1
|
Sánchez-Jaramillo E, Sánchez-Islas E, Gómez-González GB, Yáñez-Recendis N, Mucio-Ramírez S, Barbaro F, Toni R, León-Olea M. Perinatal exposure to Aroclor 1254 disrupts thyrotropin-releasing hormone mRNA expression in the paraventricular nucleus of male and female rats. Toxicology 2024; 508:153935. [PMID: 39182713 DOI: 10.1016/j.tox.2024.153935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Polychlorinated biphenyls (PCBs) are industrial pollutants that act as endocrine disruptors and alter thyroid function. However, it is still unclear whether PCBs can affect hypothalamic thyrotropin releasing hormone (Trh) mRNA expression through TH signaling disruption. As salt-loading dehydration induces tertiary hypothyroidism in the hypothalamic parvocellular paraventricular nuclei (paPVN), and perinatal exposure to Aroclor 1254 (A1254) disrupts the hydric balance in rats, we hypothesized that TRH synthesis could be altered during dehydration in TRH neurons that control the hypothalamic-pituitary-thyroid (HPT) axis activity in rats perinatally exposed to A1254. We examined Trh mRNA expression in the paPVN and the response to salt-loading dehydration (hyperosmotic (hyper) stress) in the progeny of Wistar pregnant rats receiving 0 mg/kg BW (control) or 30 mg/kg BW A1254 daily from gestational days 10-19. Three-month-old offspring were subjected to normosmotic or hyper conditions and Trh mRNA, glucocorticoid receptor (GR) mRNA expression were measured in the PVN by RT-PCR. TRH mRNA and TRH+ neurons were measured in the paPVN by fluorescent in situ hybridization (FISH). As expected, Trh mRNA levels were decreased in the paPVN of male and female rats in the hyper group. Basal Trh mRNA expression and serum TSH were decreased in male rats in the A1254 group. Notably, Trh mRNA levels were further decreased in the paPVN of male and female A1254 + hyper rats, in which the GR mRNA expression was significantly decreased. These results support the hypothesis that perinatal exposure to A1254 results in inadequate adaptive response of the HPT axis in adulthood and contributes to dysregulation of the HPT axis response to salt-loading dehydration.
Collapse
Affiliation(s)
- Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México.
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Gabriela B Gómez-González
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Nashiely Yáñez-Recendis
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Samuel Mucio-Ramírez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Fulvio Barbaro
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Unit of Biomedical, Biotechnological and Translational Sciences, Section of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberto Toni
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Unit of Biomedical, Biotechnological and Translational Sciences, Section of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy; Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| |
Collapse
|
2
|
Appenroth D, Cázarez-Márquez F. Seasonal food intake and energy balance: Neuronal and non-neuronal control mechanisms. Neuropharmacology 2024; 257:110050. [PMID: 38914372 DOI: 10.1016/j.neuropharm.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Animals inhabiting temperate and high latitudes undergo drastic seasonal changes in energy storage, facilitated by changes in food intake and body mass. Those seasonal changes in the animal's biology are not mere consequences of environmental energy availability but are anticipatory responses to the energetic requirements of the upcoming season and are actively timed by tracking the annual progression in photoperiod. In this review, we discuss how photoperiod is used to control energy balance seasonally and how this is distinct from energy homeostasis. Most notably, we suggest that photoperiodic control of food intake and body mass does not originate from the arcuate nucleus, as for homeostatic appetite control, but is rather to be found in hypothalamic tanycytes. Tanycytes are specialized ependymal cells lining the third ventricle, which can sense metabolites from the cerebrospinal fluid (e.g. glucose) and can control access of circulating signals to the brain. They are also essential in conveying time-of-year information by integrating photoperiod and altering hypothalamic thyroid metabolism, a feature that is conserved in seasonal vertebrates and connects to seasonal breeding and metabolism. We also discuss how homeostatic feedback signals are handled during times of rapid energetic transitions. Studies on leptin in seasonal mammals suggest a seasonal shift in central sensitivity and blood-brain transport, which might be facilitated by tanycytes. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Fernando Cázarez-Márquez
