1
|
Broughton K, Esquer C, Echeagaray O, Firouzi F, Shain G, Ebeid D, Monsanto M, Yaareb D, Golgolab L, Gude N, Sussman MA. Surface Lin28A expression consistent with cellular stress parallels indicators of senescence. Cardiovasc Res 2023; 119:743-758. [PMID: 35880724 PMCID: PMC10409908 DOI: 10.1093/cvr/cvac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Declining cellular functional capacity resulting from stress or ageing is a primary contributor to impairment of myocardial performance. Molecular pathway regulation of biological processes in cardiac interstitial cells (CICs) is pivotal in stress and ageing responses. Altered localization of the RNA-binding protein Lin28A has been reported in response to environmental stress, but the role of Lin28A in response to stress in CICs has not been explored. Surface Lin28A redistribution is indicative of stress response in CIC associated with ageing and senescence. METHODS AND RESULTS Localization of Lin28A was assessed by multiple experimental analyses and treatment conditions and correlated to oxidative stress, senescence, and ploidy in adult murine CICs. Surface Lin28A expression is present on 5% of fresh CICs and maintained through Passage 2, increasing to 21% in hyperoxic conditions but lowered to 14% in physiologic normoxia. Surface Lin28A is coincident with elevated senescence marker p16 and beta-galactosidase (β-gal) expression in CICs expanded in hyperoxia, and also increases with polyploidization and binucleation of CICs regardless of oxygen culture. Transcriptional profiling of CICs using single-cell RNA-Seq reveals up-regulation of pathways associated with oxidative stress in CICs exhibiting surface Lin28A. Induction of surface Lin28A by oxidative stress is blunted by treatment of cells with the antioxidant Trolox in a dose-dependent manner, with 300 μM Trolox exposure maintaining characteristics of freshly isolated CICs possessing low expression of surface Lin28A and β-gal with predominantly diploid content. CONCLUSION Surface Lin28A is a marker of environmental oxidative stress in CICs and antioxidant treatment antagonizes this phenotype. The biological significance of Lin28 surface expression and consequences for myocardial responses may provide important insights regarding mitigation of cardiac stress and ageing.
Collapse
Affiliation(s)
- Kathleen Broughton
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Carolina Esquer
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Oscar Echeagaray
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Fareheh Firouzi
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Grant Shain
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - David Ebeid
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Megan Monsanto
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Dena Yaareb
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Leila Golgolab
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Natalie Gude
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A Sussman
- San Diego State University Heart Institute and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
2
|
Environmental Alterations during Embryonic Development: Studying the Impact of Stressors on Pluripotent Stem Cell-Derived Cardiomyocytes. Genes (Basel) 2021; 12:genes12101564. [PMID: 34680959 PMCID: PMC8536136 DOI: 10.3390/genes12101564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
Non-communicable diseases (NCDs) sauch as diabetes, obesity and cardiovascular diseases are rising rapidly in all countries world-wide. Environmental maternal factors (e.g., diet, oxidative stress, drugs and many others), maternal illnesses and other stressors can predispose the newborn to develop diseases during different stages of life. The connection between environmental factors and NCDs was formulated by David Barker and colleagues as the Developmental Origins of Health and Disease (DOHaD) hypothesis. In this review, we describe the DOHaD concept and the effects of several environmental stressors on the health of the progeny, providing both animal and human evidence. We focus on cardiovascular diseases which represent the leading cause of death worldwide. The purpose of this review is to discuss how in vitro studies with pluripotent stem cells (PSCs), such as embryonic and induced pluripotent stem cells (ESC, iPSC), can underpin the research on non-genetic heart conditions. The PSCs could provide a tool to recapitulate aspects of embryonic development “in a dish”, studying the effects of environmental exposure during cardiomyocyte (CM) differentiation and maturation, establishing a link to molecular mechanism and epigenetics.
