% (P < 0.05). ERα protein and immunochemistry expression was upregulated in the BPA-exposed groups and the immunochemistry scores were positively correlated with PCNA. Thus, the present results indicate that BPA could enhance the susceptibility to TC stimulated by DHPN and iodine excess. ERα is probably involved in the proliferation effect of BPA. BPA or KI alone could not increase TC incidence.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Hemodialysis, Heze Municipical Hospital, Heze 274000, China
| | - Xiaochen Zhang
- Department of Nursing, Heze Medical College, Heze 274000, China
| | - Yanan Li
- Department of Endocrinology, Laiwu City People's Hospital, Laiwu 271100, China
| | - Zhenzhen Zhou
- Department of Radiotherapy, Jinhua Municipal Central Hospital, Jinhua 321000, China0
| | - Chuanlong Wu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhiyan Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lanxiang Hao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Endocrinology, Yancheng First People's Hospital, Yancheng 224001, China
| | - Shanshan Fan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Fang Jiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yan Xie
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ling Jiang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
18
|
Babajko S, Jedeon K, Houari S, Loiodice S, Berdal A. Disruption of Steroid Axis, a New Paradigm for Molar Incisor Hypomineralization (MIH). Front Physiol 2017; 8:343. [PMID: 28603502 PMCID: PMC5445125 DOI: 10.3389/fphys.2017.00343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/10/2017] [Indexed: 01/22/2023] Open
Affiliation(s)
- Sylvie Babajko
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-ParisParis, France.,Unité de Formation et de Recherche en Odontologie, University Paris-DiderotParis, France
| | - Katia Jedeon
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-ParisParis, France.,Unité de Formation et de Recherche en Odontologie, University Paris-DiderotParis, France
| | - Sophia Houari
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-ParisParis, France.,Unité de Formation et de Recherche en Odontologie, University Paris-DiderotParis, France
| | - Sophia Loiodice
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-ParisParis, France.,Unité de Formation et de Recherche en Odontologie, University Paris-DiderotParis, France
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-ParisParis, France.,Unité de Formation et de Recherche en Odontologie, University Paris-DiderotParis, France.,Centre de Référence des Maladies Rares de la face et de la Cavité Buccale MAFACE, Rothschild HospitalParis, France
| |
Collapse
|
19
|
Schmalz G, Galler KM. Biocompatibility of biomaterials – Lessons learned and considerations for the design of novel materials. Dent Mater 2017; 33:382-393. [DOI: 10.1016/j.dental.2017.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
|
20
|
Morkmued S, Laugel-Haushalter V, Mathieu E, Schuhbaur B, Hemmerlé J, Dollé P, Bloch-Zupan A, Niederreither K. Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects. Front Physiol 2017; 7:673. [PMID: 28111553 PMCID: PMC5217128 DOI: 10.3389/fphys.2016.00673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023] Open
Abstract
Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations.
Collapse
Affiliation(s)
- Supawich Morkmued
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France; Pediatrics Department, Faculty of Dentistry, Khon Kaen UniversityKhon Kaen, Thailand
| | - Virginie Laugel-Haushalter
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France
| | - Eric Mathieu
- Université de Strasbourg, INSERM UMR_1121, Biomaterials and Bioengineering Strasbourg, France
| | - Brigitte Schuhbaur
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France
| | - Joseph Hemmerlé
- Université de Strasbourg, INSERM UMR_1121, Biomaterials and Bioengineering Strasbourg, France
| | - Pascal Dollé
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France
| | - Agnès Bloch-Zupan
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France; Faculté de Chirurgie Dentaire, Université de StrasbourgStrasbourg, France; Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg, Université de StrasbourgStrasbourg, France; Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Manifestations Odontologiques des Maladies Rares, CRMRStrasbourg, France; Eastman Dental Institute, University College LondonLondon, UK
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France; Faculté de Chirurgie Dentaire, Université de StrasbourgStrasbourg, France
| |
Collapse
|
21
|
Houari S, Loiodice S, Jedeon K, Berdal A, Babajko S. Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors. Front Physiol 2016; 7:503. [PMID: 27853434 PMCID: PMC5090168 DOI: 10.3389/fphys.2016.00503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/13/2016] [Indexed: 12/02/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA), one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH). In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30), of ketosteroid receptors (ERs, AR, PGR, GR, MR), of the retinoid receptor RXRα, and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation-stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR), whereas the others were 13 to 612-fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step toward understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis.