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Sui X, Jiang S, Zhang H, Wu F, Wang H, Yang C, Guo Y, Wang L, Li Y, Dai Z. The influence of extended fasting on thyroid hormone: local and differentiated regulatory mechanisms. Front Endocrinol (Lausanne) 2024; 15:1443051. [PMID: 39253586 PMCID: PMC11381305 DOI: 10.3389/fendo.2024.1443051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The hypometabolism induced by fasting has great potential in maintaining health and improving survival in extreme environments, among which thyroid hormone (TH) plays an important role in the adaptation and the formation of new energy metabolism homeostasis during long-term fasting. In the present review, we emphasize the potential of long-term fasting to improve physical health and emergency rescue in extreme environments, introduce the concept and pattern of fasting and its impact on the body's energy metabolism consumption. Prolonged fasting has more application potential in emergency rescue in special environments. The changes of THs caused by fasting, including serum biochemical characteristics, responsiveness of the peripheral and central hypothalamus-pituitary-thyroid (HPT) axis, and differential changes of TH metabolism, are emphasized in particular. It was proposed that the variability between brain and liver tissues in THs uptake, deiodination activation and inactivation is the key regulatory mechanism for the cause of peripheral THs decline and central homeostasis. While hypothalamic tanycytes play a pivotal role in the fine regulation of the HPT negative feedback regulation during long-term fasting. The study progress of tanycytes on thyrotropin-releasing hormone (TRH) release and deiodination is described in detail. In conclusion, the combination of the decrease of TH metabolism in peripheral tissues and stability in the central HPT axis maintains the basal physiological requirement and new energy metabolism homeostasis to adapt to long-term food scarcity. The molecular mechanisms of this localized and differential regulation will be a key research direction for developing measures for hypometabolic applications in extreme environment.
Collapse
Affiliation(s)
- Xiukun Sui
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Linjie Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
4
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Vargas Y, Parra-Montes de Oca M, Sánchez-Jaramillo E, Jaimes-Hoy L, Sánchez-Islas E, Uribe RM, Joseph-Bravo P, Charli JL. Sex-dependent and -independent regulation of thyrotropin-releasing hormone expression in the hypothalamic dorsomedial nucleus by negative energy balance, exercise, and chronic stress. Brain Res 2022; 1796:148083. [PMID: 36108782 DOI: 10.1016/j.brainres.2022.148083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022]
Abstract
The dorsomedial nucleus of the hypothalamus (DMH) is part of the brain circuits that modulate organism responses to the circadian cycle, energy balance, and psychological stress. A large group of thyrotropin-releasing hormone (Trh) neurons is localized in the DMH; they comprise about one third of the DMH neurons that project to the lateral hypothalamus area (LH). We tested their response to various paradigms. In male Wistar rats, food restriction during adulthood, or chronic variable stress (CVS) during adolescence down-regulated adult DMH Trh mRNA levels compared to those in sedentary animals fed ad libitum; two weeks of voluntary wheel running during adulthood enhanced DMH Trh mRNA levels compared to pair-fed rats. Except for their magnitude, female responses to exercise were like those in male rats; in contrast, in female rats CVS did not change DMH Trh mRNA levels. A very strong negative correlation between DMH Trh mRNA levels and serum corticosterone concentration in rats of either sex was lost in CVS rats. CVS canceled the response to food restriction, but not that to exercise in either sex. TRH receptor 1 (Trhr) cells were numerous along the rostro-caudal extent of the medial LH. In either sex, fasting during adulthood reduced DMH Trh mRNA levels, and increased LH Trhr mRNA levels, suggesting fasting may inhibit the activity of TRHDMH->LH neurons. Thus, in Wistar rats DMH Trh mRNA levels are regulated by negative energy balance, exercise and chronic variable stress through sex-dependent and -independent pathways.