Collapse
|
3
|
Implication of RAS in Postnatal Cardiac Remodeling, Fibrosis and Dysfunction Induced by Fetal Undernutrition. PATHOPHYSIOLOGY 2021; 28:273-290. [PMID: 35366262 PMCID: PMC8830479 DOI: 10.3390/pathophysiology28020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Fetal undernutrition is a risk factor for cardiovascular diseases. Male offspring from rats exposed to undernutrition during gestation (MUN) exhibit oxidative stress during perinatal life and develop cardiac dysfunction in ageing. Angiotensin-II is implicated in oxidative stress-mediated cardiovascular fibrosis and remodeling, and lactation is a key developmental window. We aimed to assess if alterations in RAS during lactation participate in cardiac dysfunction associated with fetal undernutrition. Control dams received food ad libitum, and MUN had 50% nutrient restriction during the second half of gestation. Both dams were fed ad libitum during lactation, and male offspring were studied at weaning. We assessed: ventricular structure and function (echocardiography); blood pressure (intra-arterially, anesthetized rats); collagen content and intramyocardial artery structure (Sirius red, Masson Trichromic); myocardial and intramyocardial artery RAS receptors (immunohistochemistry); plasma angiotensin-II (ELISA) and TGF-β1 protein expression (Western Blot). Compared to Control, MUN offspring exhibited significantly higher plasma Angiotensin-II and a larger left ventricular mass, as well as larger intramyocardial artery media/lumen, interstitial collagen and perivascular collagen. In MUN hearts, TGF-β1 tended to be higher, and the end-diastolic diameter and E/A ratio were significantly lower with no differences in ejection fraction or blood pressure. In the myocardium, no differences between groups were detected in AT1, AT2 or Mas receptors, with MrgD being significantly lower in the MUN group. In intramyocardial arteries from MUN rats, AT1 and Mas receptors were significantly elevated, while AT2 and MrgD were lower compared to Control. Conclusions. In rats exposed to fetal undernutrition, RAS disbalance and associated cardiac remodeling during lactation may set the basis for later heart dysfunction.
Collapse
|
4
|
Maternal undernutrition results in altered renal pro-inflammatory gene expression concomitant with hypertension in adult male offspring that is ameliorated following pre-weaning growth hormone treatment. J Dev Orig Health Dis 2020; 10:459-468. [PMID: 31347485 DOI: 10.1017/s2040174418000922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An adverse early life environment is associated with increased cardiovascular disease in offspring. Work in animal models has shown that maternal undernutrition (UN) during pregnancy leads to hypertension in adult offspring, with effects thought to be mediated in part via altered renal function. We have previously shown that growth hormone (GH) treatment of UN offspring during the pre-weaning period can prevent the later development of cardiometabolic disorders. However, the mechanistic basis for these observations is not well defined. The present study examined the impact of GH treatment on renal inflammatory markers in adult male offspring as a potential mediator of these reversal effects. Female Sprague-Dawley rats were fed either a chow diet fed ad libitum (CON) or at 50% of CON intake (UN) during pregnancy. All dams were fed the chow diet ad libitum during lactation. CON and UN pups received saline (CON-S/UN-S) or GH (2.5 µg/g/day; CON-GH/UN-GH) from postnatal day 3 until weaning (p21). Post-weaning males were fed a standard chow diet for the remainder of the study (150 days). Histological analysis was performed to examine renal morphological characteristics, and gene expression of inflammatory and vascular markers were assessed. There was evidence of renal hypotrophy and reduced nephron number in the UN-S group. Tumour necrosis factor-α, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecular-1 and vascular cell adhesion molecule-1 gene expression was increased in UN-S offspring and normalized in the UN-GH group. These findings indicate that pre-weaning GH treatment has the potential to normalize some of the adverse renal and cardiovascular sequelae that arise as a consequence of poor maternal nutrition.
Collapse
|
5
|
Rasdi Z, Kamaludin R, Ab Rahim S, Syed Ahmad Fuad SB, Othman MHD, Siran R, Mohd Nor NS, Abdul Hamid Hasani N, Sheikh Abdul Kadir SH. The impacts of intrauterine Bisphenol A exposure on pregnancy and expression of miRNAs related to heart development and diseases in animal model. Sci Rep 2020; 10:5882. [PMID: 32246001 PMCID: PMC7125099 DOI: 10.1038/s41598-020-62420-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
This study aimed to examine the impact of BPA exposure on pregnancy and foetuses on cardiac tissues and the expression of cardiac microRNAs (miRNAs) related to heart development and diseases. Pregnancy is known to be the "critical windows" in determining the offspring physical and cells development in their life after birth. The increment of the risk of cardiovascular disease (CVD) in a later stage of life has been reported by few studies demonstrated from prenatal exposure of BPA. BPA has been shown to alter miRNAs expression profiles for organ development, regeneration and metabolic functions. These alterations have been associated with the risk of CVDs. However, the associations between pregnancy outcomes and miRNAs expression in cardiac of mother- and foetuses-exposed to BPA are still not entirely explored. In BPA-exposed pregnant rat groups, a significant weight gained was observed in comparison to control (p < 0.05). Interestingly, significant changes in systolic and diastolic blood pressure between the first and third trimester of BPA-exposed pregnant rats were also observed (p < 0.05). In BPA-exposed pregnant rats, miR-499-5p was significantly altered in the heart (p < 0.01). Meanwhile, altered miR-17-5p, -208-3p, and -210-3p expressions were observed in all heart of the foetuses from BPA-exposed pregnant rats (p < 0.05). In H&E staining, BPA-exposed foetal hearts showed a sign of fibrosis while BPA-exposed pregnant rats showed muscle remnant. Masson trichrome staining further confirmed the presence of fibrosis observed in BPA-exposed foetal heart and reduced expression of cardiac troponin I (cTnI) was also observed in BPA-exposed foetal heart. In summary, altered cardiac miRNAs with histological changes were observed in both mother- and foetus-exposed BPA These findings put forward the importance of future work to further understand how prenatal BPA exposure affect foetuses in their later stage of life.