Collapse
Affiliation(s)
- Sophia Houari
- Paris Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Université Paris-Descartes, Université Pierre et Marie Curie-ParisParis, France; Université Paris-Diderot, Unité de Formation et de Recherche d'OdontologieParis, France
| | - Sophia Loiodice
- Paris Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Université Paris-Descartes, Université Pierre et Marie Curie-ParisParis, France; Université Paris-Diderot, Unité de Formation et de Recherche d'OdontologieParis, France
| | - Katia Jedeon
- Paris Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Université Paris-Descartes, Université Pierre et Marie Curie-ParisParis, France; Université Paris-Diderot, Unité de Formation et de Recherche d'OdontologieParis, France
| | - Ariane Berdal
- Paris Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Université Paris-Descartes, Université Pierre et Marie Curie-ParisParis, France; Université Paris-Diderot, Unité de Formation et de Recherche d'OdontologieParis, France; Centre de Référence des maladies rares de la face et de la cavité buccale MAFACE hôpital Rothschild, AP-HPParis, France
| | - Sylvie Babajko
- Paris Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Université Paris-Descartes, Université Pierre et Marie Curie-ParisParis, France; Université Paris-Diderot, Unité de Formation et de Recherche d'OdontologieParis, France
| |
Collapse
|
22
|
Jedeon K, Loiodice S, Salhi K, Le Normand M, Houari S, Chaloyard J, Berdal A, Babajko S. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis. Endocrinology 2016; 157:4287-4296. [PMID: 27684650 DOI: 10.1210/en.2016-1342] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.
Collapse
Affiliation(s)
- Katia Jedeon
- Centre de Recherche des Cordeliers (K.J., S.L., K.S., M.L.N., S.H., J.C., A.B., S.B.), INSERM Unité Mixte de Recherche en Santé 1138, Université Paris-Descartes, Université Pierre et Marie Curie-Paris, Paris Laboratory of Molecular Oral Pathophysiology, and Unité de Formation et de Recherche d'Odontologie (K.J., S.L., K.S., S.H., J.C., A.B., S.B.), Université Paris-Diderot, F-75006 Paris, France; and Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale (K.J., A.B.), Hôpital Rothschild, Assistance Publique-Hôpitaux de Paris, F-75571 Paris, France
| | - Sophia Loiodice
- Centre de Recherche des Cordeliers (K.J., S.L., K.S., M.L.N., S.H., J.C., A.B., S.B.), INSERM Unité Mixte de Recherche en Santé 1138, Université Paris-Descartes, Université Pierre et Marie Curie-Paris, Paris Laboratory of Molecular Oral Pathophysiology, and Unité de Formation et de Recherche d'Odontologie (K.J., S.L., K.S., S.H., J.C., A.B., S.B.), Université Paris-Diderot, F-75006 Paris, France; and Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale (K.J., A.B.), Hôpital Rothschild, Assistance Publique-Hôpitaux de Paris, F-75571 Paris, France
| | - Khaled Salhi
- Centre de Recherche des Cordeliers (K.J., S.L., K.S., M.L.N., S.H., J.C., A.B., S.B.), INSERM Unité Mixte de Recherche en Santé 1138, Université Paris-Descartes, Université Pierre et Marie Curie-Paris, Paris Laboratory of Molecular Oral Pathophysiology, and Unité de Formation et de Recherche d'Odontologie (K.J., S.L., K.S., S.H., J.C., A.B., S.B.), Université Paris-Diderot, F-75006 Paris, France; and Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale (K.J., A.B.), Hôpital Rothschild, Assistance Publique-Hôpitaux de Paris, F-75571 Paris, France
| | - Manon Le Normand
- Centre de Recherche des Cordeliers (K.J., S.L., K.S., M.L.N., S.H., J.C., A.B., S.B.), INSERM Unité Mixte de Recherche en Santé 1138, Université Paris-Descartes, Université Pierre et Marie Curie-Paris, Paris Laboratory of Molecular Oral Pathophysiology, and Unité de Formation et de Recherche d'Odontologie (K.J., S.L., K.S., S.H., J.C., A.B., S.B.), Université Paris-Diderot, F-75006 Paris, France; and Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale (K.J., A.B.), Hôpital Rothschild, Assistance Publique-Hôpitaux de Paris, F-75571 Paris, France