Collapse
Affiliation(s)
- Yamili Vargas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Marco Parra-Montes de Oca
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Ciudad de México 14370, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Ciudad de México 14370, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
6
|
Sánchez-Jaramillo E, Wittmann G, Menyhért J, Singru P, Gómez-González GB, Sánchez-Islas E, Yáñez-Recendis N, Pimentel-Cabrera JA, León-Olea M, Gereben B, Fekete C, Charli JL, Lechan RM. Origin of thyrotropin-releasing hormone neurons that innervate the tuberomammillary nuclei. Brain Struct Funct 2022; 227:2329-2347. [PMID: 35934753 PMCID: PMC9418084 DOI: 10.1007/s00429-022-02527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Hypophysiotropic thyrotropin-releasing hormone (TRH) neurons function as metabolic sensors that regulate the thyroid axis and energy homeostasis. Less is known about the role of other hypothalamic TRH neurons. As central administration of TRH decreases food intake and increases histamine in the tuberomammillary nuclei (TMN), and TMN histamine neurons are densely innervated by TRH fibers from an unknown origin, we mapped the location of TRH neurons that project to the TMN. The retrograde tracer, cholera toxin B subunit (CTB), was injected into the TMN E1-E2, E4-E5 subdivisions of adult Sprague-Dawley male rats. TMN projecting neurons were observed in the septum, preoptic area, bed nucleus of the stria terminalis (BNST), perifornical area, anterior paraventricular nucleus, peduncular and tuberal lateral hypothalamus (TuLH), suprachiasmatic nucleus and medial amygdala. However, CTB/pro-TRH178-199 double-labeled cells were only found in the TuLH. The specificity of the retrograde tract-tracing result was confirmed by administering the anterograde tracer, Phaseolus vulgaris leuco-agglutinin (PHAL) into the TuLH. Double-labeled PHAL-pro-TRH boutons were identified in all subdivisions of the TMN. TMN neurons double-labeled for histidine decarboxylase (Hdc)/PHAL, Hdc/Trh receptor (Trhr), and Hdc/Trh. Further confirmation of a TuLH-TRH neuronal projection to the TMN was established in a transgenic mouse that expresses Cre recombinase in TRH-producing cells following microinjection of a Cre recombinase-dependent AAV that expresses mCherry into the TuLH. We conclude that, in rodents, the TRH innervation of TMN originates in part from TRH neurons in the TuLH, and that this TRH population may contribute to regulate energy homeostasis through histamine Trhr-positive neurons of the TMN.
Collapse
Affiliation(s)
- Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 México, CDMX México
| | - Gábor Wittmann
- Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, Boston, MA 02111 USA
| | - Judit Menyhért
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, 1083 Hungary
| | - Praful Singru
- Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, Boston, MA 02111 USA
- Present Address: School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050 India
| | - Gabriela B. Gómez-González
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 México, CDMX México
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210 Cuernavaca, MOR México
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 México, CDMX México
| | - Nashiely Yáñez-Recendis
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 México, CDMX México
| | - Jaime Arturo Pimentel-Cabrera
- Laboratorio Nacional de Microscopia Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210 Cuernavaca, MOR México
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, 14370 México, CDMX México
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, 1083 Hungary
| | - Csaba Fekete
- Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, Boston, MA 02111 USA
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, 1083 Hungary
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210 Cuernavaca, MOR México
| | - Ronald M. Lechan
- Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111 USA
| |
Collapse
|
7
|
Clayton RW, Lovell-Badge R, Galichet C. The Properties and Functions of Glial Cell Types of the Hypothalamic Median Eminence. Front Endocrinol (Lausanne) 2022; 13:953995. [PMID: 35966104 PMCID: PMC9363565 DOI: 10.3389/fendo.2022.953995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The median eminence (ME) is part of the neuroendocrine system (NES) that functions as a crucial interface between the hypothalamus and pituitary gland. The ME contains many non-neuronal cell types, including oligodendrocytes, oligodendrocyte precursor cells (OPCs), tanycytes, astrocytes, pericytes, microglia and other immune cells, which may be involved in the regulation of NES function. For example, in mice, ablation of tanycytes (a special class of ependymal glia with stem cell-like functions) results in weight gain, feeding, insulin insensitivity and increased visceral adipose, consistent with the demonstrated ability of these cells to sense and transport both glucose and leptin, and to differentiate into neurons that control feeding and metabolism in the hypothalamus. To give a further example, OPCs in the ME of mice have been shown to rapidly respond to dietary signals, in turn controlling composition of the extracellular matrix in the ME, derived from oligodendrocyte-lineage cells, which may contribute to the previously described role of these cells in actively maintaining leptin-receptor-expressing dendrites in the ME. In this review, we explore and discuss recent advances such as these, that have developed our understanding of how the various cell types of the ME contribute to its function in the NES as the interface between the hypothalamus and pituitary gland. We also highlight avenues of future research which promise to uncover additional functions of the ME and the glia, stem and progenitor cells it contains.
Collapse
|
8
|
Lazcano I, Rodríguez Rodríguez A, Uribe RM, Orozco A, Joseph-Bravo P, Charli JL. Evolution of thyrotropin-releasing factor extracellular communication units. Gen Comp Endocrinol 2021; 305:113642. [PMID: 33039406 DOI: 10.1016/j.ygcen.2020.113642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/12/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.