Collapse
Affiliation(s)
- Zatilfarihiah Rasdi
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
- Centre of Preclinical Sciences Studies, Faculty of Dentistry, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Roziana Kamaludin
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | | | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Rosfaiizah Siran
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Noor Shafina Mohd Nor
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Narimah Abdul Hamid Hasani
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia.
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, 47000, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
6
|
Xu H, Du Y, He J, Wang L, Sun G. MicroRNA-378 protects human umbilical vein endothelial cells from injuries by soluble CD226 through down-regulating the expression of soluble CD226 in natural killer cells. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1640075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Huiying Xu
- Department of Obstetrics and Gynecology, The First People’s Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Yu Du
- Department of Obstetrics and Gynecology, The First People’s Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Jing He
- Department of Obstetrics and Gynecology, The First People’s Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Liping Wang
- Department of Obstetrics and Gynecology, The First People’s Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Gaogao Sun
- Department of Obstetrics and Gynecology, The First People’s Hospital of Lanzhou City, Lanzhou, P.R. China
| |
Collapse
|
7
|
Brennan LJ, Goulopoulou S, Bourque SL. Prenatal therapeutics and programming of cardiovascular function. Pharmacol Res 2018; 139:261-272. [PMID: 30458216 DOI: 10.1016/j.phrs.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVD) are a leading cause of mortality worldwide. Despite recognizing the importance of risk factors in dictating CVD susceptibility and onset, patient treatment remains a challenging endeavor. Increasingly, the benefits of prevention and mitigation of risk factors earlier in life are being acknowledged. The developmental origins of health and disease posits that insults during specific periods of development can influence long-term health outcomes; this occurs because the developing organism is highly plastic, and hence vulnerable to environmental perturbations. By extension, targeted therapeutics instituted during critical periods of development may confer long-term protection, and thus reduce the risk of CVD in later life. This review provides a brief overview of models of developmental programming, and then discusses the impact of perinatal therapeutic interventions on long-term cardiovascular function in the offspring. The discussion focuses on bioactive food components, as well as pharmacological agents currently approved for use in pregnancy; in short, those agents most likely to be used in pregnancy and early childhood.
Collapse
Affiliation(s)
- Lesley J Brennan
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, United States.
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| |
Collapse
|
8
|
Abstract
Epidemiological and experimental observations tend to prove that environment, lifestyle or nutritional challenges influence heart functions together with genetic factors. Furthermore, when occurring during sensitive windows of heart development, these environmental challenges can induce an 'altered programming' of heart development and shape the future heart disease risk. In the etiology of heart diseases driven by environmental challenges, epigenetics has been highlighted as an underlying mechanism, constituting a bridge between environment and heart health. In particular, micro-RNAs which are involved in each step of heart development and functions seem to play a crucial role in the unfavorable programming of heart diseases. This review describes the latest advances in micro-RNA research in heart diseases driven by early exposure to challenges and discusses the use of micro-RNAs as potential targets in the reversal of the pathophysiology.
Collapse
|
9
|
Rodríguez-Rodríguez P, Ramiro-Cortijo D, Reyes-Hernández CG, López de Pablo AL, González MC, Arribas SM. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front Physiol 2018; 9:602. [PMID: 29875698 PMCID: PMC5974054 DOI: 10.3389/fphys.2018.00602] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria.
Collapse
Affiliation(s)
| | - David Ramiro-Cortijo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Angel L López de Pablo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Carmen González
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia M Arribas
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Rysä J, Tokola H, Ruskoaho H. Mechanical stretch induced transcriptomic profiles in cardiac myocytes. Sci Rep 2018; 8:4733. [PMID: 29549296 PMCID: PMC5856749 DOI: 10.1038/s41598-018-23042-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Mechanical forces are able to activate hypertrophic growth of cardiomyocytes in the overloaded myocardium. However, the transcriptional profiles triggered by mechanical stretch in cardiac myocytes are not fully understood. Here, we performed the first genome-wide time series study of gene expression changes in stretched cultured neonatal rat ventricular myocytes (NRVM)s, resulting in 205, 579, 737, 621, and 1542 differentially expressed (>2-fold, P < 0.05) genes in response to 1, 4, 12, 24, and 48 hours of cyclic mechanical stretch. We used Ingenuity Pathway Analysis to predict functional pathways and upstream regulators of differentially expressed genes in order to identify regulatory networks that may lead to mechanical stretch induced hypertrophic growth of cardiomyocytes. We also performed micro (miRNA) expression profiling of stretched NRVMs, and identified that a total of 8 and 87 miRNAs were significantly (P < 0.05) altered by 1-12 and 24-48 hours of mechanical stretch, respectively. Finally, through integration of miRNA and mRNA data, we predicted the miRNAs that regulate mRNAs potentially leading to the hypertrophic growth induced by mechanical stretch. These analyses predicted nuclear factor-like 2 (Nrf2) and interferon regulatory transcription factors as well as the let-7 family of miRNAs as playing roles in the regulation of stretch-regulated genes in cardiomyocytes.