| | - Sophia Houari
- Centre de Recherche des Cordeliers (K.J., S.L., K.S., M.L.N., S.H., J.C., A.B., S.B.), INSERM Unité Mixte de Recherche en Santé 1138, Université Paris-Descartes, Université Pierre et Marie Curie-Paris, Paris Laboratory of Molecular Oral Pathophysiology, and Unité de Formation et de Recherche d'Odontologie (K.J., S.L., K.S., S.H., J.C., A.B., S.B.), Université Paris-Diderot, F-75006 Paris, France; and Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale (K.J., A.B.), Hôpital Rothschild, Assistance Publique-Hôpitaux de Paris, F-75571 Paris, France
| | - Jessica Chaloyard
- Centre de Recherche des Cordeliers (K.J., S.L., K.S., M.L.N., S.H., J.C., A.B., S.B.), INSERM Unité Mixte de Recherche en Santé 1138, Université Paris-Descartes, Université Pierre et Marie Curie-Paris, Paris Laboratory of Molecular Oral Pathophysiology, and Unité de Formation et de Recherche d'Odontologie (K.J., S.L., K.S., S.H., J.C., A.B., S.B.), Université Paris-Diderot, F-75006 Paris, France; and Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale (K.J., A.B.), Hôpital Rothschild, Assistance Publique-Hôpitaux de Paris, F-75571 Paris, France
| | - Ariane Berdal
- Centre de Recherche des Cordeliers (K.J., S.L., K.S., M.L.N., S.H., J.C., A.B., S.B.), INSERM Unité Mixte de Recherche en Santé 1138, Université Paris-Descartes, Université Pierre et Marie Curie-Paris, Paris Laboratory of Molecular Oral Pathophysiology, and Unité de Formation et de Recherche d'Odontologie (K.J., S.L., K.S., S.H., J.C., A.B., S.B.), Université Paris-Diderot, F-75006 Paris, France; and Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale (K.J., A.B.), Hôpital Rothschild, Assistance Publique-Hôpitaux de Paris, F-75571 Paris, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers (K.J., S.L., K.S., M.L.N., S.H., J.C., A.B., S.B.), INSERM Unité Mixte de Recherche en Santé 1138, Université Paris-Descartes, Université Pierre et Marie Curie-Paris, Paris Laboratory of Molecular Oral Pathophysiology, and Unité de Formation et de Recherche d'Odontologie (K.J., S.L., K.S., S.H., J.C., A.B., S.B.), Université Paris-Diderot, F-75006 Paris, France; and Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale (K.J., A.B.), Hôpital Rothschild, Assistance Publique-Hôpitaux de Paris, F-75571 Paris, France
| |
Collapse
|
23
|
Jedeon K, Houari S, Loiodice S, Thuy TT, Le Normand M, Berdal A, Babajko S. Chronic Exposure to Bisphenol A Exacerbates Dental Fluorosis in Growing Rats. J Bone Miner Res 2016; 31:1955-1966. [PMID: 27257137 DOI: 10.1002/jbmr.2879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 01/27/2023]
Abstract
Enamel defects resulting from environmental conditions and way of life are public health concerns because of their high prevalence. Because their etiology is unclear, the aim of this study was to analyze the various forms of enamel hypomineralization, and to characterize the genes involved in this process to determine the mechanisms involved in disruptions of amelogenesis. We used bisphenol A (BPA) and fluoride as models; both are commonly encountered in human populations and utilized in dentistry. Wistar rats were chronically exposed to 5 μg/kg/day BPA from day 1 of gestation to day 65 after birth (P65) and 5 mM fluoride from P21 to P65. Resulting enamel defects were comparable to the human enamel pathologies molar incisor hypomineralization (MIH) and dental fluorosis (DF) respectively, and were more severe in rats exposed to both agents than to each agent alone. Large-scale transcriptomic analysis of dental epithelium showed a small group of