Collapse
Affiliation(s)
- Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Adair Rodríguez Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Aurea Orozco
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
9
|
Yoo S, Cha D, Kim S, Jiang L, Cooke P, Adebesin M, Wolfe A, Riddle R, Aja S, Blackshaw S. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 2020; 68:1987-2000. [PMID: 32173924 PMCID: PMC7423758 DOI: 10.1002/glia.23817] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Tanycytes are radial glial cells located in the mediobasal hypothalamus. Recent studies have proposed that tanycytes play an important role in hypothalamic control of energy homeostasis, although this has not been directly tested. Here, we report the phenotype of mice in which tanycytes of the arcuate nucleus and median eminence were conditionally ablated in adult mice. Although the cerebrospinal fluid-hypothalamic barrier was rendered more permeable following tanycyte ablation, neither the blood-hypothalamic barrier nor leptin-induced pSTAT3 activation in hypothalamic parenchyma were affected. We observed a significant increase in visceral fat distribution accompanying insulin insensitivity in male mice, without significant effect on either body weight or food intake. A high-fat diet tended to accelerate overall body weight gain in tanycyte-ablated mice, but the development of visceral adiposity and insulin insensitivity was comparable to wildtype. Thermoneutral housing exacerbated fat accumulation and produced a shift away from fat oxidation in tanycyte-ablated mice. These results clarify the extent to which tanycytes regulate energy balance, and demonstrate a role for tanycytes in regulating fat metabolism.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Cha
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Soohyun Kim
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick Cooke
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mobolanie Adebesin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryan Riddle
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Susan Aja
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
11
|
Perello M, Cabral A, Cornejo MP, De Francesco PN, Fernandez G, Uriarte M. Brain accessibility delineates the central effects of circulating ghrelin. J Neuroendocrinol 2019; 31:e12677. [PMID: 30582239 DOI: 10.1111/jne.12677] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
Ghrelin is a hormone produced in the gastrointestinal tract that acts via the growth hormone secretagogue receptor. In the central nervous system, ghrelin signalling is able to recruit different neuronal targets that regulate the behavioural, neuroendocrine, metabolic and autonomic effects of the hormone. Notably, several studies using radioactive or fluorescent variants of ghrelin have found that the accessibility of circulating ghrelin into the mouse brain is both strikingly low and restricted to some specific brain areas. A variety of studies addressing central effects of systemically injected ghrelin in mice have also provided indirect evidence that the accessibility of plasma ghrelin into the brain is limited. Here, we review these previous observations and discuss the putative pathways that would allow plasma ghrelin to gain access into the brain together with their physiological implications. Additionally, we discuss some potential features regarding the accessibility of plasma ghrelin into the human brain based on the observations reported by studies that investigate the consequences of ghrelin administration to humans.
Collapse
Affiliation(s)
- Mario Perello
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Cabral
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| | - María P Cornejo
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Maia Uriarte
- Laboratorio de Neurofisiología del Instituto Multidisciplinario de Biología Celular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de La Plata y Comisión de Investigaciones Científicas-Provincia de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Rodríguez-Rodríguez A, Lazcano I, Sánchez-Jaramillo E, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P, Charli JL. Tanycytes and the Control of Thyrotropin-Releasing Hormone Flux Into Portal Capillaries. Front Endocrinol (Lausanne) 2019; 10:401. [PMID: 31293518 PMCID: PMC6603095 DOI: 10.3389/fendo.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of β2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, β2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making β2-tanycytes a hub for energy-related regulation of HPT axis activity. β2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of β2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, β2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.
Collapse
Affiliation(s)
- Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
13
|
Dos-Santos RC, Reis LC, Perello M, Ferguson AV, Mecawi AS. The actions of ghrelin in the paraventricular nucleus: energy balance and neuroendocrine implications. Ann N Y Acad Sci 2019; 1455:81-97. [PMID: 31008525 DOI: 10.1111/nyas.14087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
Ghrelin is a peptide mainly produced and secreted by the stomach. Since its discovery, the impact of ghrelin on the regulation of food intake has been the most studied function of this hormone; however, ghrelin affects a wide range of physiological systems, many of which are controlled by the hypothalamic paraventricular nucleus (PVN). Several pathways may mediate the effects of ghrelin on PVN neurons, such as direct or indirect effects mediated by circumventricular organs and/or the arcuate nucleus. The ghrelin receptor is expressed in PVN neurons, and the peripheral or intracerebroventricular administration of ghrelin affects PVN neuronal activity. Intra-PVN application of ghrelin increases food intake and decreases fat oxidation, which chronically contribute to the increased adiposity. Additionally, ghrelin modulates the neuroendocrine axes controlled by the PVN, increasing the release of vasopressin and oxytocin by magnocellular neurons and corticotropin-releasing hormone by neuroendocrine parvocellular neurons, while possibly inhibiting the release of thyrotropin-releasing hormone. Thus, the PVN is an important target for the actions of ghrelin. Our review discusses the mechanisms of ghrelin actions in the PVN, and its potential implications for energy balance, neuroendocrine, and integrative physiological control.