Collapse
Affiliation(s)
- Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland.
| | - Heikki Tokola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Department of Pathology, Cancer Research and Translational Medicine Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Ruskoaho
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Liang H, Pan Z, Zhao X, Liu L, Sun J, Su X, Xu C, Zhou Y, Zhao D, Xu B, Li X, Yang B, Lu Y, Shan H. LncRNA PFL contributes to cardiac fibrosis by acting as a competing endogenous RNA of let-7d. Theranostics 2018; 8:1180-1194. [PMID: 29464008 PMCID: PMC5817119 DOI: 10.7150/thno.20846] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Rationale: Cardiac fibrosis is associated with various cardiovascular diseases and can eventually lead to heart failure. Dysregulation of long non-coding RNAs (lncRNAs) has recently been recognized as one of the key mechanisms involved in cardiac diseases. However, the potential roles and underlying mechanisms of lncRNAs in cardiac fibrosis have not been explicitly delineated. Methods and Results: Using a combination of in vitro and in vivo studies, we identified a lncRNA NONMMUT022555, which is designated as a pro-fibrotic lncRNA (PFL), and revealed that PFL is up-regulated in the hearts of mice in response to myocardial infarction (MI) as well as in the fibrotic cardiac fibroblasts (CFs). We found that knockdown of PFL by adenoviruses carrying shRNA attenuated cardiac interstitial fibrosis and improved ejection fraction (EF) and fractional shortening (FS) in MI mice. Further study showed that forced expression of PFL promoted proliferation, fibroblast-myofibroblast transition and fibrogenesis in mice CFs by regulating let-7d, whereas silencing PFL mitigated TGF-β1-induced myofibroblast generation and fibrogenesis. More importantly, PFL acted as a competitive endogenous RNA (ceRNA) of let-7d, as forced expression of PFL reduced the expression and activity of let-7d. Moreover, let-7d levels were decreased in the MI mice and in fibrotic CFs. Inhibition of let-7d resulted in fibrogenesis in CFs, whereas forced expression of let-7d abated fibrogenesis through targeting platelet-activating factor receptor (Ptafr). Furthermore, overexpression of let-7d by adenoviruses carrying let-7d precursor impeded cardiac fibrosis and improved cardiac function in MI mice. Conclusion: Taken together, our study elucidated the role and mechanism of PFL in cardiac fibrosis, indicating the potential role of PFL inhibition as a novel therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Xiaoguang Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Li Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Xiaomin Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Dandan Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Bozhi Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
12
|
Reynolds CM, Perry JK, Vickers MH. Manipulation of the Growth Hormone-Insulin-Like Growth Factor (GH-IGF) Axis: A Treatment Strategy to Reverse the Effects of Early Life Developmental Programming. Int J Mol Sci 2017; 18:ijms18081729. [PMID: 28786951 PMCID: PMC5578119 DOI: 10.3390/ijms18081729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Evidence from human clinical, epidemiological, and experimental animal models has clearly highlighted a link between the early life environment and an increased risk for a range of cardiometabolic disorders in later life. In particular, altered maternal nutrition, including both undernutrition and overnutrition, spanning exposure windows that cover the period from preconception through to early infancy, clearly highlight an increased risk for a range of disorders in offspring in later life. This process, preferentially termed “developmental programming” as part of the developmental origins of health and disease (DOHaD) framework, leads to phenotypic outcomes in offspring that closely resemble those of individuals with untreated growth hormone (GH) deficiency, including increased adiposity and cardiovascular disorders. As such, the use of GH as a potential intervention strategy to mitigate the effects of developmental malprogramming has received some attention in the DOHaD field. In particular, experimental animal models have shown that early GH treatment in the setting of poor maternal nutrition can partially rescue the programmed phenotype, albeit in a sex-specific manner. Although the mechanisms remain poorly defined, they include changes to endothelial function, an altered inflammasome, changes in adipogenesis