genes the expression of which was affected by exposure to BPA or NaF. Among the most modulated, many are directly involved in amelogenesis (Amelx, Enam, Klk4, Mmp12, Slc26a4, and Slc5a8), and can be regrouped as forming the "hypomineralization enameloma." Each of these gene expression perturbations may contribute to enamel defects. Exposure to BPA weakens enamel, making it more prone to generate frequent mineralization defects MIH and DF. Our study identifies hypomineralization genes that may enable the use of dental enamel as an early marker of exposure to environmental toxicants because of its unique ability to retrospectively record ameloblast pathophysiology. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Katia Jedeon
- Cordeliers Research Centre Inserm UMRS 1138, Paris-Diderot University, Paris-Descartes University, Pierre & Marie Curie-Paris University, Laboratory of Molecular Oral Pathophysiology, Paris, France.,Paris-Diderot University, Faculty of Dentistry, Paris, France.,Centre de Référence des maladies rares de la face et de la cavité buccale MAFACE hôpital Rothschild, Paris, France
| | - Sophia Houari
- Cordeliers Research Centre Inserm UMRS 1138, Paris-Diderot University, Paris-Descartes University, Pierre & Marie Curie-Paris University, Laboratory of Molecular Oral Pathophysiology, Paris, France.,Paris-Diderot University, Faculty of Dentistry, Paris, France.,Groupe Hospitalier La Pitié Salpêtrière-Charles Foix, Paris, France
| | - Sophia Loiodice
- Cordeliers Research Centre Inserm UMRS 1138, Paris-Diderot University, Paris-Descartes University, Pierre & Marie Curie-Paris University, Laboratory of Molecular Oral Pathophysiology, Paris, France.,Paris-Diderot University, Faculty of Dentistry, Paris, France
| | - Tran Thu Thuy
- Cordeliers Research Centre Inserm UMRS 1138, Paris-Diderot University, Paris-Descartes University, Pierre & Marie Curie-Paris University, Laboratory of Molecular Oral Pathophysiology, Paris, France.,Paris-Diderot University, Faculty of Dentistry, Paris, France.,Faculty of Odonto-Stomatology, Ho Chi Minh University of Medicine and Pharmacology, Ho Chi Minh-Ville, Vietnam
| | - Manon Le Normand
- Cordeliers Research Centre Inserm UMRS 1138, Paris-Diderot University, Paris-Descartes University, Pierre & Marie Curie-Paris University, Laboratory of Molecular Oral Pathophysiology, Paris, France
| | - Ariane Berdal
- Cordeliers Research Centre Inserm UMRS 1138, Paris-Diderot University, Paris-Descartes University, Pierre & Marie Curie-Paris University, Laboratory of Molecular Oral Pathophysiology, Paris, France.,Paris-Diderot University, Faculty of Dentistry, Paris, France.,Centre de Référence des maladies rares de la face et de la cavité buccale MAFACE hôpital Rothschild, Paris, France
| | - Sylvie Babajko
- Cordeliers Research Centre Inserm UMRS 1138, Paris-Diderot University, Paris-Descartes University, Pierre & Marie Curie-Paris University, Laboratory of Molecular Oral Pathophysiology, Paris, France.,Paris-Diderot University, Faculty of Dentistry, Paris, France
| |
Collapse
|
24
|
Yamaguti PM, Neves FDAR, Hotton D, Bardet C, de La Dure-Molla M, Castro LC, Scher MDC, Barbosa ME, Ditsch C, Fricain JC, de La Faille R, Figueres ML, Vargas-Poussou R, Houillier P, Chaussain C, Babajko S, Berdal A, Acevedo AC. Amelogenesis imperfecta in familial hypomagnesaemia and hypercalciuria with nephrocalcinosis caused by CLDN19 gene mutations. J Med Genet 2016; 54:26-37. [PMID: 27530400 DOI: 10.1136/jmedgenet-2016-103956] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/15/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Amelogenesis imperfecta (AI) is a group of genetic diseases characterised by tooth enamel defects. AI was recently described in patients with familial hypercalciuria and hypomagnesaemia with