Collapse
Affiliation(s)
- Raoni C Dos-Santos
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, Argentina
| | - Alastair V Ferguson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Jaimes-Hoy L, Romero F, Charli JL, Joseph-Bravo P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Maternal Separation and Palatable Diet. Front Endocrinol (Lausanne) 2019; 10:445. [PMID: 31354623 PMCID: PMC6637657 DOI: 10.3389/fendo.2019.00445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal stress contributes to the development of obesity and has long-lasting effects on elements of the hypothalamus-pituitary-thyroid (HPT) axis. Given the importance of thyroid hormones in metabolic regulation, we studied the effects of maternal separation and a high-fat/high-carbohydrate diet (HFC), offered from puberty or adulthood, on HPT axis activity of adult male and female Wistar rats. Pups were non-handled (NH) or maternally separated (MS) 3 h/day at postnatal days (Pd) 2-21. In a first experiment, at Pd60, rats had access to chow or an HFC diet (cookies, peanuts, chow) for 1 month. Male and female NH and MS rats that consumed the HFC diet increased their caloric intake, body weight, and serum insulin levels; fat weight increased in all groups except in MS males, and serum leptin concentration increased only in females. Mediobasal hypothalamus (MBH) Pomc expression increased in NH-HFC females and Npy decreased in NH-HFC males. MS males showed insulinemia and hypercortisolemia that was attenuated by the HFC diet. The HPT axis activity response to an HFC diet was sex-specific; expression of MBH thyrotropin-releasing hormone-degrading ectoenzyme (Trhde) increased in NH and MS males; serum TSH concentration decreased in NH males, and T4 increased in NH females. In a second experiment, rats were fed chow or an HFC diet from Pd30 or 60 until Pd160 and exposed to 1 h restraint before sacrifice. Regardless of neonatal stress, age of diet exposition, or sex, the HFC diet increased body and fat weight and serum leptin concentration; it induced insulinemia in males, but in females only in Pd30 rats. The HFC diet's capacity to curtail the hypothalamus-pituitary-adrenal axis response to restraint was impaired in MS males. In restrained rats, expression of Trh in the paraventricular nucleus of the hypothalamus, Dio2 and Trhde in MBH, and serum thyroid hormone concentration were altered differently depending on sex, age of diet exposition, and neonatal stress. In conclusion, metabolic alterations associated to an HFC-diet-induced obesity are affected by sex or time of exposition, while various parameters of the HPT axis activity are additionally altered by MS, pointing to the complex interplay that these developmental influences exert on HPT axis activity in adult rats.
Collapse
|
15
|
Langlet F. Tanycyte Gene Expression Dynamics in the Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:286. [PMID: 31133987 PMCID: PMC6514105 DOI: 10.3389/fendo.2019.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Animal survival relies on a constant balance between energy supply and energy expenditure, which is controlled by several neuroendocrine functions that integrate metabolic information and adapt the response of the organism to physiological demands. Polarized ependymoglial cells lining the floor of the third ventricle and sending a single process within metabolic hypothalamic parenchyma, tanycytes are henceforth described as key components of the hypothalamic neural network controlling energy balance. Their strategic position and peculiar properties convey them diverse physiological functions ranging from blood/brain traffic controllers, metabolic modulators, and neural stem/progenitor cells. At the molecular level, these functions rely on an accurate regulation of gene expression. Indeed, tanycytes are characterized by their own molecular signature which is mostly associated to their diverse physiological functions, and the detection of variations in nutrient/hormone levels leads to an adequate modulation of genetic profile in order to ensure energy homeostasis. The aim of this review is to summarize recent knowledge on the nutritional control of tanycyte gene expression.