and cardiovascular function, neuroendocrine effects, and changes in the epigenetic regulation of gene expression. Similarly, GH treatment to adult offspring, where an adverse metabolic phenotype is already manifest, has shown efficacy in reversing some of the metabolic disorders arising from a poor early life environment. Components of the GH-insulin-like growth factor (IGF)-IGF binding protein (GH-IGF-IGFBP) system, including insulin-like growth factor 1 (IGF-1), have also shown promise in ameliorating programmed metabolic disorders, potentially acting via epigenetic processes including changes in miRNA profiles and altered DNA methylation. However, as with the use of GH in the clinical setting of short stature and GH-deficiency, the benefits of treatment are also, in some cases, associated with potential unwanted side effects that need to be taken into account before effective translation as an intervention modality in the DOHaD context can be undertaken.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
13
|
Sun LY, Fang Y, Patki A, Koopman JJ, Allison DB, Hill CM, Masternak MM, Darcy J, Wang J, McFadden S, Bartke A. Longevity is impacted by growth hormone action during early postnatal period. eLife 2017; 6. [PMID: 28675141 PMCID: PMC5515575 DOI: 10.7554/elife.24059] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Life-long lack of growth hormone (GH) action can produce remarkable extension of longevity in mice. Here we report that GH treatment limited to a few weeks during development influences the lifespan of long-lived Ames dwarf and normal littermate control mice in a genotype and sex-specific manner. Studies in a separate cohort of Ames dwarf mice show that this short period of the GH exposure during early development produces persistent phenotypic, metabolic and molecular changes that are evident in late adult life. These effects may represent mechanisms responsible for reduced longevity of dwarf mice exposed to GH treatment early in life. Our data suggest that developmental programming of aging importantly contributes to (and perhaps explains) the well documented developmental origins of adult disease.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, United States
| | - Yimin Fang
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, United States
| | - Jacob Je Koopman
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - David B Allison
- Department of Biology, University of Alabama at Birmingham, Birmingham, United States.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, United States.,Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, United States
| | - Cristal M Hill
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, United States.,Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| | - Justin Darcy
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Jian Wang
- Department of Biology, University of Alabama at Birmingham, Birmingham, United States
| | - Samuel McFadden
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| |
Collapse
|
14
|
Wu F, Li L, Wen Q, Yang J, Chen Z, Wu P, He M, Zhang X, Wu T, Cheng L. A functional variant in ST2 gene is associated with risk of hypertension via interfering MiR-202-3p. J Cell Mol Med 2017; 21:1292-1299. [PMID: 28121058 PMCID: PMC5487927 DOI: 10.1111/jcmm.13058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/09/2016] [Indexed: 02/05/2023] Open
Abstract
Recent studies have suggested that interleukin 1 receptor-like 1 (ST2) plays a critical role in pathogenesis of several cardiovascular disease conditions. In this study, we examined association of 13 single nucleotide polymorphisms (SNPs) of ST2 gene with essential hypertension (EH) risk in 1151 patients with EH and 1135 controls. Our study showed that variants rs11685424, rs12999364 and rs3821204 are highly associated with an increase in risk of EH, while rs6543116 is associated with a decrease risk of EH. Notably, in silico analyses suggested the G>C change of rs3821204, which located within the 3'UTR of soluble ST2 mRNA, disrupted a putative binding site for miR202-3p. Functional analyses suggested that miR-202-3p significantly decreased soluble ST2-G mRNA stability and inhibited its endogenous expression. Furthermore, we found increased plasma-soluble ST2 (sST2) level was highly associated with CC genotype of rs3821204 in vivo. Taken together, our findings provide the first evidence that genetic variants in ST2 gene are associated with EH risk and variant rs3821204 may influence the development of EH by controlling sST2 expression.
