1
|
The Challenging Pharmacokinetics of Mitotane: An Old Drug in Need of New Packaging. Eur J Drug Metab Pharmacokinet 2021; 46:575-593. [PMID: 34287806 PMCID: PMC8397669 DOI: 10.1007/s13318-021-00700-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 01/10/2023]
Abstract
Adrenocortical carcinoma (ACC) is a malignant tumor originating from the adrenal gland cortex with a heterogeneous but overall dismal prognosis in advanced stages. For more than 50 years, mitotane has remained a cornerstone for the treatment of ACC as adjuvant and palliative therapy. It has a very poor aqueous solubility of 0.1 mg/l and high partition coefficient in octanol/water (log P) value of 6. The commercially available dosage form is 500 mg tablets (Lysodren®). Even at doses up to 6 g/day (12 tablets in divided doses) for several months, > 50% patients do not achieve therapeutic plasma concentration > 14 mg/l due to poor water solubility, large volume of distribution and inter/intra-individual variability in bioavailability. This article aims to give a concise update of the clinical challenges associated with the administration of high-dose mitotane oral therapy which encompass the issues of poor bioavailability, difficult-to-predict pharmacokinetics and associated adverse events. Moreover, we present recent efforts to improve mitotane formulations. Their success has been limited, and we therefore propose an injectable mitotane formulation instead of oral administration, which could bypass many of the main issues associated with high-dose oral mitotane therapy. A parenteral administration of mitotane could not only help to alleviate the adverse effects but also circumvent the variable oral absorption, give better control over therapeutic plasma mitotane concentration and potentially shorten the time to achieve therapeutic drug plasma concentrations considerably. Mitotane as tablet form is currently the standard treatment for adrenocortical carcinoma. It has been used for 5 decades but suffers from highly variable responses in patients, subsequent adverse effects and overall lower response rate. This can be fundamentally linked to the exceedingly poor water solubility of mitotane itself. In terms of enhancing water solubility, a few research groups have attempted to develop better formulations of mitotane to overcome the issues associated with tablet dosage form. However, the success rate was limited, and these formulations did not make it into the clinics. In this article, we have comprehensively reviewed the properties of these formulations and discuss the reasons for their limited utility. Furthermore, we discuss a recently developed mitotane nanoformulation that led us to propose a novel approach to mitotane therapy, where intravenous delivery supplements the standard oral administration. With this article, we combine the current state of knowledge as a single piece of information about the various problems associated with the use of mitotane tablets, and herein we postulate the development of a new injectable mitotane formulation, which can potentially circumvent the major problems associated to mitotane's poor water solubility.
Collapse
|
2
|
Ruggiero C, Doghman-Bouguerra M, Ronco C, Benhida R, Rocchi S, Lalli E. The GRP78/BiP inhibitor HA15 synergizes with mitotane action against adrenocortical carcinoma cells through convergent activation of ER stress pathways. Mol Cell Endocrinol 2018; 474:57-64. [PMID: 29474877 DOI: 10.1016/j.mce.2018.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/10/2018] [Accepted: 02/18/2018] [Indexed: 01/28/2023]
Abstract
Many types of cancer cells present constitutively activated ER stress pathways because of their significant burden of misfolded proteins coded by mutated and rearranged genes. Further increase of ER stress by pharmacological intervention may shift the balance towards cell death and can be exploited therapeutically. Recent studies have shown that an important component in the mechanism of action of mitotane, the only approved drug for the medical treatment of adrenocortical carcinoma (ACC), is represented by activation of ER stress through inhibition of the SOAT1 enzyme and accumulation of toxic lipids. Here we show that HA15, a novel inhibitor of the essential ER chaperone GRP78/BiP, inhibits ACC H295R cell proliferation and steroidogenesis and is able to synergize with mitotane action. These results suggest that convergent activation of ER stress pathways by drugs acting via different mechanisms represents a valuable therapeutic option for ACC.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Université Côte d'Azur, Valbonne, 06560, France; CNRS UMR 7275, Sophia Antipolis, Valbonne, 06560, France; NEOGENEX CNRS International Associated Laboratory, Valbonne, 06560, France; Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, 06560, France
| | - Mabrouka Doghman-Bouguerra
- Université Côte d'Azur, Valbonne, 06560, France; CNRS UMR 7275, Sophia Antipolis, Valbonne, 06560, France; NEOGENEX CNRS International Associated Laboratory, Valbonne, 06560, France; Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, 06560, France
| | - Cyril Ronco
- Université Côte d'Azur, Valbonne, 06560, France; Faculté des Sciences, Institut de Chimie de Nice (ICN) - CNRS UMR 7272, 28, Avenue de Valrose, Nice, 06108, France
| | - Rachid Benhida
- Université Côte d'Azur, Valbonne, 06560, France; Faculté des Sciences, Institut de Chimie de Nice (ICN) - CNRS UMR 7272, 28, Avenue de Valrose, Nice, 06108, France
| | - Stéphane Rocchi
- Université Côte d'Azur, Valbonne, 06560, France; INSERM U1065 - Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, 06200, France
| | - Enzo Lalli
- Université Côte d'Azur, Valbonne, 06560, France; CNRS UMR 7275, Sophia Antipolis, Valbonne, 06560, France; NEOGENEX CNRS International Associated Laboratory, Valbonne, 06560, France; Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, 06560, France.