nephrocalcinosis (FHHNC) caused by CLDN16 mutations. In the kidney, claudin-16 interacts with claudin-19 to control the paracellular passage of calcium and magnesium. FHHNC can be linked to mutations in both genes. Claudin-16 was shown to be expressed during amelogenesis; however, no data are available on claudin-19. Moreover, the enamel phenotype of patients with CLDN19 mutations has never been described. In this study, we describe the clinical and genetic features of nine patients with FHHNC carrying CLDN19 mutations and the claudin-19 expression profile in rat ameloblasts. METHODS Six FHHNC Brazilian patients were subjected to mutational analysis. Three additional French patients were recruited for orodental characterisation. The expression profile of claudin-19 was evaluated by RT-qPCR and immunofluorescence using enamel epithelium from rat incisors. RESULTS All patients presented AI at different degrees of severity. Two new likely pathogenic variations in CLDN19 were found: p.Arg200Gln and p.Leu90Arg. RT-qPCR revealed low Cldn19 expression in ameloblasts. Confocal analysis indicated that claudin-19 was immunolocalised at the distal poles of secretory and maturing ameloblasts. CONCLUSIONS For the first time, it was demonstrated that AI is associated with FHHNC in patients carrying CLDN19 mutations. The data suggest claudin-19 as an additional determinant in enamel formation. Indeed, the coexistence of hypoplastic and hypomineralised AI in the patients was consistent with claudin-19 expression in both secretory and maturation stages. Additional indirect systemic effects cannot be excluded.
Collapse
Affiliation(s)
- Paulo Marcio Yamaguti
- Faculty of Health Sciences, Division of Dentistry, Oral Care Center for Inherited Diseases, University Hospital of Brasilia, University of Brasilia, Brasilia, Brazil.,Faculty of Health Sciences, Laboratory of Oral Histopathology, University of Brasilia, Brasilia, Brazil
| | | | - Dominique Hotton
- Centre de Recherche des Cordeliers, University Paris-Diderot, INSERM UMR_S1138, Equipe Physiopathologie Orale Moléculaire, Paris, France
| | - Claire Bardet
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Muriel de La Dure-Molla
- INSERM UMR_S1163, Bases moléculaires et physiopathologiques des ostéochondrodysplasies, Institut Imagine, Necker, Paris, France.,AP-HP, Referral Center for Rare Buccal and Facial Dysmorphologies CRMR MAFACE, Hôpital Rothschild, Paris, France
| | - Luiz Claudio Castro
- Unit of Pediatric Endocrinology, University Hospital of Brasilia, Brasilia, Brazil
| | | | | | | | - Jean-Christophe Fricain
- CHU Bordeaux, Dental school, U1026 Tissue Bioengineering, University of Bordeaux/Inserm, Bordeaux, France
| | - Renaud de La Faille
- Department of Nephrology, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marie-Lucile Figueres
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, CNRS ERL_8228, Paris, France
| | - Rosa Vargas-Poussou
- AP-HP, Department of Genetics, Reference Center of Children and Adult Renal Hereditary Diseases (MARHEA), Hôpital European Georges Pompidou, Paris, France
| | - Pascal Houillier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, CNRS ERL_8228, Paris, France.,AP-HP, Department of Genetics, Reference Center of Children and Adult Renal Hereditary Diseases (MARHEA), Hôpital European Georges Pompidou, Paris, France
| | - Catherine Chaussain
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School, University Paris Descartes, Sorbonne Paris Cité, Paris, France.,AP-HP, Department of Genetics, Reference Center of Children and Adult Renal Hereditary Diseases (MARHEA), Hôpital European Georges Pompidou, Paris, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, University Paris-Diderot, INSERM UMR_S1138, Equipe Physiopathologie Orale Moléculaire, Paris, France