Collapse
Affiliation(s)
- Fangqin Wu
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Lu Li
- Second Affiliated HospitalShantou University Medical CollegeShantouChina
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Qiang Wen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jinhua Yang
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhuyue Chen
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Peng Wu
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Meian He
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaomin Zhang
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Tangchun Wu
- Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Longxian Cheng
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
15
|
Rodríguez-Rodríguez P, López de Pablo AL, García-Prieto CF, Somoza B, Quintana-Villamandos B, Gómez de Diego JJ, Gutierrez-Arzapalo PY, Ramiro-Cortijo D, González MC, Arribas SM. Long term effects of fetal undernutrition on rat heart. Role of hypertension and oxidative stress. PLoS One 2017; 12:e0171544. [PMID: 28212445 PMCID: PMC5315302 DOI: 10.1371/journal.pone.0171544] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Background and aims Fetal undernutrition is a risk factor for heart disease in both genders, despite the protection of women against hypertension development. Using a rat model of maternal undernutrition (MUN) we aimed to assess possible sex differences in the development of cardiac alterations and the implication of hypertension and cardiac oxidative stress. Methods Male and female offspring from rats fed ad libitum (control) or with 50% of the normal daily intake during the second half of gestation (MUN) were used. Heart weight/body weight ratio (HW/BW), hemodynamic parameters (anaesthetized rats) and plasma brain natriuretic peptide (BNP, ELISA) were assessed in 21-day, 6-month and 22-month old rats. Plasma testosterone (ELISA) and cardiac protein expression of enzymes related to reactive oxygen species synthesis (p22phox, xanthine-oxidase) and degradation (catalase, Cu/Zn-SOD, Mn-SOD, Ec-SOD) were evaluated in 21-day and 6-month old rats (Western Blot). Heart structure and function was studied at the age of 22 months (echocardiography). Results At the age of 21 days MUN males exhibited significantly larger HW/BW and cardiac p22phox expression while females had reduced p22phox expression, compared to their respective sex-matched controls. At the age of 6-months, MUN males showed significantly larger blood pressure and cardiac xanthine-oxidase expression; MUN females were normotensive and had a lower cardiac expression of antioxidant enzymes, compared to their respective sex-matched controls. At the age of 22 months, both MUN males and females showed larger HW/BW and left ventricular mass and lower ejection fraction compared to sex-matched controls; only MUN males exhibited hypertension and a larger plasma BNP compared to aged male controls. Conclusions 1) During perinatal life females exposed to fetal undernutrition are protected from cardiac alterations, but in ageing they exhibit ventricular hypertrophy and functional loss, like MUN males; 2) cardiac oxidative stress might be implicated in the observed heart alterations in both sexes and 3) the severity of cardiac damage might be greater in males due to hypertension.
Collapse
Affiliation(s)
| | - Angel L. López de Pablo
- Departamento de Fisiología, Facultad de Medicina; Universidad Autónoma de Madrid, Madrid, Spain
| | - Concha F. García-Prieto
- Departamento de Ciencias Experimentales y de la Salud; Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Experimentales y de la Salud; Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Begoña Quintana-Villamandos
- Departamento de Anestesiología y Reanimación; Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | - David Ramiro-Cortijo
- Departamento de Fisiología, Facultad de Medicina; Universidad Autónoma de Madrid, Madrid, Spain
| | - M. Carmen González
- Departamento de Fisiología, Facultad de Medicina; Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia M. Arribas
- Departamento de Fisiología, Facultad de Medicina; Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Zhou X, Sun F, Luo S, Zhao W, Yang T, Zhang G, Gao M, Lu R, Shu Y, Mu W, Zhuang Y, Ding F, Xu C, Lu Y. Let-7a Is an Antihypertrophic Regulator in the Heart via Targeting Calmodulin. Int J Biol Sci 2017; 13:22-31. [PMID: 28123343 PMCID: PMC5264258 DOI: 10.7150/ijbs.16298] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/10/2016] [Indexed: 01/19/2023] Open
Abstract
Background: MicroRNAs (miRNAs) have been emerged as important regulator in a multiple of cardiovascular disease, including arrhythmia, cardiac hypertrophy and fibrosis, and myocardial infarction. The aim of this study was to investigate whether miRNA let-7a has antihypertrophic effects in angiotensin II (AngII)-induced cardiac hypertrophy. Methods: Neonatal rat ventricular myocytes (NRVMs) were exposed to AngII for 36 h as a cellular model of hypertrophy; subcutaneous injection of AngII for 2 weeks was used to establish a mouse model of cardiac hypertrophy in vivo study. Cell surface area (CSA) was measured by immunofluorescence cytochemistry; expression of hypertrophy-related genes ANP, BNP, β-MHC was detected by Real-time PCR; luciferase activity assay was performed to confirm the miRNA's binding site in the calmodulin (CaM) gene; CaM protein was detected by Western blot; the hypertrophy parameters were measured by echocardiographic assessment. Results: The expression of let-7a was decreased in AngII-induced cardiac hypertrophy in vitro and in vivo. Overexpression of let-7a attenuated AngII-induced increase of cell surface area and repressed the increased mRNA levels of ANP, BNP and β-MHC. Dual-luciferase reporter assay showed