Collapse
|
16
|
Fröhlich E, Wahl R. The forgotten effects of thyrotropin-releasing hormone: Metabolic functions and medical applications. Front Neuroendocrinol 2019; 52:29-43. [PMID: 29935915 DOI: 10.1016/j.yfrne.2018.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022]
Abstract
Thyrotropin-releasing hormone (TRH) causes a variety of thyroidal and non-thyroidal effects, the best known being the feedback regulation of thyroid hormone levels. This was employed in the TRH stimulation test, which is currently little used. The role of TRH as a cancer biomarker is minor, but exaggerated responses to TSH and prolactin levels in breast cancer led to the hypothesis of a potential role for TRH in the pathogenesis of this disease. TRH is a rapidly degraded peptide with multiple targets, limiting its suitability as a biomarker and drug candidate. Although some studies reported efficacy in neural diseases (depression, spinal cord injury, amyotrophic lateral sclerosis, etc.), therapeutic use of TRH is presently restricted to spinocerebellar degenerative disease. Regulation of TRH production in the hypothalamus, patterns of expression of TRH and its receptor in the body, its role in energy metabolism and in prolactin secretion are addressed in this review.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Internal Medicine (Dept. of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, 72076 Tuebingen, Germany; Center for Medical Research, Medical University Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Richard Wahl
- Internal Medicine (Dept. of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, 72076 Tuebingen, Germany.
| |
Collapse
|
17
|
Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocr Rev 2018; 39:333-368. [PMID: 29351662 DOI: 10.1210/er.2017-00235] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Bénédicte Dehouck
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Ariane Sharif
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Philippe Ciofi
- Inserm, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| |
Collapse
|
18
|
De Francesco PN, Castrogiovanni D, Uriarte M, Frassa V, Agosti F, Raingo J, Perello M. A simple strategy for culturing morphologically-conserved rat hypothalamic tanycytes. Cell Tissue Res 2017; 369:369-380. [PMID: 28413862 DOI: 10.1007/s00441-017-2608-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Abstract
Hypothalamic tanycytes are specialized bipolar ependymal cells that line the floor of the third ventricle. Given their strategic location, tanycytes are believed to play several key functions including being a selective barrier and controlling the amount of hypothalamic-derived factors reaching the anterior pituitary. The in vitro culture of these cells has proved to be difficult. Here, we report an improved method for the generation of primary cultures of rat hypothalamic tanycytes. Ependymal cultures were derived from tissue dissected out of the median eminence region of 10-day-old rats and cultured in a chemically defined medium containing DMEM:F12, serum albumin, insulin, transferrin and the antibiotic gentamycin. After 7 days in vitro, ∼30% of the cultured cells exhibited morphological features of tanycytes as observed by phase contrast or scanning electron microscopy. Tanycyte-like cells were strongly immuno-reactive for vimentin and dopamine-cAMP-regulated phospho-protein (DARPP-32) and weakly immune-reactive for glial fibrillary acidic protein. Tanycyte-like cells displayed a stable negative resting plasma membrane potential and failed to show spiking properties in response to current injections. When exposed to fluorescent beads in the culture medium, tanycyte-like cells exhibited a robust endocytosis. Thus, the present method effectively yields cultures containing tanycyte-like cells that resemble in vivo tanycytes in terms of morphologic features and molecular markers as well as electrical and endocytic activity. To our knowledge, this is the first protocol that allows the culturing of tanycyte-like cells that can be individually identified and that conserve the morphology of tanycytes in their natural physiological environment.
Collapse
Affiliation(s)
- Pablo Nicolás De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Calle 526 entre 10 y 11, PO Box 403, La Plata, 1900, Buenos Aires, Argentina
| | - Daniel Castrogiovanni
- Cell Culture Facility of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Maia Uriarte
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Calle 526 entre 10 y 11, PO Box 403, La Plata, 1900, Buenos Aires, Argentina
| | - Victoria Frassa
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Calle 526 entre 10 y 11, PO Box 403, La Plata, 1900, Buenos Aires, Argentina
| | - Francina Agosti
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, dependent of the Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], Calle 526 entre 10 y 11, PO Box 403, La Plata, 1900, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Rizzoti K, Lovell-Badge R. Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis. Mol Cell Endocrinol 2017; 445:7-13. [PMID: 27530416 DOI: 10.1016/j.mce.2016.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/11/2016] [Indexed: 01/15/2023]
Abstract
Along with the sub-ventricular zone of the forebrain lateral ventricles and the sub-granular zone of the dentate gyrus in the hippocampus, the hypothalamus has recently emerged as a third gliogenic and neurogenic niche in the central nervous system. The hypothalamus is the main regulator of body homeostasis because it centralizes peripheral information to regulate crucial physiological functions through the pituitary gland and the autonomic nervous system. Its ability to sense signals originating outside the brain relies on its exposure to blood-born molecules through the median eminence, which is localized outside the blood brain barrier. Within the hypothalamus, a population of specialized radial glial cells, the tanycytes, control exposure to blood-born signals by acting both as sensors and regulators of the hypothalamic input and output. In addition, lineage-tracing experiments have recently revealed that tanycytes represent a population of hypothalamic stem cells, defining them as a pivotal cell type within the hypothalamus. Hypothalamic neurogenesis has moreover been shown to have an important role in feeding control and energy metabolism, which challenges previous knowledge and offers new therapeutic options.