| |
Collapse
|
3
|
Langlois DK, Fritz MC, Schall WD, Bari Olivier N, Smedley RC, Pearson PG, Bailie MB, Hunt SW. ATR-101, a selective ACAT1 inhibitor, decreases ACTH-stimulated cortisol concentrations in dogs with naturally occurring Cushing's syndrome. BMC Endocr Disord 2018; 18:24. [PMID: 29720169 PMCID: PMC5932779 DOI: 10.1186/s12902-018-0251-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cushing's syndrome in humans shares many similarities with its counterpart in dogs in terms of etiology (pituitary versus adrenal causes), clinical signs, and pathophysiologic sequelae. In both species, treatment of pituitary- and adrenal-dependent disease is met with limitations. ATR-101, a selective inhibitor of ACAT1 (acyl coenzyme A:cholesterol acyltransferase 1), is a novel small molecule therapeutic currently in clinical development for the treatment of adrenocortical carcinoma, congenital adrenal hyperplasia, and Cushing's syndrome in humans. Previous studies in healthy dogs have shown that ATR-101 treatment led to rapid, dose-dependent decreases in adrenocorticotropic hormone (ACTH) stimulated cortisol levels. The purpose of this clinical study was to investigate the effects of ATR-101 in dogs with Cushing's syndrome. METHODS ATR-101 pharmacokinetics and activity were assessed in 10 dogs with naturally-occurring Cushing's syndrome, including 7 dogs with pituitary-dependent disease and 3 dogs with adrenal-dependent disease. ATR-101 was administered at 3 mg/kg PO once daily for one week, followed by 30 mg/kg PO once daily for one (n = 4) or three (n = 6) weeks. Clinical, biochemical, adrenal hormonal, and pharmacokinetic data were obtained weekly for study duration. RESULTS ATR-101 exposure increased with increasing dose. ACTH-stimulated cortisol concentrations, the primary endpoint for the study, were significantly decreased with responders (9 of 10 dogs) experiencing a mean ± standard deviation reduction in cortisol levels of 50 ± 17% at study completion. Decreases in pre-ACTH-stimulated cortisol concentrations were observed in some dogs although overall changes in pre-ACTH cortisol concentrations were not significant. The compound was well-tolerated and no serious drug-related adverse effects were reported. CONCLUSIONS This study highlights the potential utility of naturally occurring canine Cushing's syndrome as a model for human disease and provides proof of concept for ATR-101 as a novel agent for the treatment of endocrine disorders like Cushing's syndrome in humans.
Collapse
Affiliation(s)
- Daniel K Langlois
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Michele C Fritz
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
- Present address: College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - William D Schall
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - N Bari Olivier
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Rebecca C Smedley
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Paul G Pearson
- Pearson Pharma Partners, Inc., Los Angeles, California, 91362, USA
| | - Marc B Bailie
- Integrated Non-Clinical Development Solutions, Inc., Ann Arbor, MI, 48103, USA
| | | |
Collapse
|
4
|
Tran TB, Bergen PJ, Creek DJ, Velkov T, Li J. Synergistic Killing of Polymyxin B in Combination With the Antineoplastic Drug Mitotane Against Polymyxin-Susceptible and -Resistant Acinetobacter baumannii: A Metabolomic Study. Front Pharmacol 2018; 9:359. [PMID: 29713282 PMCID: PMC5911485 DOI: 10.3389/fphar.2018.00359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
Polymyxins are currently used as the last-resort antibiotics against multidrug-resistant Acinetobacter baumannii. As resistance to polymyxins emerges in A. baumannii with monotherapy, combination therapy is often the only remaining treatment option. A novel approach is to employ the combination of polymyxin B with non-antibiotic drugs. In the present study, we employed metabolomics to investigate the synergistic mechanism of polymyxin B in combination with the antineoplastic drug mitotane against polymyxin-susceptible and -resistant A. baumannii. The metabolomes of four A. baumannii strains were analyzed following treatment with polymyxin B, mitotane and the combination. Polymyxin B monotherapy induced significant perturbation in glycerophospholipid (GPL) metabolism and histidine degradation pathways in polymyxin-susceptible strains, and minimal perturbation in polymyxin-resistant strains. Mitotane monotherapy induced minimal perturbation in the polymyxin-susceptible strains, but caused significant perturbation in GPL metabolism, pentose phosphate pathway and histidine degradation in the LPS-deficient polymyxin-resistant strain (FADDI-AB065). The polymyxin B – mitotane combination induced significant perturbation in all strains except the lipid A modified polymyxin-resistant FADDI-AB225 strain. For the polymyxin-susceptible strains, the combination therapy significantly perturbed GPL metabolism, pentose phosphate pathway, citric acid cycle, pyrimidine ribonucleotide biogenesis, guanine ribonucleotide biogenesis, and histidine degradation. Against FADDI-AB065, the combination significantly perturbed GPL metabolism, pentose phosphate pathway, citric acid cycle, and pyrimidine ribonucleotide biogenesis. Overall, these novel findings demonstrate that the disruption of the citric acid cycle and inhibition of nucleotide biogenesis are the key metabolic features associated with synergistic bacterial killing by the combination against polymyxin-susceptible and -resistant A. baumannii.