that let-7a could bind to the 3'UTR of CaM 1 gene. Let-7a downregulated the expression of CaM protein. In vivo, let-7a produced inhibitory effects on cardiac hypertrophy, including the downregulation of cross-sectional area of cardiomyocytes in mouse heart, the reduction of IVSD and LVPWD, the suppression of hypertrophy marker genes ANP, BNP, β-MHC mRNA level, and the downregulation of CaM protein level. Conclusions: let-7a possesses a prominent anti-hypertrophic property by targeting CaM genes. The findings provide new insight into molecular mechanism of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China.; Department of Cardiology (Key Laboratory of Myocardial Ischemia, Ministry of Education), The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Fei Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China.; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Shenjian Luo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Wei Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Ti Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Guiye Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Ming Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Renzhong Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - You Shu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Wei Mu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yanan Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Fengzhi Ding
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China.; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
17
|
Jayaratne SK, Donaldson PJ, Vickers MH, Lim JC. The Effects of Maternal Under-Nutrition and a Post-Natal High Fat Diet on Lens Growth, Transparency and Oxidative Defense Systems in Rat Offspring. Curr Eye Res 2016; 42:589-599. [PMID: 27613228 DOI: 10.1080/02713683.2016.1214969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE A poor early life nutrition environment is well established to result in a range of cardiometabolic disorders in offspring in later life. These effects can be exacerbated via exposure to an obesogenic dietary environment. To date, the effect of maternal diet and/or a post-natal obesogenic nutritional environment on key characteristics related to lens growth and oxidative stress has not been undertaken. The present study, therefore, examined the characteristics and oxidative status of the lens. MATERIALS AND METHODS Using a model of moderate maternal under-nutrition, rat dams were fed either a control diet (100% ad libitum, CON) or undernourished throughout pregnancy (50% of ad libitum intake, UN) and offspring fed either a control (5% fat, C) or high fat (30% fat, HF) diet post-weaning, resulting in four nutritional groups; CON-C, CON-HF, UN-C, and UN-HF. Offspring lenses were extracted at 160 days of age, weighed, imaged under dark and bright field microscopy, and then dissected into cortical and core fractions for biochemical analyses of oxidative stress markers. RESULTS Our findings reveal that lenses from all groups were transparent. However, gender specific changes were evident at the biochemical level with increased oxidative stress detected in the cortex and core of female but not male UN-C lenses, and in the cortex of male but not female CON-HF lenses. The greatest increase in oxidative stress was detected in the UN-HF group in the cortex and core regions of the lens and for both genders. CONCLUSIONS These findings show that oxidative stress is exacerbated in the lens as a result of a combination of altered pre-natal and post-natal diet. This demonstrates a novel interaction between the two developmental windows and warrants further investigations toward devising appropriate nutritional strategies for minimizing oxidative stress in the lens.
Collapse
Affiliation(s)
- Sachini K Jayaratne
- a Department of Physiology, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand.,b NZ National Eye Centre , University of Auckland , Auckland , New Zealand.,c School of Medical Sciences , University of Auckland , Auckland , New Zealand
| | - Paul J Donaldson
- a Department of Physiology, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand.,b NZ National Eye Centre , University of Auckland , Auckland , New Zealand.,c School of Medical Sciences , University of Auckland , Auckland , New Zealand
| | - Mark H Vickers
- d Liggins Institute , University of Auckland , Auckland , New Zealand
| | - Julie C Lim
- a Department of Physiology, Faculty of Medical and Health Sciences , University of Auckland , Auckland , New Zealand.,b NZ National Eye Centre , University of Auckland , Auckland , New Zealand.,c School of Medical Sciences , University of Auckland , Auckland , New Zealand
| |
Collapse
|
18
|
Jun-Hao ET, Gupta RR, Shyh-Chang N. Lin28 and let-7 in the Metabolic Physiology of Aging. Trends Endocrinol Metab 2016; 27:132-141. [PMID: 26811207 DOI: 10.1016/j.tem.2015.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
The Lin28/let-7 molecular switch has emerged as a central regulator of growth signaling pathways and metabolic enzymes. Initially discovered to regulate developmental timing in the nematode, the Lin28/let-7 pathway of RNA regulation has gained prominence for its role in mammalian stem cells, cancer cells, tissue development, and aging. By regulating RNAs, the pathway coordinates cellular growth and cellular metabolism to influence metabolic physiology. Here, we review this regulatory mechanism and its impact on cancers, which reactivate Lin28, cardiovascular diseases, which implicate let-7, human genome-wide association studies (GWAS) of growth, and metabolic diseases, which implicate the Lin28/let-7 pathway. We also highlight questions relating to Barker's Hypothesis and the potential actions of the Lin28/let-7 pathway on programming long-lasting epigenetic effects.