Collapse
Affiliation(s)
- Karine Rizzoti
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | - Robin Lovell-Badge
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
20
|
Lewis JE, Ebling FJP. Tanycytes As Regulators of Seasonal Cycles in Neuroendocrine Function. Front Neurol 2017; 8:79. [PMID: 28344570 PMCID: PMC5344904 DOI: 10.3389/fneur.2017.00079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Annual cycles of physiology and behavior are highly prevalent in organisms inhabiting temperate and polar regions. Examples in mammals include changes in appetite and body fat composition, hibernation and torpor, growth of antlers, pelage and horns, and seasonal reproduction. The timing of these seasonal cycles reflects an interaction of changing environmental signals, such as daylength, and intrinsic rhythmic processes: circannual clocks. As neuroendocrine signals underlie these rhythmic processes, the focus of most mechanistic studies has been on neuronal systems in the hypothalamus. Recent studies also implicate the pituitary stalk (pars tuberalis) and hypothalamic tanycytes as key pathways in seasonal timing. The pars tuberalis expresses a high density of melatonin receptors, so is highly responsive to changes in the nocturnal secretion of melatonin from the pineal gland as photoperiod changes across the year. The pars tuberalis in turn regulates tanycyte function in the adjacent hypothalamus via paracrine signals. Tanycytes are radial glial cells that persist into adulthood and function as a stem cell niche. Their cell soma are embedded in the ependymal lining of the third ventricle, and they also send elaborate projections through the arcuate nucleus, many of which terminate on capillaries in the median eminence. This anatomy underlies their function as sensors of nutrients in the circulation, and as regulators of transport of hormones and metabolites into the hypothalamus. In situ hybridization studies reveal robust seasonal changes in gene expression in tanycytes, for example, those controlling transport and metabolism of thyroid hormone and retinoic acid. These hormonal signals play a key role in the initial development of the brain, and experimental manipulation of thyroid hormone availability in the adult hypothalamus can accelerate or block seasonal cyclicity in sheep and Siberian hamsters. We hypothesize that seasonal rhythms depends upon reuse of developmental mechanisms in the adult hypothalamus and that tanycytes are key orchestrators of these processes.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
21
|
Abstract
The activity of the hypothalamus-pituitary-thyroid axis (HPT) is coordinated by hypophysiotropic thyrotropin releasing hormone (TRH) neurons present in the paraventricular nucleus of the hypothalamus. Hypophysiotropic TRH neurons act as energy sensors. TRH controls the synthesis and release of thyrotropin, which activates the synthesis and secretion of thyroid hormones; in target tissues, transporters and deiodinases control their local availability. Thyroid hormones regulate many functions, including energy homeostasis. This review discusses recent evidence that covers several aspects of TRH role in HPT axis regulation. Knowledge about the mechanisms of TRH signaling has steadily increased. New transcription factors engaged in TRH gene expression have been identified, and advances made on how they interact with signaling pathways and define the dynamics of TRH neurons response to acute and/or long-term influences. Albeit yet incomplete, the relationship of TRH neurons activity with positive energy balance has emerged. The importance of tanycytes as a central relay for the feedback control of the axis, as well as for HPT responses to alterations in energy balance, and other stimuli has been reinforced. Finally, some studies have started to shed light on the interference of prenatal and postnatal stress and nutrition on HPT axis programing, which have confirmed the axis susceptibility to early insults.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México.