Collapse
Affiliation(s)
- Thien B Tran
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Phillip J Bergen
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Tran TB, Wang J, Doi Y, Velkov T, Bergen PJ, Li J. Novel Polymyxin Combination With Antineoplastic Mitotane Improved the Bacterial Killing Against Polymyxin-Resistant Multidrug-Resistant Gram-Negative Pathogens. Front Microbiol 2018; 9:721. [PMID: 29706941 PMCID: PMC5906568 DOI: 10.3389/fmicb.2018.00721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Due to limited new antibiotics, polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria, in particular carbapenem-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Unfortunately, polymyxin monotherapy has led to the emergence of resistance. Polymyxin combination therapy has been demonstrated to improve bacterial killing and prevent the emergence of resistance. From a preliminary screening of an FDA drug library, we identified antineoplastic mitotane as a potential candidate for combination therapy with polymyxin B against polymyxin-resistant Gram-negative bacteria. Here, we demonstrated that the combination of polymyxin B with mitotane enhances the in vitro antimicrobial activity of polymyxin B against 10 strains of A. baumannii, P. aeruginosa, and K. pneumoniae, including polymyxin-resistant MDR clinical isolates. Time-kill studies showed that the combination of polymyxin B (2 mg/L) and mitotane (4 mg/L) provided superior bacterial killing against all strains during the first 6 h of treatment, compared to monotherapies, and prevented regrowth and emergence of polymyxin resistance in the polymyxin-susceptible isolates. Electron microscopy imaging revealed that the combination potentially affected cell division in A. baumannii. The enhanced antimicrobial activity of the combination was confirmed in a mouse burn infection model against a polymyxin-resistant A. baumannii isolate. As mitotane is hydrophobic, it was very likely that the synergistic killing of the combination resulted from that polymyxin B permeabilized the outer membrane of the Gram-negative bacteria and allowed mitotane to enter bacterial cells and exert its antimicrobial effect. These results have important implications for repositioning non-antibiotic drugs for antimicrobial purposes, which may expedite the discovery of novel therapies to combat the rapid emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Thien B. Tran
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jiping Wang
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Phillip J. Bergen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Kerkhofs M, Bittremieux M, Morciano G, Giorgi C, Pinton P, Parys JB, Bultynck G. Emerging molecular mechanisms in chemotherapy: Ca 2+ signaling at the mitochondria-associated endoplasmic reticulum membranes. Cell Death Dis 2018; 9:334. [PMID: 29491433 PMCID: PMC5832420 DOI: 10.1038/s41419-017-0179-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
Inter-organellar communication often takes the form of Ca2+ signals. These Ca2+ signals originate from the endoplasmic reticulum (ER) and regulate different cellular processes like metabolism, fertilization, migration, and cell fate. A prime target for Ca2+ signals are the mitochondria. ER-mitochondrial Ca2+ transfer is possible through the existence of mitochondria-associated ER membranes (MAMs), ER structures that are in the proximity of the mitochondria. This creates a micro-domain in which the Ca2+ concentrations are manifold higher than in the cytosol, allowing for rapid mitochondrial Ca2+ uptake. In the mitochondria, the Ca2+ signal is decoded differentially depending on its spatiotemporal characteristics. While Ca2+ oscillations stimulate metabolism and constitute pro-survival signaling, mitochondrial Ca2+ overload results in apoptosis. Many chemotherapeutics depend on efficient ER-mitochondrial Ca2+ signaling to exert their function. However, several oncogenes and tumor suppressors present in the MAMs can alter Ca2+ signaling in cancer cells, rendering chemotherapeutics ineffective. In this review, we will discuss recent studies that connect ER-mitochondrial Ca2+ transfer, tumor suppressors and oncogenes at the MAMs, and chemotherapy.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Mart Bittremieux
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, E.S: Health Science Foundation, Cotignola, Italy
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium.
| |
Collapse
|