| | - Ariane Berdal
- Centre de Recherche des Cordeliers, University Paris-Diderot, INSERM UMR_S1138, Equipe Physiopathologie Orale Moléculaire, Paris, France.,AP-HP, Referral Center for Rare Buccal and Facial Dysmorphologies CRMR MAFACE, Hôpital Rothschild, Paris, France
| | - Ana Carolina Acevedo
- Faculty of Health Sciences, Division of Dentistry, Oral Care Center for Inherited Diseases, University Hospital of Brasilia, University of Brasilia, Brasilia, Brazil.,Faculty of Health Sciences, Laboratory of Oral Histopathology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
25
|
Vieira AR, Kup E. On the Etiology of Molar-Incisor Hypomineralization. Caries Res 2016; 50:166-9. [PMID: 27111773 DOI: 10.1159/000445128] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
Molar-incisor hypomineralization (MIH) is a condition that is defined based on its peculiar clinical presentation. Reports on the etiology of the condition and possible risk factors are inconclusive and the original suggestion that MIH is an idiopathic condition is often cited. Our group was the first to suggest MIH has a genetic component that involves genetic variation in genes expressed during dental enamel formation. In this report, we provide a rationale to explain the preferential affection of molars and incisors. We suggest that MIH is a genetic condition based on its prevalence, which varies depending on the geographic location, and the evidence that on occasion second primary molars, permanent canines, and premolars can show signs of hypomineralization of enamel when molars and incisors are affected.
Collapse
Affiliation(s)
- Alexandre R Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pa., USA
| | | |
Collapse
|
26
|
Lignon G, de la Dure-Molla M, Dessombz A, Berdal A, Babajko S. [Enamel: a unique self-assembling in mineral world]. Med Sci (Paris) 2015; 31:515-21. [PMID: 26059302 DOI: 10.1051/medsci/20153105013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Enamel is a unique tissue in vertebrates, acellular, formed on a labile scaffolding matrix and hypermineralized. The ameloblasts are epithelial cells in charge of amelogenesis. They secrete a number of matrix proteins degraded by enzymes during enamel mineralization. This ordered cellular and extracellular events imply that any genetic or environmental perturbation will produce indelible and recognizable defects. The specificity of defects will indicate the affected cellular process. Thus, depending on the specificity of alterations, the teratogenic event can be retrospectively established. Advances in the field allow to use enamel defects as diagnostic tools for molecular disorders. The multifunctionality of enamel peptides is presently identified from their chemical roles in mineralization to cell signaling, constituting a source of concrete innovations in regenerative medicine.
Collapse
Affiliation(s)
- Guilhem Lignon
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Muriel de la Dure-Molla
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France - Centre de référence des malformations rares de la face et de la cavité buccale, CRMR-MAFACE, hôpital Rothschild, APHP, Paris, France
| | - Arnaud Dessombz
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Ariane Berdal
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France - Centre de référence des malformations rares de la face et de la cavité buccale, CRMR-MAFACE, hôpital Rothschild, APHP, Paris, France
| | - Sylvie Babajko
- Laboratoire de physiopathologie orale moléculaire, Inserm UMRS 1138, centre de recherche des Cordeliers, université Paris Diderot-Paris 7, université Pierre et Marie Curie-Paris 6, université Paris Descartes-Paris 5, 15-21, rue de l'École de Médecine, 75270 Paris cedex 06, France
| |
Collapse
|