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| |
Collapse
|
22
|
Jaimes-Hoy L, Gutiérrez-Mariscal M, Vargas Y, Pérez-Maldonado A, Romero F, Sánchez-Jaramillo E, Charli JL, Joseph-Bravo P. Neonatal Maternal Separation Alters, in a Sex-Specific Manner, the Expression of TRH, of TRH-Degrading Ectoenzyme in the Rat Hypothalamus, and the Response of the Thyroid Axis to Starvation. Endocrinology 2016; 157:3253-65. [PMID: 27323240 DOI: 10.1210/en.2016-1239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypothalamic-pituitary-thyroid (HPT) axis activity is important for energy homeostasis, and is modified by stress. Maternal separation (MS) alters the stress response and predisposes to metabolic disturbances in the adult. We therefore studied the effect of MS on adult HPT axis activity. Wistar male and female pups were separated from their mothers 3 h/d during postnatal day (PND)2-PND21 (MS), or left nonhandled (NH). Open field and elevated plus maze tests revealed increased locomotion in MS males and anxiety-like behavior in MS females. At PND90, MS females had increased body weight gain, Trh expression in the hypothalamic paraventricular nucleus, and white adipose tissue mass. MS males had increased expression of TRH-degrading enzyme in tanycytes, reduced TSH and T3, and enhanced corticosterone serum concentrations. MS stimulated brown adipose tissue deiodinase 2 activity in either sex. Forty-eight hours of fasting (PND60) augmented serum corticosterone levels similarly in MS or NH females but more in MS than in NH male rats. MS reduced the fasting-induced drop in hypothalamic paraventricular nucleus-Trh expression of males but not of females and abolished the fasting-induced increase in Trh expression in both sexes. Fasting reduced serum concentrations of TSH, T4, and T3, less in MS than in NH males, whereas in females, TSH decreased in MS but not in NH rats, but T4 and T3 decreased similarly in NH and MS rats. In conclusion, MS produced long-term changes in the activity of the HPT axis that were sex specific; response to fasting was partially blunted in males, which could affect their adaptive response to negative energy balance.
Collapse
Affiliation(s)
- Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Mariana Gutiérrez-Mariscal
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Yamili Vargas
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Adrián Pérez-Maldonado
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Fidelia Romero
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Edith Sánchez-Jaramillo
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular (L.J.-H., M.G.-M., Y.V., A.P.-M., F.R., J.-L.C., P.J.-B.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210 México; and Dirección de Investigaciones en Neurociencias (E.S.-J.), Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, Ciudad de México, C.P. 14370 México
| |
Collapse
|
23
|
Joseph-Bravo P, Jaimes-Hoy L, Uribe RM, Charli JL. 60 YEARS OF NEUROENDOCRINOLOGY: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J Endocrinol 2015; 226:T85-T100. [PMID: 26101376 DOI: 10.1530/joe-15-0124] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 12/25/2022]
Abstract
This review presents the findings that led to the discovery of TRH and the understanding of the central mechanisms which control hypothalamus-pituitary-thyroid axis (HPT) activity. The earliest studies on thyroid physiology are now dated a century ago when basal metabolic rate was associated with thyroid status. It took over 50 years to identify the key elements involved in the HPT axis. Thyroid hormones (TH: T4 and T3) were characterized first, followed by the semi-purification of TSH whose later characterization paralleled that of TRH. Studies on the effects of TH became possible with the availability of synthetic hormones. DNA recombinant techniques facilitated the identification of all the elements involved in the HPT axis, including their mode of regulation. Hypophysiotropic TRH neurons, which control the pituitary-thyroid axis, were identified among other hypothalamic neurons which express TRH. Three different deiodinases were recognized in various tissues, as well as their involvement in cell-specific modulation of T3 concentration. The role of tanycytes in setting TRH levels due to the activity of deiodinase type 2 and the TRH-degrading ectoenzyme was unraveled. TH-feedback effects occur at different levels, including TRH and TSH synthesis and release, deiodinase activity, pituitary TRH-receptor and TRH degradation. The activity of TRH neurons is regulated by nutritional status through neurons of the arcuate nucleus, which sense metabolic signals such as circulating leptin levels. Trh expression and the HPT axis are activated by energy demanding situations, such as cold and exercise, whereas it is inhibited by negative energy balance situations such as fasting, inflammation or chronic stress. New approaches are being used to understand the activity of TRHergic neurons within metabolic circuits.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Rosa-María Uribe
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| |
Collapse
|