Collapse
Affiliation(s)
- Elwin Tan Jun-Hao
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Renuka Ravi Gupta
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ng Shyh-Chang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
19
|
Guedes EC, França GS, Lino CA, Koyama FC, Moreira LDN, Alexandre JG, Barreto-Chaves MLM, Galante PAF, Diniz GP. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets. J Cell Physiol 2015; 231:1771-83. [PMID: 26638879 DOI: 10.1002/jcp.25280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/04/2015] [Indexed: 12/28/2022]
Abstract
Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elaine Castilho Guedes
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo Starvaggi França
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil.,Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline Antunes Lino
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Luana do Nascimento Moreira
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Gomes Alexandre
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Luiza M Barreto-Chaves
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Gabriela Placoná Diniz
- Department of Anatomy, Laboratory of Cell Biology and Functional Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Joshi S, Wei J, Bishopric NH. A cardiac myocyte-restricted Lin28/let-7 regulatory axis promotes hypoxia-mediated apoptosis by inducing the AKT signaling suppressor PIK3IP1. Biochim Biophys Acta Mol Basis Dis 2015; 1862:240-51. [PMID: 26655604 DOI: 10.1016/j.bbadis.2015.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
RATIONALE The let-7 family of microRNAs (miRs) regulates critical cell functions, including survival signaling, differentiation, metabolic control and glucose utilization. These functions may be important during myocardial ischemia. MiR-let-7 expression is under tight temporal and spatial control through multiple redundant mechanisms that may be stage-, isoform- and tissue-specific. OBJECTIVE To determine the mechanisms and functional consequences of miR-let-7 regulation by hypoxia in the heart. METHODS AND RESULTS MiR-let-7a, -7c and -7g were downregulated in the adult mouse heart early after coronary occlusion, and in neonatal rat ventricular myocytes subjected to hypoxia. Let-7 repression did not require glucose depletion, and occurred at a post-transcriptional level. Hypoxia also induced the RNA binding protein Lin28, a negative regulator of let-7. Hypoxia ineither induced Lin28 nor repressed miR-let-7 in cardiac fibroblasts. Both changes were abrogated by treatment with the histone deacetylase inhibitor trichostatin A. Restoration of let-7g to hypoxic myocytes and to ischemia-reperfused mouse hearts in vivo via lentiviral transduction potentiated the hypoxia-induced phosphorylation and activation of Akt, and prevented hypoxia-dependent caspase activation and death. Mechanistically, phosphatidyl inositol 3-kinase interacting protein 1 (Pik3ip1), a negative regulator of PI3K, was identified as a novel target of miR-let-7 by a crosslinking technique showing that miR-let-7g specifically targets Pik3ip1 to the cardiac myocyte Argonaute complex RISC. Finally, in non-failing and failing human myocardium, we found specific inverse relationships between Lin28 and miR-let-7g, and between miR-let-7g and PIK3IP1. CONCLUSION A conserved hypoxia-responsive Lin28-miR-let-7-Pik3ip1 regulatory axis is specific to cardiac myocytes and promotes apoptosis during myocardial ischemic injury.
Collapse
Affiliation(s)
- Shaurya Joshi
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jianqin Wei
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nanette H Bishopric
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
21
|
Li M, Reynolds CM, Gray C, Vickers MH. Preweaning GH Treatment Normalizes Body Growth Trajectory and Reverses Metabolic Dysregulation in Adult Offspring After Maternal Undernutrition. Endocrinology 2015; 156:3228-38. [PMID: 25993526 DOI: 10.1210/en.2015-1041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal undernutrition (UN) results in growth disorders and metabolic dysfunction in offspring. Although dysregulation of the GH-IGF axis in offspring is a known consequence of maternal UN, little is known about the efficacy of GH treatment during the period of developmental plasticity on later growth and metabolic outcomes. The present study investigated the effect of preweaning GH treatment on growth, glucose metabolism, and the GH-IGF axis in adult male and female offspring after maternal UN. Female Sprague Dawley rats were fed either a chow diet ad libitum (control [CON]) or 50% of ad libitum (UN) throughout pregnancy. From postnatal day 3, CON and UN pups received either saline (CON-S and UN-S) or GH (2.5 μg/g·d CON-GH and UN-GH) daily throughout lactation. At weaning, male and female offspring were randomly selected from each litter and fed a standard chow diet for the remainder of the study. Preweaning GH treatment normalized maternal UN-induced alterations in postweaning growth trajectory and concomitant adiposity in offspring. Plasma leptin concentrations were increased in UN-S offspring and normalized in the UN-GH group. Hepatic GH receptor expression was significantly elevated in UN-S offspring and normalized with GH treatment. Hepatic IGF binding protein-2 gene expression and plasma IGF-1 to IGF binding protein-3 ratio was reduced in UN-S offspring and elevated with GH treatment. GH treatment during a critical developmental window prevented maternal UN-induced changes in postnatal growth patterns and related adiposity, suggesting that manipulation of the GH-IGF-1 axis in early development may represent a promising avenue to prevent adverse developmental programming effects in adulthood.
Collapse
Affiliation(s)
- Minglan Li
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Clare M Reynolds
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Clint Gray
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Mark H Vickers
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|